
PHYSICAL REVIEW E 105, 045001 (2022)

Modeling ice block failure within drift ice and ice rubble
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A major challenge within material science is the proper modeling of force transmission through fragmenting
materials under compression. A particularly demanding material is sea ice, which on small scales is an
anisotropic material with quasibrittle characteristics under failure. Here we use the particle-based model HiDEM
and laboratory-scale experiments on saline ice to develop a material model for fragmenting ice. The material
behavior of the HiDEM model-ice, and the experiments are compatible on force transmission and fragmentation
if: (i) the typical HiDEM glacier-scale particle size of meters is brought down to millimeters corresponding to
the grain size of the laboratory ice, (ii) the often used HiDEM lattice structure is replaced by a planar random
structure with an anisotropy in the direction normal to the randomized plane, and (iii) the instant tensile and
bending failure criterion, used in HiDEM on glacier scale, is replaced by a cohesive softening failure potential for
energy dissipation. The main outcomes of this exercise is that many of the, more or less, traditional ice modeling
schemes are proven to be incomplete. In particular, local crushing of ice is not valid as a generic failure mode for
fragmented ice under compression. Rather, shear failure, as described by Mohr-Coulomb theory is demonstrated
to be the dominant failure mode.

DOI: 10.1103/PhysRevE.105.045001

I. INTRODUCTION

Material strength of ice has applications ranging from the
mechanisms behind calving glaciers and ice shelves, to the
triggering of avalanches and sea ice dynamics. Ice strength
also controls drift-ice-induced damage on offshore structures
and icebreaker functionality. Thick and more or less intact
ice on large scales, e.g., glaciers, is often modeled as a high-
viscous fluid governed by Glen’s law [1]. For thinner ice, e.g.,
sea ice, purely viscous models are no longer very useful, in
particular, when ice fragments and forms ice rubble.

Under compressive loading, ice often display quasibrit-
tle behavior. Before reaching peak compressive stress, the
stress-strain curve may deviate from linear. At peak-stress,
failure occurs via crack propagation or shear band forma-
tion. When additional complexity of creep, plasticity, and
viscoelasticity are added, it becomes evident that no general
model is available to cover all aspects of the material behavior
of sea ice [2]. In this investigation we focus on developing
and improving material models for drift ice and ice rubble,
which are basically granular materials consisting of floes and
blocks of various sizes. The ice blocks within these materials
interact through ice-to-ice contacts and they typically undergo
a constant fragmentation process.

Compressive strength of granular material has been ex-
tensively investigated, and a central concept is force chains
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that transmit forces through networks of particles across
compressive contacts [3]. The stability of the force chains
determines their force-carrying capacity [4], and it has been
shown that they often fail via geometrical buckling [5]. Paav-
ilainen and Tuhkuri [6] and Ranta et al. [7] demonstrated
this mechanism in ice rubble piles. When drift ice or ice
rubble is densely packed, force chain buckling may become
inhibited by confinement, and force chains may fail through
fracture [8]. Compressive failure of ice has been studied ex-
tensively [9–11], and the failure mode has been noticed to
depend on the loading rate, direction of the forces relative
to the grain direction, and the confinement of ice blocks. In
numerical modeling of sea ice, it has often been assumed that
the local ice failure occurs due to crushing at contacts [12–14],
even though it has remained unclear to what extent this is
the dominating failure mechanism. In recent experiments by
Prasanna et al. [15], it was demonstrated that the saline
ice blocks fail predominantly by shear at compressive con-
tacts. Shear strength of ice is a fraction of its compressive
strength [11], and it appears that contacts transmit lower loads
than predicted by local ice crushing.

The main objective of this investigation is to use the
Bonded Particle Model (BPM) HiDEM [16–18] to reproduce
the experiments of Prasanna et al. [15]. BPMs are often used
to model the failure of complex materials, as a wide range of
failure phenomena can be modeled via the interaction rules
for the particles. Elastic-brittle material with instantaneous
failure is the most straightforward to implement [19–22].
Viscoelasticity and creep can be introduced in a material by
allowing particles to flow past each other and occasionally
re-bond with neighboring particles [23,24]. Fatigue failure
can be achieved by time incremental damage and healing
of bonds [25,26], and bond failure criteria with material
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FIG. 1. (a) Illustration of the three-blocks system and (b) shear
failure of the ice blocks.

softening can be used to obtain quasibrittle failure [27]. Cou-
pling of mechanical and thermal responses is also possible
in BPMs by varying the model parameters as a function of
temperature [28]. Thus, BPMs are used widely to model sea-
ice failure processes [29–32].

As will be demonstrated below, HiDEM can, to a large
degree, reproduce the experiments of Prasanna et al. [15] with
the following modifications: (i) the typical HiDEM glacier-
scale particle-size of meters is brought down to millimeters
corresponding to the width of the granular columns of the
laboratory ice, (ii) the often used HiDEM lattice-structure
is replaced by a planar random structure with an anisotropy
consisting of granular columns in the direction normal to the
randomized plane, and (iii) the instant tensile and bending
failure criterion, used in HiDEM on glacier scale, is replaced
by a cohesive softening failure potential with an efficient
energy dissipation capability.

II. METHODS

Here we describe briefly the experiments of Prasanna
et al. [15], the BPM-tool HiDEM including its modifications,
the material model we used for mimicking the saline ice
used in the experiments, and finally the parametrization of the
computational model that produced the best match with the
experiments.

A. Ice block breakage experiments

Figure 1(a) illustrates the setup of the ice block break-
age experiments, which is described in detail in Prasanna
et al. [15]. In the experiments, three 300 mm × 300 mm
× 110 mm (length × width × thickness) ice blocks were
set to form two ice-to-ice contacts. Compression was ramped
up until failure occurred. The blocks were floating in saline
water, thus, the ice was rather warm with the mean temper-
ature of −2.5◦C. The compressive force, Fp, and the force
transmitted by each contact, F1 and F2, were recorded. The
experiments were conducted using six contact lengths, c =
25, 50, 75, 100, 125, and 150 mm. The ice blocks failed pre-
dominantly due to a strength of material type shear-band
formation. Figure 1(b) shows lighter color bands, which corre-
spond to vertically aligned failure planes reaching through the

FIG. 2. (a) Adjacent particles are connected with beams which
can fail (I) when a force F is applied or (II) when a moment T is
applied. Further, particles that come into contact (III) will experience
repulsive forces. (b) (I) Linear softening function of cohesive crack.
(II) Stress-train response of a beam with cohesive crack. (Panels
(a) and (b) reproduced from Åström et al. [17] and Paavilainen
et al. [39], respectively.)

ice block thickness. The failure planes appeared to be similar
to Coulombic shear faults, a common failure mechanism of
ice under low confinement axial compression [33]. The key
finding of these experiments was that the force transmitted
by an ice-to-ice contact appeared to be limited by a bulk
strength of material type failure rather than a failure caused
by propagating cracks.

B. HiDEM

HiDEM models ice as a lattice of dense-packed spherical
particles connected by Euler-Bernoulli beam elements. When
beams break, microcracks form, which may combine to form
larger cracks. Figures 2(a) (I) and (II) show illustrations of a
beam element failing due to force applied or moment acting
on particles. The equation of motion for particle i is [17]

Mr̈i + Cṙi +
∑

j

γi jC′ṙi j +
∑

j

γ ′
i jKri j = F i. (1)

Here ri is the position vector of particle i and ri j is its
relative position vector with respect to particle j. M is the
diagonal mass-matrix of the particle, while the matrix C
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contains damping coefficients for viscous drag. The matrix
C′ contains damping coefficients for the inelastic collisions
between particles. The parameter γi j is unity for any particle
pair i- j in contact and zero otherwise, while the parameter
γ ′

i j is unity for any particle pair i- j connected by a beam
and zero otherwise. The matrix K is the stiffness matrix of
the Euler-Bernoulli beams. F i denotes the external forces
acting on particle i. Equation (1) implies that an intact par-
ticle lattice exhibits granular viscoelastic material response:
Elastic response due to initially linear-elastic response of
Euler-Bernoulli beams (term Kri j) and viscous response due
to the damping (terms Cṙi and C′ṙi j). In the standard HiDEM
model, beams are set to fail instantaneously once their strains
exceed a threshold value mimicking the formation of a brittle
microcrack. Thus, it allows reproducing the general behavior
of an elastic-brittle material and has been used extensively for
investigating glacier calving, ice-shelf collapse, and sea-ice
breakup [34–38]. When this model was applied to the three-
block setup, it led to localized crushing at the contacts, and
in some cases to shattering, caused by the instantaneous en-
ergy release from the failing beams. Such behavior was never
observed in the experiments. Hence, it became evident that a
failure model with material softening is required to capture the
characteristics of the quasibrittle failure of millimeter scale
saline ice. Softening dissipates the elastic energy stored in
the beams, as the internal forces are ramped down to zero
during the opening of a cohesive crack. For this purpose we
implemented a cohesive softening model similar to that by
Paavilainen et al. [39]. The model is based on the work of
Hillerborg et al. [40] assuming that there is a cohesive zone
in-front of and at the crack tip. When the crack propagates,
the stresses in this cohesive zone do not instantaneously drop
to zero, but decrease gradually as the crack opens. This results
in dissipation of the elastic energy stored in the material, op-
posed to elastic waves caused by instantaneous beam failures
that would shatter the material. The cohesive crack model
used in this work assumes that the stress transferred through
the cohesive crack is a linear function of crack opening dis-
placement, δ. Figure 2(b) (I) presents the linear softening
function used here.

In the cohesive softening model, a beam can only break
via an intermediate cohesive crack forming at one of the
ends of the beam. Each beam has three modes based on the
status of the cohesive crack: linear-elastic mode, softening
mode, and failed mode. In the linear-elastic mode, the beam
is yet to reach the yield point, and the strains in the beam are
governed by the Euler-Bernoulli beam theory. This behavior
is presented in Fig. 2(b) (II) between points O and A. In the
softening mode, a cohesive crack has formed and the strain
in the beam is composed of an elastic and plastic part, εe

and ε f , respectively, in Fig. 2(b) (II). In the failed mode, the
cohesive softening has ended and a true crack has formed,
the beam does not transmit forces, and is considered broken
[corresponds to the point C of Fig. 2(b) (II)]. In the cohesive
mode, the tensile stress of the beam in its softening part, i.e.,
its outermost fiber, is calculated from

σt = Eb

(
εt − δ

l

)
, (2)

where σt is the tensile stress of the beam, Eb is the Young’s
modulus of the beam, δ is the crack opening displacement,
l is the length of the beam in the undeformed configuration,
and the term δ/l corresponds to the plastic strain due to the
formation of the cohesive crack. Since the beams connect the
centroids of the pairs of particles, l is simply the distance
between them. εt is the total tensile strain at the out-most fiber,
given by

εt = εa + εl + εr . (3)

In this equation, εa, εl , and εr are the strains due to axial,
lateral and rotational deformations, respectively. These strain
components are calculated by using the shape function of the
Euler-Bernoulli beam [41].

Here the failure criterion, Fc, for the cohesive crack is

Fc = σt − σc

(
1 − δ

δc

)
, (4)

where σc is the tensile strength of the beam material and
δc is the critical crack opening displacement. When linear
softening is assumed, δc is defined by using fracture energy,
Gc, through

δc = 2Gc

σc

l̂

l̂∗ , (5)

where l̂ is the mean length of a beam in the lattice determined
by summing the lengths of all the beams in a lattice and
dividing by number of beams. l̂∗ is a length scale calibration
parameter for scaling δc for different particle sizes.

When a beam has an admissible stress state, i.e., Fc < 0
[Eq. (4)], it is in elastic mode, or the cohesive crack has
formed and the beam is being loaded or unloaded [39] [as
described in Fig. 2(b) (II) between points O and B]. The crack
opens as Fc � 0, which in turn reduces the stresses in the
beam. In this case an admissible tensile stress σe for the beam
is calculated from

σe = σc

(
1 − δ

δc

)
, (6)

where

δ =
εt − σc

Eb

1

l
− σc

Ebδc

. (7)

When the tensile stress reduces during the cohesive crack
growth, the reaction forces and moments at the ends of the
beam are scaled down proportionally to match the admissible
stress state of the beam, effectively leading to behavior de-
tected as material softening. It is important to note that even if
the beams break under the tensile strains only, using the total
strain of the beams [Eq. (3)] enables mixed mode failure; a
beam connecting two spheres may break due to the relative
translation and rotation of the spheres in any direction.

C. Microstructure ice model

Jirásek and Bažant [27] have shown that beam lattice
topologies in BPM models have a significant bias on the
failure paths. In regular lattices, such as square lattice or
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FIG. 3. Grain structure of ice compared to the AMSM model
(a) Horizontal thin section of natural ice showing cross section of
columnar grains. (b) Horizontal cross section of the AMSM model.
(c) Vertical thin section of natural ice showing the columnar grains.
(d) Vertical cross section of the AMSM model. On the right, blue
(dark gray) and gray (light gray) particles have 1.5 and 2 mm radius,
respectively.

hexagonal closed packed lattice, failure planes tend to align
in the direction of principle or diagonal links. Therefore, a
random lattice is required to minimize the influence of lattice
topology on failure paths. Our preliminary simulations, how-
ever, with random lattices lead to numerous simultaneously
occurring local failures with randomly oriented failure planes.
This did not occur in the experiments, likely due to the grain
structure of the saline ice specimens tested. The ice in the
experiments resembled naturally grown ice, usually having a
vertically aligned columnar grained microstructure, with the
grains aligned parallel to the direction of ice growth [42].
The columnar grain structure of the ice used in the break-
age experiments is illustrated by the horizontal and vertical
thin sections of Figs. 3(a) and 3(c), respectively. Due to its
microstructure, natural ice is an anisotropic material with
different mechanical properties in horizontal and vertical di-
rections [11]. Young’s modulus, the tensile strength and the
compressive strength are, respectively, about 1.2, 3, and 4
times higher in the direction along the columnar grains [42].
Moreover, the failure modes and the underlying failure mech-
anisms depend on the direction of loading with respect to the
grain direction [9]. Therefore, we introduced an anisotropic

TABLE I. Model parameters.

Model parameter Value Unit

Beam width (wb) 2 mm
Young’s modulus of the beams (Eb) 600 MPa
Tensile strength of the beams (σc) 6 MPa
Energy absorbed by the cohesive crack (Gc) 600 Jm−2

microstructure model (AMSM) to replicate the grain structure
of the ice used in the experiments.

The modeled ice specimens were generated as follows.
First, a 2D model was used to deposit circular elements in
to a square shaped box replicating the horizontal cross sec-
tion of columnar ice. A radii distribution of 70% 2 mm and
30% 1.5 mm was used. Then the circles were converted to
spheres to form a planar random lattice seen in Fig. 3(b).
Finally, this lattice was replicated in the vertical direction in
a hexagonal closed packing to generate the microstructure
of ice. Figure 3(d) presents the vertical cross section of the
AMSM showing the columnar arrangement. Initially, a large
ice block of 1200 mm × 1200 mm × 110 mm was created and
smaller ice blocks were sampled from that. The blocks were
sampled close to the center of the large ice block to minimize
the effects of walls in the model. In the simulations below,
ice specimens were loaded perpendicular to the columnar
grain direction similarly to the experiments. Each three-block
system modeled contain about 6 × 105 particles.

D. Parametrization of the model

Parametrization is one of the challenges related to BPM
simulations. Techniques for calibrating models for isotropic
materials exist [43,44], but due to the anisotropy of the ice and
the AMSM topology used, these could not be utilized here.
Parametrization was instead, performed by simulating uniax-
ial compressive failure experiments on single ice blocks. A
similar setup was also used in the experiments. The model was
calibrated to replicate the experimental stress-strain curves,
strain and stress at failure, and the observed failure patterns of
the block.

During parameter testing it became evident that the beam
width, wb, is one of the key parameters, since it affects the
response of the beams in both the elastic and the softening
modes. With wb fixed, the desired macroscopic elastic modu-
lus of the ice could be adjusted by setting the elastic modulus
of the beams, Eb. Optimal material behavior was achieved
with wb = rmax, where rmax is the largest particle radius.
Another key parameter is the tensile strength of the beams,
σc, which controls the macroscopic strength of the modeled
specimens. Neither the failure patterns nor the general shape
of the stress-strain curves changed significantly with σc, thus,
its value was simply set to match the compressive strength of
the experiments. The fracture energy absorbed by the cohesive
crack, Gc, influenced the macroscopic behavior of the material
at failure. Increasing the value of Gc from zero changed the
shattering behavior into shearlike failure patterns that closely
resembled the experiments. Table I summarizes the model
parameters used in the simulations.
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TABLE II. Bulk material properties of the AMSM lattice used
in HiDEM simulations. Corresponding experimental values are in
parentheses.

Property Across columns Along columns Unit

Young’s modulus 108 (130) 144 MPa
Tensile strength 476 1059 kPa
Compressive strength 1018 (820) 2703 kPa

It is important to notice that the parameter values presented
in Table I are input values for the HiDEM model. The ac-
tual material properties of the model ice were obtained from
numerical experiments. Table II presents the bulk material
properties of the AMSM lattice used here, together with the
values of Young’s modulus and the compressive strength of
the saline ice used in the experiments.

III. RESULTS

A. Three-block breakage experiment simulations

Having developed a working saline-ice model for HiDEM,
we simulated the three-block breakage experiments [Fig. 1(a)]
for all contact lengths used in the experiments. Six simula-
tions were conducted for each c by using six different sphere
packings in order to account for the potential scatter in sim-
ulation results. Figure 4 presents typical failure patterns from
the simulations for each c. As apparent from the figures, the
three-block setup failed typically via shear zones pinpointed
to contact margins. The failure first occurred at one of the con-
tacts, predominantly due to shear faulting. The failure patterns
obtained from the simulations are in good agreement with
the failure patterns observed in the experiments (Prasanna
et al. [15], Fig. 9), where about 75% of the specimens failed
due to shear. The analysis focused on the first contact to fail,

FIG. 4. Failure patterns and F -t curves of three block breakage experiment simulations: (a) c = 25 mm, (b) c = 50 mm, (c) c = 75 mm,
(d) c = 100 mm, (e) c = 125 mm, and (f) c = 150 mm. The black line (dark straight line) in failure pattern figures are failure planes predicted
by using Mohr-Coulomb failure criterion as explained in Sec. III B.
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since immediately after the first failure the second contact
failed as the loading conditions changed and the total com-
pressive force was transmitted through the second contact.
The shear faults could be identified by the relatively straight
failure path with 20◦–30◦ angle with respect to the direction
of the compressive force and a failure plane parallel to the
direction of columnar grains [45]. In contrast, typical shear
crack driven by stress concentration could be identified by a
parabolic failure-path, which curves towards a free edge of the
specimen [46].

Figure 4 further compares the force versus time (F -t)
curves from the simulations and the experiments. Forces
transmitted by both contacts, F1 and F2 [Fig. 1(a)], are dis-
played. For computational reasons the compression time in the
simulations, tsim, was much shorter than in the experiments.
Time in the simulations is therefore rescaled to match the
experimental time, texpt, via the equation

t = tsim
ε̇sim

ε̇expt
. (8)

Furthermore, for technical reasons, the simulations were per-
formed with displacement controlled, while the experiments
were force controlled. In Eq. (8), ε̇sim and ε̇expt are the strain
rates in the simulations and the experiments, respectively. In
the experiments, ε̇expt = 2.0 × 10−3 s−1, while in the simula-
tions ε̇sim = 6.7 × 10−3 s−1.

The simulated F -t curves are similar to the experimental
curves, except for the cases with c = 25 and 50 mm. The
maximum contact force transmitted by the first contact to
fail, max(Fc), increases with the contact length. The nonlinear
initial part for the small c in the experiments is due to an initial
misalignment of the blocks and consequent ice blocks settling
at the contacts. Simulations, as expected, do not show this. As
c increases, the significance of the misalignments decreases.
For the larger c values, c > 50 mm, the simulations mimic the
F -t behavior and the failure patterns well. The nonlinearity
close to the peak in the experimental F -t curve is due to the
formation of microcracks and partly inelastic (plastic, creep)
deformations along the failure planes at the contacts. The
simulated F -t curves display less nonlinear behavior near the
peak, even if the simulated shear failure patterns otherwise
indicate quasibrittle failure. In the simulations, microcracking
along the failure planes is captured by the model, but all
forms of inelastic deformations are not included. The prepeak
difference between simulations and experiments is, thus, not
very surprising.

For shear failure, critical shear force, Fτ , and critical nor-
mal force, Fn, acting on the shear plane [Fig. 5(a)] can be,
respectively, calculated as

Fτ = max(Fc) · cos(θ ), (9)

Fn = max(Fc) · sin(θ ), (10)

where max(Fc) is the maximum contact force and θ is the
angle between the shear plane and the loading direction. The
length of the shear plane can be estimated by fitting a straight
line along the plane. The area of the shear plane, Aτ , is approx-
imately the shear plane length multiplied by the thickness of
the ice block.

FIG. 5. (a) Critical shear force, Fτ , and critical normal force, Fn,
acting on a shear plane. (b) Fτ plotted against area of failure plane,
Aτ . Simulation and experiment results are marked with closed and
open markers, respectively.

Figure 5(b) shows Fτ plotted against Aτ in the simulations
and the experiments. The figure also shows fitted trend lines
for both data sets. The simulated and experimental results
agree well, there is relatively small scatter in the data, and
there is an apparent linear dependency between the values of
Fτ and Aτ . This suggests that the failure was governed by
the bulk strength of the material, in contrast to shear crack
propagation induced by stress concentration, which should
lead to a significantly larger scatter in the data, and not a clear
linear relation between Fτ and Aτ . Moreover, it is important
to note that the data points corresponding to different contact
lengths are mixed, which confirms that the trend in the plot is
not an artifact related to the geometry of the three-block setup.

The very slight deviation in trend lines of Fig. 5(b) is partly
due to the strain rate in the simulations being about 1.5–5.0
times higher than in the experiments. The computational strain
rates had to be increased to achieve reasonable simulation
times. Preliminary simulations with the strain rates up to 40
times higher than in the experiments yielded similar linear
trend, but with a higher intercept.
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FIG. 6. Stress distribution in three-block system: (a) σzz, (b) σxx ,
and (c) σxz. Contact length c = 100 mm.

B. Ice failure mechanisms

The results above suggest that ice failure can be explained
by using prefailure stress distributions and bulk strength
of the material. For this purpose we need to compute the
Cauchy stress tensor, σ i, which for particle i can be calculated
using [47]

σ i = 1

2�i

(
1

2

∑
j

ri j ⊗ fi j + fi j ⊗ ri j

)
, (11)

where �i is the volume of particle i, fi j is the force on i due to
the beam connecting it to particle j, ri j is the position vector
of particle j with respect to particle i, and ⊗ is the tensor
product between the two vectors.

Figure 6 shows the stress distribution of the three block
system in the c = 100 mm case just before the failure plane
begins to form. The figure shows that σzz, with its direction
aligned with the load, is the dominant stress component. Also
a zone of high shear stress, σxz, exists near the edge of the
contacts. All of these stresses are largely uniform in the y
direction.

The observed prefailure stress distributions and failure pat-
terns show characteristics of Coulombic shear faults [48],
which makes the Mohr-Coulomb failure criterion a natural
hypothesis. According to this criterion, failure occurs when

τ0 = |τ | − μσn, (12)

where the material properties τ0 and μ are the internal cohe-
sion and the internal friction and, τ and σn are the shear and

FIG. 7. (a) Plausible shear failure planes for arbitrary θ values.
(b) Mohr-Coulomb failure criterion applied to c = 100 mm contact
simulation of Fig. 6. Stress components of Mohr-Coulomb failure
criterion vs θ .

normal stresses on a failure plane, respectively. The directions
of τ and σn are the same as the directions of Fτ and Fn in
Fig. 5(a).

The failure patterns (Fig. 4) showed that it is justified to
assume that the shear planes go through the edges of the
contacts. Thus, to confirm the Mohr-Coulomb theory, the only
missing piece is that the failure plane should have an orienta-
tion that corresponds to the plane with the maximum average
value for |τ | − μσn. The stresses acting on a plane having an
angle θ [Fig. 7(a)] can be solved from

σn = 1
2(σxx + σzz ) − 1

2(σxx − σzz ) cos 2θ − σxz sin 2θ (13)

and

τ = − 1
2 (σxx − σzz ) sin 2θ + σxz cos 2θ. (14)

The right side of Eq. (12) can, thus, be calculated for arbi-
trary values of θ . Figure 7(b) shows τ , σn, and |τ | − μσn with
μ = 0.75 as a function of θ . Here the average value of each
stress component acting on a plane with given θ was used.
Figure 7(b) shows that the maximum value for |τ | − μσn

appears at θ = 26◦. The directions of the simulated failure
planes, presented in Fig. 4(d), match well with this. The
maximum value of the failure criterion, 280 kPa, corresponds
to τ0. Figure 7(b) also shows that the maximum τ occurs
around θ ≈ 45◦, which would be the failure plane angle if
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FIG. 8. (a) Failure plane angles, θ , calculated using Mohr-
Coulomb failure model and from the simulations. (b) Values of
internal cohesion, τ0, calculated using Mohr-Coulomb failure model.

the Rankine failure criterion would have been the correct one.
This further supports the Mohr-Coulomb failure criterion.

Similar analyses were conducted for all simulated failure
planes and Fig. 8(a) shows that the values of θ obtained from
the Mohr-Coulomb model compare well with the values of θ

in the simulations. The figure also includes the mean values
and the standard deviations of θ from the experiments. Mean
values of θ are all similar and the standard deviations overlap.
Further, the black lines in Fig. 4 show the Mohr-Coulomb
failure planes and demonstrate that they compare well with
the ones in the simulations. θ is approximately constant for
all c, which is an important observation for further modeling.
Figure 8(b) shows the values for internal cohesion, τ0, ob-
tained from the Mohr-Coulomb model [Eq. (12)] plotted
against c. The figure also shows τ0 calculated from simula-
tions of single ice block failed under pure shear. While τ0 data
shows some scatter, the mean values and the standard devia-
tions for all c are similar; τ0 is approximately constant for all
simulations as it should be, given it is a material property. The
τ0 values are also in agreement with the corresponding values
measured in Couette-experiments on fresh water ice by Weiss
et al. [49] as well as estimates of τ0 obtained by extrapolating
the post terminal compressive stress plots for onset of sliding
across Coulombic shear faults in fresh water ice [50].

To finalize the results needed for outlining a material model
for drift ice, we conducted a length-scale analysis with single-
block simulations in two different ways [51]: (i) we scaled up
the block-size by increasing the sizes of beams and particles,
and (ii) we used constant beam and particle sizes and modified
the size of the block by adding more particles and beams. As
expected, with a dimensionless softening failure, the stress-
strain behavior remained independent of size in the first case.
In the second case, we observed moderate weakening with
increasing block size, which is also expected [52]. No other
significant material behavior changes with size was observed.
This size analysis was however limited to less than an order
of magnitude in linear size for computational reasons.

IV. DISCUSSION

We have investigated the use of the BPM-tool HiDEM to
model quasibrittle failure of columnar grained, saline, ice in
compressive ice-to-ice contacts by simulating the three-block
breakage experiments of Prasanna et al. [15]. Based on the
study, it is possible to highlight three key requirements for
BPM models used for simulating the compressive failure of
sea ice. First and foremost, a failure criterion with cohesive
softening is needed to capture the quasibrittle failure behavior
of ice. Saline ice, and especially warm sea ice floating in
water, can not be modeled without a strong dissipation of
elastic energy during fracture.

Second, a mixed-mode failure criterion is essential to cap-
ture the Coulombic shear faulting in simulations. The ice
strength and the failure mode is set by the Mohr-Coulomb
theory and the failure criterion need to contain both shear and
normal stress components. Even though the Mohr-Coulomb
theory essentially predict scale invariant fracture, a moderate
weakening with size is expected. We have here demonstrated
the validity of our model for engineering scale (∼1 m) ice
blocks, and it has been suggested that Coulombic shear fault-
ing also occur at geophysical scales (∼100 km) [9,53]. It still
remains unclear, however, to how large sizes our BPM could
be scaled up before it would no longer capture the essential
physics of sea ice fracture. At geophysical scale, in particular,
the parametrization would likely change significantly.

The third key point is that a AMSM topology models
columnar grained ice better than random or structured lattices.
Here it became apparent that the grain structure has to be
replicated in BPM model lattices to achieve realistic failure
planes. This has implications for BPM simulations of sea
ice at larger scales than the mm-scale used here. It may be
reasonable to model sea ice using particles as large as the
thickness of the ice. This is possible because failure occurs
predominantly along vertical planes that cut through the entire
thickness of the ice.

To summarize, a BPM for drift ice should contain a mixed-
mode softening failure potential to dissipate energy at ice
failure, and when the particle and beam sizes are scaled up
from the mm-scale, the anisotropy of the ice and the scale
dependence of ice strength should be taken into account. With
these additions, BPMs for drift ice, at the meter scale and be-
low, should improve significantly, even though some aspects,
like viscoelasticity and a full description of plasticity are still
missing from the model.
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