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Effects of three-point direct correlation on properties of the phase field crystal (PFC) modeling are examined
for the control of various ordered and disordered phases and their coexistence in both three-dimensional and two-
dimensional systems. Such effects are manifested via the corresponding gradient nonlinearity in the PFC free-
energy functional that is derived from classical density functional theory. Their significant impacts on the stability
regimes of ordered phases, phase diagrams, and elastic properties of the system, as compared to those of the
original PFC model, are revealed through systematic analyses and simulations. The nontrivial contribution from
three-point direct correlation leads to the variation of the critical point of order-disorder transition to which all the
phase boundaries in the temperature-density phase diagram converge. It also enables the variation and control of
system elastic constants over a substantial range as needed in modeling different types of materials with the same
crystalline structure but different elastic properties. The capability of this PFC approach in modeling both solid
and soft matter systems is further demonstrated through the effect of three-point correlation on controlling the
vapor-liquid-solid coexistence and transitions for body-centered cubic phase and on achieving the liquid-stripe
or liquid-lamellar phase coexistence. All these provide a valuable and efficient method for the study of structural
ordering and evolution in various types of material systems.
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I. INTRODUCTION

The phase field crystal (PFC) method, an effective density-
field approach for modeling atomistic details of material sys-
tems on diffusive timescales [1–5], has been widely applied
to the study of various structural and dynamical phenom-
ena in a broad range of areas, such as solidification [3,6–8],
elastic and plastic deformation of materials [9–14], crys-
tal growth [4,15–17], dislocation dynamics [18–23], grain
boundary structures and dynamics [24–29], ferromagnetics
and ferroelectrics [30], quasicrystals [31,32], heterostructures
and stacked multilayers of two-dimensional (2D) materials
[33,34], among many others. The PFC models can be con-
nected to or derived from classical density functional theory
(cDFT) through the expansion of direct correlation functions
[3,6,35,36]. The original PFC model contains only two-point
direct correlation where crystal structures and ordered pat-
terns are controlled by a single microscopic lattice length
scale. This limited its capacity in simulating complex struc-
tures. Some works have been conducted to overcome this
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shortcoming. For example, the multimode PFC models have
been proposed to describe a variety of complex structures such
as honeycomb, kagome, rectangular, oblique, and other hybrid
phases or chiral and achiral superlattices in 2D [5,37] and
face-centered cubic (fcc) phase in 3D [38]. The XPFC model
[35,39] has the ability to stabilize the square phase in 2D and
fcc, hexagonal close packed, or simple cubic structures in 3D.
Compared to the original single-mode PFC model, the main
difference in the multimode PFC or XPFC models is that there
are more than one peak in the Fourier component Ĉ(2)(q) of
the two-point direct correlation function to represent multiple
lattice length scales. This has been achieved via two different
ways in the approximation of two-point direct correlation in
Fourier space. The multiple peaks in Ĉ(2)(q), corresponding
to the specific modes (or characteristic length scales) of the
modeled crystalline structure, are constructed via either finite-
width Gaussian functions in XPFC or the expansion of Ĉ(2)(q)
in terms of wave number polynomial in the multimode PFC.

From a theoretical point of view, it would be necessary
to consider multipoint direct correlations for the complete-
ness of the PFC free-energy functional. More importantly,
the incorporation of multipoint correlations can enable the
study of broader material systems and enrich the proper-
ties of the PFC modeling. Limited attempts have been made
to explore the influence of multipoint correlations in PFC
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[36,40–43]. For example, Seymour and Provatas [40] ap-
proximated the three-point direct correlation function as the
product of two-point direct correlations to model structures
with a specific bond angle, such as triangular, honeycomb,
or square, and Kocher and Provatas [41] used both three-
and four-point direct correlations to model vapor-liquid-solid
transitions. Alternatively, Alster et al. [42] expanded the
three-point correlation function in terms of Legendre poly-
nomials in Fourier space and constructed various crystalline
phases (including the ABX3 perovskite structure) from their
PFC model. Recently, we developed a general PFC for-
mulation to incorporate any multipoint direct correlations
satisfying the condition of rotational invariance [36], from
which effects of bond-angle dependency and adjustment can
be achieved through the four-point correlation, and a variety
of 2D and 3D crystal structures, such as 3D diamond cubic
phase and 2D rhombic or 3D simple monoclinic structure
with tunable bond angles, can be stabilized. Based on this
approach, an efficient PFC modeling for 2D vapor-liquid-solid
coexistence and transitions was subsequently developed by
considering the three-point direct correlation [43].

Despite this recent progress, the influence of multipoint
correlations in PFC and the corresponding properties are still
not well understood. For example, it is unclear how the phase
diagram and the relative stability and coexistence between
different ordered and disordered phases would change with
the incorporation of multipoint correlations. In this study, we
systematically investigate the influence of three-point direct
correlation on the single-component PFC phase diagram, par-
ticularly the conditions of stability and coexistence among
various phases. Our results reveal that the ordered vs dis-
ordered stability regime and the relative stability between
ordered phases can be controlled by the three-point direct
correlation (Sec. III B). In addition, contributions from the
three-point correlation can notably impact the phase diagrams
as compared to the original PFC model. When the effect of
three-point correlation is incorporated, the critical point in
the ε (temperature parameter) vs n̄ (average density) phase
diagram, at which all the phase boundaries intersect and the
phase coexistence terminates, becomes variable (Sec. III C).
The effect on system elastic properties is also revealed, show-
ing as the ability to vary the elastic constants in the model over
a considerably broad range for describing different materials
of same crystalline symmetry (Sec. III D). Other examples
showing the control capability of three-point correlation in-
clude the vapor-liquid-solid transitions and coexistence for 3D
body-centered cubic (bcc) phase (Sec. III E) and interestingly,
the realization of liquid-stripe or liquid-lamellar coexistence
(Sec. III F), both of which are verified by dynamical simula-
tions of the full PFC model. These properties and examples
further demonstrate the applicability and efficiency of our
PFC modeling for both solid and soft matter systems.

II. MODEL

The rescaled free-energy functional in the original PFC
model is written as [1,2,4]

F[n] =
∫

dr
{

1

2
n[−ε + (∇2 + 1)2]n − g

3
n3 + 1

4
n4

}
, (1)

where n(r, t ) is an order parameter field representing atomic
number density variation, g is a phenomenological model pa-
rameter, and ε is a temperature parameter with larger (smaller)
ε value corresponding to lower (higher) temperature. In the
associated phase diagram the critical point is located at ε = 0
for the transition between disordered (liquid) and ordered
phases.

This original PFC model can be derived from cDFT with
two-point direct correlation, the effect of which yields the
gradient terms of the PFC free-energy functional in Eq. (1)
[3]. As detailed in Ref. [36], a more general PFC-type density-
field formulation can be developed to incorporate any orders
of multipoint direct correlations that are rotationally invariant.
Here we give a brief description to show how it leads to the
free-energy functional used in this study integrating the effect
of three-point correlation.

Generally, the free-energy functional in cDFT is expanded
by [36,44]

�F[n]

kBT
= ρ0

∫
dr(1 + n) ln(1 + n) −

∑
m

ρm
0

m!

×
∫ m∏

j=1

dr jC
(m)(r1, r2, . . . , rm)n(r1)

× n(r2) · · · n(rm), (2)

where �F = F − F0 with F0 the free energy at the
reference-state density ρ0, the density variation field n =
(ρ − ρ0)/ρ0 with ρ the atomic number density, and
C(m)(r1, r2, . . . , rm) is the m-point direct correlation function
at the reference state. C(m) is translationally invariant and
can be rewritten as C(m)(r1, r2, . . . , rm) = C(m)(r1 − r2, r1 −
r3, . . . , r1 − rm) without loss of generality. Writing C(m) in
terms of its Fourier transform

C(m)(r1, r2, . . . , rm)

= 1

(2π )(m−1)d

∫
dq1dq2 · · · dqm−1Ĉ

(m)(q1, q2, . . . , qm−1)

× eiq1·(r1−r2 )eiq2·(r1−r3 ) · · · eiqm−1·(r1−rm ), (3)

and substituting into Eq. (2) yields

∫ m∏
j=1

dr jC
(m)(r1, r2, . . . , rm)n(r1)n(r2) · · · n(rm)

= 1

(2π )(m−1)d

∫
drn(r)

∫
dq1dq2...dqm−1eiq1·reiq2·r · · ·

× eiqm−1·rĈ(m)(q1, q2, . . . , qm−1)n̂(q1)n̂(q2) · · ·
× n̂(qm−1), (4)

where n̂(q) is the Fourier transform of n(r) and d
is the system dimensionality. The Fourier component
Ĉ(m)(q1, q2, . . . , qm−1) can be expanded as a power series of
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wave vector qi, the tensor form of which is given by

Ĉ(m)(q1, q2, . . . , qm−1)

=
∞∑

K=0

m−1∑
i1,i2,...,iK =1

×
∑

αi1 ,αi2 ,...,αiK =x,y,z

Ci1αi1 i2αi2 ...iK αiK
T (K )

i1αi1 i2αi2 ...iK αiK
, (5)

where T (K )
i1αi1 i2αi2 ...iK αiK

= qi1αi1
qi2αi2

· · · qiK αiK
are components of

a rank-K tensor T(K ). Both C(m) and Ĉ(m) are rotationally in-
variant, and thus T(K ) should be a 2D or 3D isotropic Cartesian
tensor which can be written as linear combinations of products
of qi · q j and (qk × ql ) · qp, leading to [36]

Ĉ(m)(q1, q2, . . . , qm−1)

=
∞∑

μ11,μ12,...=0

Ĉ(m)
μ11μ12...

m−1∏
i, j=1

(qi · q j )
μi j (6)

+
m−1∑

k,l,p=1

∞∑
ν11,...=0

Ĉ(m)
ν11...kl p

m−1∏
i, j=1

(qi · q j )
νi j [(qk × ql ) · qp].

Substituting it into Eq. (4) and making use of some prop-
erties of Fourier transform [e.g.,

∫
dq exp(iq · r)qkn̂(q) =

(−i)k∇kn(r)], the corresponding PFC free-energy functional
with contributions from multipoint direct correlations can be
obtained. Keeping the expansion up to four-point correlations
and truncating at O(q4), the resulting free-energy functional
is give by

F[n] = −
∫

B0n(r)dr

− 1

2

∫
n(r)(C0 + C2∇2 + C4∇4)n(r)dr

− 1

3!

∫
{D0n3(r) + D11n2(r)∇2n(r)

+ D1111n2(r)∇4n(r) + D1122n(r)[∇2n(r)]2}dr

− 1

4!

∫
{E0n4(r) + E11n3(r)∇2n(r)

+ E1111n3(r)∇4n(r)

+ E1122n2(r)[∇2n(r)]2 + E44n2(r)∇4n2(r)}dr, (7)

where the C parameters (i.e., C0, C2, and C4) are proportional
to the expansion coefficient of two-point direct correlation
Ĉ(2) in Fourier space, and the D and E terms represent the
contributions from three- and four-point direct correlations,
respectively, with the corresponding parameters dependent on
the expansion coefficients of Ĉ(3) and Ĉ(4) given in Eq. (6).
Here the first term of Eq. (2) [i.e., the ideal-gas entropy contri-
bution (1 + n) ln(1 + n)] has been expanded as a power series
of n, as in the original PFC, and been merged into the B0,
C0, D0, and E0 terms. It is noted that in Eq. (7) the nonlinear
gradient terms originated from the expansion of four-point
correlation are shown for completeness. Among them only
the E1122 term is retained in some calculations of this work
(see below). It would be needed to prevent the divergence

of ordered-phase free energy when the effect of three-point
correlation (e.g., the D11 term) is present, as has been verified
in Ref. [43].

When keeping only the D0 and E0 terms as well as the C
terms from two-point correlation in Eq. (7), we can recover
the original PFC model after rescaling, i.e., Eq. (1), with C0 =
ε − 1, C2 = −2, C4 = −1, D0 = 2g, and E0 = −6. Therefore,
the first nontrivial contribution from three-point direct corre-
lation is the nonlinear gradient term with coefficient D11, the
effect of which is the focus of this study. In the following we
use a reduced form of Eq. (7) as the free-energy functional in
our PFC approach, i.e.,

F[n] = −
∫

B0ndr

− 1

2

∫
n(C0 + C2∇2 + C4∇4 + C6∇6)ndr

− 1

6

∫
(D0n3 + D11n2∇2n)dr

− 1

24

∫
[E0n4 + E1122n2(∇2n)2]dr, (8)

which has been shown in our recent work to well produce the
vapor-liquid-solid coexistence and transitions for 2D triangu-
lar phase and some realistic temperature- and pressure-related
material properties [43]. In this model E0 < 0 and E1122 � 0
are required for convergence. An additional C6 term is intro-
duced in Eq. (8), corresponding to the expansion of two-point
correlation Ĉ(2) at O(q6). It is used to effectively suppress
the contributions from high-order crystalline modes when D11

and E1122 terms are incorporated, as demonstrated in Ref. [43].
The dynamical evolution of the system is governed by the

conserved PFC equation

∂n

∂t
= ∇2 δF[n]

δn
. (9)

From the free-energy functional in Eq. (8), we get

∂n

∂t
= ∇2

{
− (C0 + C2∇2 + C4∇4 + C6∇6)n

− 1

2
D0n2 − 1

6
D11(2n∇2n + ∇2n2)

− 1

6
E0n3 − 1

12
E1122[n(∇2n)2 + ∇2(n2∇2n)]

}
, (10)

which is used for our full-mode PFC simulations.

III. ANALYSES AND RESULTS

A. One-mode approximation

To conduct stability analysis, one-mode approximation is
first used for the density variation field n(r) of periodic or-
dered phases, i.e.,

n(r) = n̄ + A
∑

q

(eiq·r + c.c.), (11)

where n̄ is the average density variation, A is the amplitude,
q represents the basic wave vector of the periodic structure,
and “c.c.” refers to the complex conjugate. For a 2D stripe
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or 3D lamellar phase with q = q(1, 0, 0), from Eq. (8) the
corresponding free-energy density is written as

fstripe(q, A; n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4

− [
(C0 − C2q2 + C4q4 − C6q6)

+ 1
3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2

]
A2

− 1
4 (E0 + E1122q4)A4. (12)

For 2D triangular or 3D rod phase with basic wave vectors
q = q(1, 0, 0) and q(1/2,±√

3/2, 0), the free-energy density
is obtained as

ftri(q, A; n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4

− 3
[
(C0 − C2q2 + C4q4 − C6q6)

+ 1
3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2]A2

− [2(D0 − D11q2) + (2E0 + E1122q4)n̄]A3

− 15
4 (E0 + E1122q4)A4. (13)

The inverse of triangular structure is honeycomb, which has
the same basic wave vectors but with opposite sign of ampli-
tude A. Thus, if changing A to −A in Eq. (11) to maintain
positive amplitude, then the free-energy density becomes

fhon(q, A; n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4

− 3
[
(C0 − C2q2 + C4q4 − C6q6)

+ 1
3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2

]
A2

+ [2(D0 − D11q2) + (2E0 + E1122q4)n̄]A3

− 15
4 (E0 + E1122q4)A4. (14)

Note that the only difference between Eq. (14) and Eq. (13) is
the sign of the A3 term.

For the 3D bcc phase, the one-mode basic wave vectors
q = q(1,±1, 0)/

√
2, q(0, 1,±1)/

√
2, and q(±1, 0, 1)/

√
2;

thus its free-energy density is given by

fbcc(q, A; n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4

− 6
[
(C0 − C2q2 + C4q4 − C6q6)

+ 1
3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2]A2

− 4[2(D0 − D11q2) + (2E0 + E1122q4)n̄]A3

− 45
2 (E0 + E1122q4)A4. (15)

For the inverse of bcc structure, the maximum and minimum
locations of the atomic density n are expected to be reversed as
compared to bcc (see Fig. 1), similarly to the relation between
honeycomb and triangular phases described above. Thus this
inverse phase should have the same basic wave vectors q as
bcc but a negative value of A. Similarly, replacing A in the
expansion of Eq. (11) by −A and substituting into Eq. (8),

FIG. 1. The real-space lattice structures of (a) bcc and (b) mbcc
phases. The blue spheres represent positions of atoms with maximum
density n, while the gray spheres represent the positions of density
minimum.

we obtain the following expression of free-energy density for
this inverse bcc phase which is now named mbcc (where “m”
refers to “minus”):

fmbcc(q, A; n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4

− 6
[
(C0 − C2q2 + C4q4 − C6q6)

+ 1
3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2

]
A2

+ 4[2(D0 − D11q2) + (2E0 + E1122q4)n̄]A3

− 45
2 (E0 + E1122q4)A4. (16)

Again, Eqs. (15) and (16) differ only in the sign of the A3 term,
as expected from their reverse of structure.

The free-energy density of uniform or homogeneous phase,
either liquid or vapor, is simply given by

fu(n̄) = −B0n̄ − 1
2C0n̄2 − 1

6 D0n̄3 − 1
24 E0n̄4. (17)

The vapor-liquid coexistence can be identified by applying the
common tangent rule on fu(n̄) in Eq. (17), giving the values
of coexistence density as

n̄coexist = ( − D0 ±
√

3D2
0 − 6C0E0

)
/E0. (18)

From ∂2 fu/∂ n̄2 = 0 we can obtain the spinodal densities, i.e.,

n̄spinodal = ( − D0 ±
√

D2
0 − 2C0E0

)
/E0. (19)

B. Stability analysis: Effect of three-point direct correlation

In order to examine how the D11 term, which represents
the effect of three-point direct correlation as described in
Sec. II, affects the stability regime of ordered phases, we
conduct a stability analysis with respect to the supercooled
or supersaturated uniform phase. Interestingly, the free-energy
densities given in Eqs. (12)–(16) show an intriguing property
that either one of the amplitude expansion terms (i.e., A2, A3,
or A4 term) is proportional to a same factor for all the ordered
phases under one-mode approximation. The linear stability is
controlled by the A2 term in Eqs. (12)–(16), all of which are
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proportional to the same factor,

α2(q, n̄) = −[
(C0 − C2q2 + C4q4) + 1

3 (3D0 − 2D11q2)n̄

+ 1
12 (6E0 + E1122q4)n̄2

]
, (20)

where we have set C6 = 0 for simplicity, since nonzero C6

would not qualitatively change the results as has been dis-
cussed in detail in Ref. [43]. Briefly speaking, the introduction
of the C6 term is to enhance the stability of the phase behavior
determined by one-mode analysis when solving the full PFC
model via Eq. (10), such as the dynamic evolution of bcc
and stripe or lamellar phases discussed below in Secs. III E
and III F. A nonzero C6 could alter the degree of contribu-
tions from higher-order modes. The larger the C6 value, the
more effective suppression on the higher-order modes can be
achieved. Results from the full model with large-enough C6

are very close to those of one-mode approximation, as verified
numerically [43]. Thus the analytic stability results identified
in this subsection with the absence of C6, which are based
on one-mode analysis, are used as the basis for the next-step
full-model analysis and simulations given in Secs. III E and
III F.

The uniform phase (either liquid or vapor) is linearly un-
stable when subjected to infinitesimal fluctuations if α2 < 0,
leading to the formation of an ordered phase. By solving
∂α2/∂q = 0 we can find the wave number q for maximum
instability, i.e.,

q =
{√

6C2+4D11n̄
12C4+E1122 n̄2 , if 3C2 + 2D11n̄ < 0,

0, otherwise,
(21)

given the condition 12C4 + E1122n̄2 < 0 for the convergence
at large q as seen in Eq. (20). When 3C2 + 2D11n̄ < 0, we
then get

α2(n̄) = −
(

C0 + D0n̄ + 1

2
E0n̄2

)
+ (3C2 + 2D11n̄)2

3(12C4 + E1122n̄2)
.

(22)
When E1122 = 0 as assumed in this subsection (so that we
could focus on the effect of D11), α2(n̄) in Eq. (22) remains
a quadratic form of n̄. The supersaturating or supercooling
density for the occurrence of linear instability is obtained by
solving α2(n̄) = 0, which yields

n̄supercool = n̄± = ( − bs ±
√

b2
s − 2ascs

)
/as, (23)

where as = E0 − 2D2
11/(9C4), bs = D0 − C2D11/(3C4), and

cs = C0 − C2
2 /(4C4). We set n̄+ as the value of n̄supercool when

the “+” sign is taken in Eq. (23), and set n̄− as the value
corresponding to the “−” sign.

In the original PFC model with D0 = D11 = E1122 = 0,
q2 = C2/(2C4) according to Eq. (21), independent of n̄. There
are two necessary conditions to stabilize ordered phases. The
first one is q2 > 0 which requires C2 < 0 since C4 < 0 is
needed to prevent the divergence at large q when E1122 = 0.
The second one is α2(n̄) < 0. Since E0 < 0 and hence α2(n̄)
is a convex parabola when D11 = E1122 = 0, α2(n̄) < 0 oc-
curs between the two values of n̄supercool when D2

0 − 2E0[C0 −
C2

2 /(4C4)] > 0 based on Eq. (23). That is, we need C2 < 0
and C0 > C2

2 /(2C4) for the stability of ordered phases with n̄
chosen in between n̄+ and n̄−.

When D11 �= 0, 3C2 + 2D11n̄ < 0 is required for q2 > 0.
We define n̄0 as the solution of q2 = 0 for n̄, as determined
by Eq. (21). Also, α2(n̄) < 0 is needed for stabilizing the
ordered phases as discussed above, leading to two situations
for nonzero D11. First, α2(n̄) is a convex parabola if as = E0 −
2D2

11/(9C4) < 0, and thus α2(n̄) < 0 occurs for n̄ lying within
(n̄+, n̄−) when b2

s − 2ascs > 0. Second, α2(n̄) is a concave
parabola if as = E0 − 2D2

11/(9C4) > 0. When b2
s − 2ascs >

0, α2(n̄) < 0 occurs in the region (−∞, n̄−) ∪ (n̄+,+∞).
When b2

s − 2ascs < 0, α2(n̄) is negative at every n̄ value. The
intersection between q2 > 0 and α2(n̄) < 0 determines the
stability regime of ordered phases.

These linear stability results are shown in Fig. 2 and
summarized in Table I, with details of derivation given in
Appendix A. There are two key curves (black and red, respec-
tively) in each panel of the first column of Fig. 2 that separate
the linear stability regimes for ordered and uniform phases,
based on the analysis presented in Appendix A. Figure 2(a),
i.e., the first row of Fig. 2, gives the results of the original PFC
model with D11 = 0, for a range of C2 values (noting that C2

was restricted to a fixed value of −2 in almost all the previous
studies of the original PFC). Since here D11 = 0, C2 should be
negative to enable ordered phase according to Eq. (21). The
midpoint of two n̄supercool values (i.e., n̄+ and n̄−) coincides
with that of n̄coexist for vapor-liquid coexistence, as can be seen
in the last two columns of Fig. 2(a). Therefore, when D11 = 0
the stability regime of any solid or ordered phase is always
found between vapor and liquid regimes, which results in a
vapor-solid-liquid phase transition sequence [43].

When D11 �= 0 [Figs. 2(b) and 2(c)], C2 < 0 is no longer
required for ordered phases. The midpoint of two n̄supercool

values does not necessarily coincide with that of n̄coexist [see
the last two columns of Figs. 2(b) and 2(c)], and the ar-
eas of ordered-phase stability regime change. Importantly,
if D2

11 is larger than a critical value of 9C4E0/2 (at which
as = E0 − 2D2

11/(9C4) = 0), then an ordered phase could be
stabilized for any real value of C2, as seen in Fig. 2(c). In
addition, the stability regime of the ordered phase with respect
to the uniform phase (vapor or liquid) could be outside of
the range confined by (n̄+, n̄−), rather than lying between
them as in the original PFC model. This makes it possible
to choose parameters to obtain the usual sequence of vapor-
liquid-solid transition as n̄ increases [see the last column
of Fig. 2(c)].

In the above analysis and results, only the linear stabil-
ity of ordered vs disordered phase is identified, but not the
relative stability between different individual ordered phases.
To distinguish the phase stability among all the phases, we
need to consider nonlinear contributions from all the terms in
the free-energy density of each ordered phase, i.e., A3 and A4

terms in Eqs. (12)–(16), in addition to the A2 term used in
linear stability analysis. The most stable phase at each point
of the parameter space can then be determined through the
minimum free-energy density, which is used to obtain the full
stability diagram. Some sample results of this full stability
calculation are shown in Figs. 3 and 4. We first examine
the case of D11 = 0 (i.e., the original PFC model) for three
negative values of n̄. As seen in Figs. 3(a)–3(c), the stability
regime for stripe or lamellar phase shrinks while those for bcc
and triangular phases expand with the decrease of n̄. Next, we
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FIG. 2. Stability diagrams of ordered vs disordered phase obtained from linear instability analysis, at C6 = D0 = E1122 = 0, C4 = −1,
E0 = −6, and (a) D11 = 0, (b) D11 = −2, and (c) D11 = −8. The first column shows the C0 − C2 diagrams, with the colored areas
corresponding to the stable regime of any ordered phases and white areas to that of the uniform phase. Different colored areas correspond
to different linear stability regimes with the range of allowed n̄ marked inside. The black and red curves correspond to C0 = C2

2 /(4C4) +
[D0 − C2D11/(3C4)]2/[2E0 − 4D2

11/(9C4)] and C0 = 3C2D0/(2D11) − 9C2
2 E0/(8D2

11), respectively (see Appendix A). The horizontal dashed
line indicates the value of C0 at which the vapor-liquid phase separation takes place. All the other columns give the n̄ − C2 stability diagrams,
for different values of C0 = −0.5 (second column), C0 = 0 (third column), and C0 = 0.2 (fourth column). The linear stability regimes for the
ordered phase are shown in shadow. The green curves refer to n̄+ and the blue ones represent n̄−, which are the values of n̄supercool calculated
from Eq. (23). The purple dashed lines correspond to vapor-liquid coexistence densities obtained from Eq. (18), and the red dashed lines are
for 3C2 + 2D11n̄ = 0. The arrows point to the region of 3C2 + 2D11n̄ < 0.

TABLE I. Stability regimes of ordered phase obtained from linear instability analysis, where C01 = C2
2 /(4C4) + b2

s/(2as ) and C02 =
3C2D0/(2D11) − 9C2

2 E0/(8D2
11).

E0 − 2D2
11

9C4
< 0 E0 − 2D2

11
9C4

> 0

−
√

9E0C4
2 < D11 < 0 0 < D11 <

√
9E0C4

2 D11 < −
√

9E0C4
2 D11 >

√
9E0C4

2

C01 < C0 < C02 (n̄+, n̄−) − − −
C2 <

2D0D11
3E0 C02 < C0 < C01 − − (n̄0, +∞) (−∞, n̄0 )

C01 < C0 < C02 − (n̄+, n̄−) − −
C2 >

2D0D11
3E0 C02 < C0 < C01 − − (n̄0, n̄−) ∪ (n̄+, +∞) (−∞, n̄−) ∪ (n̄+, n̄0 )

C0 > C02 (n̄0, n̄−) (n̄+, n̄0) − −
C0 < C02 − − (n̄+, +∞) (−∞, n̄−)
C0 > C01 − − (n̄0, +∞) (−∞, n̄0)
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FIG. 3. Stability diagrams showing stability regimes for different ordered phases, with D11 = 0 and n̄ = −0.05, −0.25, and −0.41 for (a),
(b), and (c), respectively. The stability regimes are colored pink for the stripe or lamellar phase, lavender for triangular, and green for bcc.
Other parameters are set as C6 = D0 = E1122 = 0, C4 = −1, and E0 = −6.

incorporate the effect of nonzero D11 in Fig. 4, by choosing a
fixed value of n̄ = −0.05 as an example to show the difference
between various ordered-phase stability regimes as D11 varies.
If comparing Fig. 3(a) for D11 = 0 and Figs. 4(a)–4(c) for D11

ranging from −2 to −8, then it can be found that when the
value of D11 decreases, the range of stability for the stripe or
lamellar phase is reduced, accompanied by the expansion of
the bcc stability regime. The regime for the stripe or lamellar
phase disappears completely at D11 = −8, with bcc phase
occupying most of the stability regime of ordered phases
[see Fig. 4(c)]. This suggests that the D11 term can be used
to effectively control the relative stability between different
ordered structures.

C. ε − n̄ phase diagrams

The corresponding ε − n̄ (temperature-density) phase dia-
grams are presented in Fig. 5 (with ε = C0 + 1), showing the
effect of the D11 term on the stability and coexistence between
different 3D phases including bcc, mbcc, lamellar, triangular
rod, honeycomb rod, and liquid phases. The phase boundaries
are determined by the common tangent construction based on
the one-mode free-energy densities in Eqs. (12)–(16).

It is interesting to note that there exists a special point
in the phase diagram (marked as a red circle in Fig. 5) at
which all the phase boundaries coincide, i.e., all the ordered
and disordered phases are indistinguishable and coexist at
this point. This is a critical point where any two-phase co-

existence terminates, with the same, unique location for all
the phases. When D11 = 0 it is located at (εc, n̄c) = (0, 0)
as known for the original PFC model [Fig. 5(a)], while its
location is adjustable via the variation of nonzero D11 (i.e., via
varying the contribution from three-point correlation), as seen
by comparing Figs. 5(b) and 5(c). For the parameters used in
Fig. 5 with B0 = C6 = D0 = E1122 = 0, C2 = −2, C4 = −1,
and E0 = −6, this critical point can be obtained analytically
in the one-mode approximation, yielding

εc = 1 + 27
(
D2

11 − 12
)

(
D2

11 − 18
)2 , (24)

n̄c =
3
[
D11 ± 9

√
D2

11/
(
D2

11 − 18
)2]

D2
11 − 27

, (25)

with “+” for D11 � 0 and “−” for D11 < 0, which well agree
with the numerical results given in Fig. 5 with high accuracy.
The result of the critical point in the original PFC model, εc =
n̄c = 0, can be recovered from Eqs. (24) and (25) by setting
D11 = 0. Details of derivation are provided in Appendix B,
while some arguments for the corresponding governing con-
ditions are explained below.

From the stability analysis given above in Sec. III B,
the liquid-stripe or liquid-lamellar transition occurs at the
supercooled point n̄supercool with the coefficient of the A2

FIG. 4. Stability diagrams showing stability regimes for different ordered phases at a fixed value of n̄ = −0.05 and three different values
of D11 = −2, −4, and −8 for (a), (b), and (c), respectively. The stability regimes are colored pink for the stripe or lamellar phase, lavender for
triangular, and green for bcc. Other parameters are set as C6 = D0 = 0, C4 = −1, E0 = −6, and E1122 = 0 for (a) and (b). In (c) E1122 = −1 is
used to suppress the divergence of free-energy densities of the ordered phases.
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FIG. 5. Phase diagrams of 3D PFC calculated by one-mode approximation, for (a) D11 = 0, (b) D11 = 1, and (c) D11 = −1. Other
parameters used are B0 = C6 = D0 = E1122 = 0, C2 = −2, C4 = −1, and E0 = −6. Bottom panels show the enlarged regimes near the critical
point (marked with red circle) in (a)–(c).

term α2 = 0. However, this is not the case for other ordered
phases of which the free-energy density contains an A3 term
[see Eqs. (13)–(16) for hexagonal (triangular or honeycomb)
rods, bcc, and mbcc phases]. The corresponding coefficient is
proportional to

α3(q, n̄) = 2(D0 − D11q2) + (2E0 + E1122q4)n̄. (26)

The existence of an A3 term can make an ordered phase at
n̄supercool more stable than the liquid phase beyond the linear
stability, since A3 can take either positive or negative value
to decrease the free-energy density. To illustrate this, here
we consider the case of as = E0 − 2D2

11/(9C4) < 0 as an
example. In this case the linear stability regime of ordered
phase is (n̄+, n̄−) as described above. In all the free-energy
densities given in Eqs. (12)–(16), the A4 term should be al-
ways positive to prevent the free-energy divergence. When
n̄ < n̄+, the coefficient of A2 term for all the ordered phases
is positive, and thus the stripe or lamellar phase (without the
A3 term) is unstable with respect to liquid. The contribution
from the A3 term could be negative for hexagonal and bcc or
mbcc phases within a certain range of n̄ when n̄ < n̄+, such
that these phases can be more stable than the liquid phase in
this range. Therefore, the full stability range of these ordered
phases with respective to liquid is broader than that deter-
mined by n̄supercool. Usually this n̄ range of stability is wider
for the bcc or mbcc phase as compared to the hexagonal phase
when D11 = 0, leading to the liquid-bcc coexistence (instead
of liquid-hexagonal coexistence) in 3D. The relative stability
can be changed by nonzero D11, as will be demonstrated
below in Sec. III F where the liquid-lamellar or liquid-stripe
coexistence is realized.

According to the above analysis, when α3 becomes zero
under some conditions of e.g., n̄ and ε, the extra stabilization

effect provided by the A3 term no longer exists. Thus, to
make the transition between all the ordered phases and the
liquid phase occur at exactly the same point (i.e., controlled by
n̄supercool), we need the coefficients of A2 and A3 terms being
equal to zero simultaneously, giving the following conditions
in one-mode approximation,

α2(qeq, n̄) = 0, α3(qeq, n̄) = 0, (27)

where qeq is the equilibrium wave number determined by the
minimization of the free-energy density. At this special point
where Eq. (27) is satisfied, it can be shown that qeq is the same
as the wave number obtained by ∂α2/∂q = 0.

This special point determined by Eq. (27) is actually the
critical point of liquid-solid or disorder-order phase transition,
for which the order parameter is the amplitude A of an ordered
phase. From Eqs. (12)–(16), the one-mode free-energy density
of any ordered phase is of the same form

f = fu(n̄) + a2α2(q, n̄)A2 + a3α3(q, n̄)A3 + a4α4(q)A4,

(28)
where fu is given by Eq. (17), α4(q) = E0 + E1122q4, and a2,
a3, and a4 are constants, with a2 = 1, a3 = 0, and a4 = −1/4
for stripe or lamellar, a2 = 3, a3 = ∓1, and a4 = −15/4 for
triangular or honeycomb, and a2 = 6, a3 = ∓4, and a4 =
−45/2 for bcc or mbcc phase. Applying the conditions for
the critical point, i.e., ∂ f /∂A = 0 for the equilibrium state as
well as ∂2 f /∂A2 = 0 and ∂3 f /∂A3 = 0, it is straightforward
to obtain the same condition α2 = α3 = 0 [i.e., Eq. (27)] for
all the phases. The solution of Eq. (27) leads to Eqs. (24)
and (25), as shown in Appendix B. The same results for the
location of this critical point can be obtained beyond the one-
mode approximation, as found in our numerical calculations
up to three modes.
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In addition to the critical point, introducing the D11 term
also changes the stability and coexistence regimes of different
phases in the phase diagram. The phase diagram is symmetric
about n̄ = 0 when D11 = 0 [Fig. 5(a)] but becomes asym-
metric when D11 �= 0. For positive D11 such as D11 = 1 in
Fig. 5(b), the phase stability regimes for triangular and bcc
structures are reduced while those for their inverse structures
(honeycomb and mbcc) enlarged, as compared to the case of
D11 = 0. The opposite situation occurs for negative values of
D11 such as D11 = −1 shown in Fig. 5(c).

D. Elastic constants

We choose the 3D bcc system as an example to reveal
the effect of three-point correlation on the system elastic
property. As has been discussed in Ref. [12], the isothermal
elastic constants of stressed and unstressed systems should be
calculated by

Ci jkl = 1

V0

∂2F

∂ξi j∂ξkl

∣∣∣∣
ξ=0

, (29)

where V0 is the volume of the initial undeformed state and ξi j

is an effective finite strain tensor defined by

ξi j = εi j − 1
2εikεk j + 1

2εi jεkk, (30)

with εi j the infinitesimal or linear strain tensor. The strained-
state free energy is of the form

Fstrained = min
A
F (A, q(strained), n̄strained,Vstrained ), (31)

with A, q, n̄, and volume V all varying with the applied strain.
It is worth emphasizing that the values of elastic constants
depend on the choice of a non-negative rescaled reference-
state density ρ̃0 used in the definition of rescaled PFC density
variation field n. When the system is strained or deformed,
the corresponding variation of the average density variation n̄
is governed by the relation [12]

n̄strained = Vunstrained

Vstrained
(n̄unstrained + ρ̃0) − ρ̃0, (32)

to satisfy the condition of constant total number of particles.
The model parameters of original PFC (with D11 = 0) have
been matched to bcc Fe, giving ρ̃0 = 0.251, and the cor-
responding elastic constants C0

i j (using Voigt notation) have
been identified [12].

Here we further calculate the elastic constants of various
bcc systems with varying D11 and ρ̃0 which correpond to
different types of materials, based on Eqs. (29)–(32) and the
one-mode free-energy density of Eq. (15). The n̄unstrained for
each D11 is determined by the midpoint of the stable regime
of bcc phase in the ε − n̄ phase diagram at a given temper-
ature parameter ε (e.g., ε = 0.1 as used in this work). The
corresponding results are presented in Fig. 6. We have chosen
five values of ρ̃0 to show how it affects the elastic property.
Figure 6 indicates that C44 has a much weaker dependence on
ρ̃0 as compared to C11 and C12, while each of them changes
significantly across at least a certain range of D11. C11 and
C12 exhibit similar behaviors of variation with respect to the
change in ρ̃0 and D11. Their values decrease monotonically
with the increase of D11 for large-enough ρ̃0, while for small

ρ̃0 (e.g., ρ̃0 = 0.05 or 0.251) a minimum of C11 or C12 can be
found when D11 varies. In addition, their values increase with
ρ̃0 when D11 < 0.

Variations of the Poisson’s ratio ν are also given in Fig. 6,
showing a more complicated behavior. When ρ̃0 > 0.251, ν

reaches a maximum at some small magnitude of D11. When
D11 < −0.5 the values of ν increase with larger ρ̃0. The
changes of ν are much more irregular in the other ranges of
D11 or ρ̃0, including some sharp variations (e.g., at ρ̃0 = 0.251
and 0.5) which could be attributed to different values of aver-
age density n̄unstrained chosen at different D11 for the stability
of bcc phase.

All these results show that in this PFC modeling the elastic
property of a system can be varied effectively over a con-
siderable range. This well demonstrates the efficiency and
advantage of this model, which incorporates the important
effects of three-point correlation, for describing different ma-
terials of the same crystalline symmetry but different elastic
properties through an extended parametrization. For example,
the elastic constants of bcc Fe (with ρ̃0 = 0.251) were under-
estimated in the original PFC model based only on two-point
direct correlation [12]. With the incorporation of three-point
correlation with nonzero D11 (e.g., = −1), the values of C11,
C12, C44, and ν would all increase as shown in Fig. 6, yielding
a better matching to the real material.

E. Vapor-liquid-solid coexistence for 3D bcc

Recently we used this PFC model to obtain the vapor-
liquid-solid transitions and coexistence for 2D triangular
phase [43]. Actually, the model based on Eq. (8) is gener-
ally applicable to both 2D and 3D systems. As discussed in
Sec. III B, the vapor-liquid-solid transition sequence can be re-
alized through choosing the values of model parameters with
large magnitude of D11 [see Fig. 2(c)]. In the following we
show an example of how to obtain the three-phase transitions
and coexistence for 3D bcc. First, we fix the values of B0,
C0, D0, and E0 to determine the properties of vapor and liq-
uid phases. We choose B0 = −1.875, C0 = −5.75, D0 = −9,
and E0 = −6, so that from Eq. (18) the coexistence densities
for vapor and liquid phases are n̄vapor = −2.5 and n̄liquid =
−0.5, respectively. The corresponding free-energy densities
are fvapor = fliquid = −0.391 since B0 has been chosen to
make the common tangent line passing the two coexistence
densities horizontal. Following the procedure described in
Ref. [43] to identify three-phase coexistence, the coexis-
tence density for solid phase, n̄solid, can be chosen flexibly.
Here we choose n̄solid = −0.1. In equilibrium the three co-
existing phases should have equal chemical potential and
pressure, which provides two constraints. To obtain the equi-
librium free-energy density of bcc phase we also need both
∂ fbcc/∂q = 0 and ∂ fbcc/∂A = 0. Now we have four restricted
relationships with seven undetermined variables C2, C4, C6,
D11, E1122, q, and A. To suppress the contributions from
higher-order modes we set C6 = 32 [43]. In addition, the equi-
librium wave number and amplitude can be preset as some
specific values such as qeq = 1 and Aeq = 0.2 as used here.
Then the remaining four parameters C2, C4, D11, and E1122 can
be determined from the four constraint conditions mentioned
above. Values of these parameters are first obtained based
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FIG. 6. Elastic constants for bcc phase as a function of D11, at ε = 0.1 (with C0 = −0.9) and for five values of ρ̃0 = 0.05, 0.251, 0.5, 0.75,
and 1. The other parameters are the same as those of Fig. 5. For each D11 value, the average density variation in the unstrained state, n̄unstrained, is
chosen as the mid point of the bcc phase regime in the corresponding phase diagram, i.e., n̄unstrained = −0.0640, −0.0875, −0.1122, −0.1435,
−0.1885, −0.2518, −0.3369, −0.4465, and −0.5884 for D11 ranging from −2 to +2 with a step size of 0.5. Results of elastic constants Ci j

are also rescaled by C0
i j which are the values of original PFC with D11 = 0, n̄unstrained = −0.1885, and ρ̃0 = 0.251.

on the one-mode bcc free-energy density Eq. (15), and then
be slightly adjusted to account for the discrepancy between
one-mode and full-mode solutions, as identified from the full
PFC simulation to obtain the phase coexistence. All the model
parameters used in the full PFC numerical calculations are
listed in Table II.

The accurate values of equilibrium free energy for bcc
phase is obtained through numerically solving the full PFC
dynamical Eq. (10). A single unit cell is used with pe-
riodic boundary conditions. To enhance the computational
efficiency, we set up the initial conditions by using either the
density field n(r) obtained from the one-mode approximation
or the existing simulation outcome of equilibrium n(r) profile
with close value of average density n̄, and evolve the system
up to a steady state with negligible time variation of free-

energy density. For each set of n̄ and temperature �T , We
vary the numerical grid spacings �x, �y, and �z to find the
minimum of the corresponding free-energy density and the
equilibrium wave number qeq. Some examples of the equilib-
rium free-energy density profiles as a function of n̄ are shown
in Fig. 7(a). The common tangent construction is then applied
to determine the densities of liquid-solid or vapor-solid co-
existence, with the vapor-liquid-solid coexistence realized at
�T = 0. The resulting temperature-density (�T vs n̄) phase
diagram is given in Fig. 7(b).

We also compute the corresponding temperature-pressure
(�T vs P) phase diagram based on the f − n̄ curves obtained
from the full PFC numerical calculations, as presented in
Fig. 7(c). Values of the equilibrium pressure P can be calcu-
lated from the free-energy density f (n̄), with details given in

TABLE II. Model parameters used in numerical calculations of vapor-liquid-solid transitions and coexistence for 3D bcc phase, with the
triple point temperature at �T = 0.

B0 C0 C2 C4 C6 D0 D11 E0 E1122

−4.732 − 3�T −5.844 − �T 19.337 + 1.6�T 57.442 − 0.8�T 32 −9 −26.632 −6 −17.835
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FIG. 7. (a) Free-energy density profiles for uniform (solid curves) and 3D bcc (dashed) phases at temperatures �T = −0.594 (blue),
�T = 0 (green), and �T = 0.406 (red), as calculated from the full PFC Eq. (10). To give a better illustration, all the curves have been titled by
−βn̄ with β = 2.716. (b) Temperature-density phase diagram, where the black dashed curve corresponds to the vapor-liquid spinodal. (c) The
corresponding temperature-pressure phase diagram. (d) The full-PFC dynamical simulation results of three-phase coexistence at �T = 0.
Upper panel: A simulation snapshot showing the solid-liquid-vapor coexistence. Bottom panel: The corresponding density profile along the x
direction, where the density has been averaged over the yz cross section; the diffraction pattern is shown as an inset. The parameters used are
listed in Table II.

Ref. [43]. Results of both two diagrams are consistent with the
known properties of vapor-liquid-solid transitions and coexis-
tence in real materials and previous simulations, such as the
temperature dependence of coexistence densities, triple point,
and critical point.

To further verify the phase behavior described above, we
have conducted a dynamical simulation of 3D vapor-liquid-
solid coexistence based on Eq. (10) using the parameter values
listed in Table II for bcc phase. The system is set at �T = 0,
and the initial configuration is set up as half of the simulated
slab being occupied by a bcc solid with n̄ = −0.14 and the
other half by two equal-volume homogeneous regions with
n̄ = −2.25 and −0.75, respectively. During the time evolu-
tion the system remains as a mixture of vapor, liquid, and
bcc solid phases, as seen in the simulation snapshot and the

corresponding diffraction pattern shown in Fig. 7(d). The av-
erage densities of each phase change from the initial setup
values to n̄ = −2.44, −0.55, and −0.12 for vapor, liquid, and
solid phases, respectively, closely matching the three-phase
coexistence densities given in the equilibrium phase diagram
of Fig. 7(b). An example of the cross-section averaged density
profile obtained from our simulation is depicted in Fig. 7(d).

The multiphase modeling that is made available in this
approach would be important for the study of some material
growth and evolution processes, particularly those involving
the coexistence and interplay between vapor, liquid, and solid
phases. A typical example is the surface-melting mediated
crystal growth near the triple point [45], which makes use of
the property that on solid surface a premelted thin liquid layer
would form and separate the underneath growing crystal and
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outside vapor. The multiphase characteristics, particularly the
formation of premelting surface films and the resulting three-
phase coexistence, then play a crucial role in determining the
growth dynamics and system evolution. These and similar
types of multiphase material processes and the underlying
mechanisms can be readily modeled and explored through this
PFC approach incorporating three-point correlation, which
well describes the vapor-liquid-solid coexistence and transi-
tion as demonstrated above.

F. Liquid-stripe or liquid-lamellar coexistence

In all the previous PFC models, the stripe or lamellar phase
cannot, except for the one-dimensional case, coexist with the
uniform phase, as seen in Fig. 5. We will demonstrate in the
following that the coexistence between liquid and stripe or
lamellar phases can be achieved in either 2D or 3D through
the adjustment and control of model parameters particularly
with the contributions (D11 and E1122) from high-order direct
correlations. The liquid-hexagonal coexistence in 3D, which
is absent in the original PFC, can be also made accessible if
following the similar approach.

We base the following analysis on the one-mode free-
energy densities given in Eqs. (12), (13), and (15). The key
adjustable parameter is the stripe- or lamellar-phase density
n̄stripe at the vapor-liquid-ordered phase coexistence. Sim-
ilarly to the procedure described above in Sec. III E, we
first determine the properties of vapor and liquid phases by
setting B0 = −1.875, C0 = −5.75, D0 = −9, and E0 = −6.
The vapor-liquid coexistence densities can be obtained from
Eq. (18) as n̄vapor = −2.5 and n̄liquid = −0.5. Next we chose a
fixed value of n̄stripe as the density of stripe or lamellar phase
when coexisting with liquid and vapor. For simplicity, the
equilibrium wave number qeq and the equilibrium amplitude
Aeq are chosen as 1 and 0.4, respectively, and C6 = 32 is used
as before. The other four parameters, C2, C4, D11, and E1122,
can then be identified for conditions satisfying the three-phase
coexistence at each value of n̄stripe. Some sample results are
given in Figs. 8(a)–8(c) for n̄stripe varying from 0 to 0.7,
showing that the free-energy densities of bcc and hexagonal
phases increase with larger value of n̄stripe and exceed that
of the lamellar phase at large-enough n̄stripe [see Fig. 8(c)],
resulting in the coexistence between lamellar and uniform
phases.

To verify these analyses we conduct 2D numerical sim-
ulations of the full PFC Eq. (10) based on the parameters
identified from Fig. 8(c), with results presented in Fig. 8(d).
Since here we focus on the liquid-stripe coexistence, the value
of C0 is changed from −5.75 to −6.75 to destabilize the vapor
phase, while all the other parameters remain unchanged. The
equilibrium free-energy density profiles for liquid, stripe, and
triangular phases are first calculated through the full-mode
numerical solution of the PFC Eq. (10) in 2D, as shown in the
left panel of Fig. 8(d). We then choose n̄ = 0.3, which locates
within the liquid-stripe coexistence regime [as marked on the
f − n̄ curve in Fig. 8(d)], to run a dynamical simulation test.
The initial configuration is set up as a homogeneous state with
random initial condition of n̄ = 0.3. The subsequent evolution
dynamics is governed by Eq. (10). Four simulation snapshots
are shown in the right panels of Fig. 8(d), corresponding to

time t = 100, 500, 1000, and 5000, respectively. A transient
of liquid-triangular phase coexistence is found at the early
stage (t < 100), after which the stripe phase starts to form
and grows gradually to replace the triangular phase, resulting
in the coexistence of liquid, stripe, and triangular structures
(see, e.g., t = 500). At the late time stage (t � 1000) only the
coexistence between liquid and stripe phases is observed. The
evolution of the stripe pattern is accompanied by the dynamics
of topological defects including disclinations, dislocations,
and grain boundaries, consistent with the known pattern-
forming and evolution process for the stripe or smectic phase.
An example of a time-evolving high-angle grain boundary is
shown in the panels of late time stage in Fig. 8(d) (t = 1000
and 5000, marked with red boxes). Furthermore, as enabled by
our PFC modeling with the incorporation of three-point corre-
lation, the results here demonstrate the additional dynamical
feature of isotropic-smectic coexistence and evolution which
is absent in previous PFC-type models but important in the
study of ordering process of some soft material systems such
as colloidal rods. These results of dynamic evolution further
evidence the efficacy of three-point correlation on controlling
phase behaviors in the PFC modeling.

IV. SUMMARY

We have studied the effects of three-point direct corre-
lation on the properties of phase stability, coexistence, and
system elastic response in the PFC modeling. Compared to
the original PFC model containing only the contribution from
two-point direct correlation, the stability regimes of ordered
phases are significantly affected by the incorporation of the
three-point correlation. From the instability analysis on the
supercooled or supersaturated uniform state, much richer and
broader conditions for the stability of ordered phase can be
identified with the effect of the D11 term, a contribution from
the three-point correlation. In the ε − n̄ phase diagrams the
stability regimes of bcc and triangular phases expand (or
shrink) with negative (or positive) value of D11, while those of
their inverse counterparts (i.e., mbcc and honeycomb) behave
in the opposite way, leading to asymmetric phase diagrams. Of
particular interest is the critical point in these phase diagrams,
exhibiting as the merging point of all the phase boundaries,
which becomes adjustable with varying nonzero D11 values.
In addition, the introduction of three-point correlation enables
the modeling of different materials of the same crystalline
structure but different elastic properties, through a viable con-
trol of system elastic constants that can better match various
real materials.

Our results also show that the vapor-liquid-solid transitions
and coexistence, which are important in the multiphase ma-
terial growth and evolution processes, can be well realized
in our PFC model incorporating effects of multipoint direct
correlations, as demonstrated for 3D bcc phase in this work.
The liquid-stripe or liquid-lamellar coexistence, which is not
accessible in the original or other PFC models but occurs in
soft-matter ordering systems (e.g., isotropic-smectic coexis-
tence and transition in colloidal liquid crystals or rods), can be
achieved as well through parameter control. 3D and 2D PFC
dynamical simulations have been conducted to verify these
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FIG. 8. [(a)–(c)] Equilibrium free-energy densities for uniform, lamellar, triangular rod, and bcc phases in 3D as a function of n̄ in the
one-mode approximation, based on three different values of n̄stripe as indicated. (d) Free energy density profiles for liquid, stripe, and triangular
phases in 2D as obtained from numerical solution of the full PFC Eq. (10). Also shown are four snapshots of the system dynamical evolution
starting from a random initial condition of n̄ = 0.3. The red boxed region indicates a high-angle grain boundary of the stripe pattern in the stripe-
liquid coexisting state. The parameters used are B0 = −1.875, C6 = 32, D0 = −9, E0 = −6, and C0 = −5.75 for (a)–(c) and C0 = −6.75
for (d). In addition, (C2,C4, D11, E1122) = (15.2, 57.8, −30.9, −53.8) for (a), (C2,C4, D11, E1122) = (12.1, 56.2, −67.6, −186.1) for (b), and
(C2,C4, D11, E1122) = (50.3, 72.8, −195.9, −558.5) for (c) and (d).

findings and further prove the effects of three-point direct
correlation.

In short, our study has demonstrated that contributions
from three-point direct correlation can be used to control
and adjust the phase stability regimes, the relative stability of
different ordered phases, phase coexistence, elastic properties,
and the transition sequence among vapor, liquid, and ordered
phases in either solid or soft matter systems. This ability of
phase and elastic-property control makes our PFC approach
a valuable tool for modeling a wide variety of real material
systems.
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APPENDIX A: LINEAR INSTABILITY ANALYSIS

As stated in Sec. III B, the uniform or homogeneous
phase is linearly unstable with respect to ordered phase when
α2(n̄) < 0. Also, to enable the ordered phase q2 > 0 is re-
quired. Hence α2(n̄) < 0 and q2 > 0 are the two necessary but
not sufficient conditions for stabilizing the ordered phases. For
simplicity, C4 < 0, E0 < 0, and C6 = E1122 = 0 are set in the
following analysis which can be classified into two cases of
E0 − 2D2

11/(9C4) < 0 and >0 respectively.
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(i) Based on the formula of α2(n̄) given in Eq. (22), when
E0 − 2D2

11/(9C4) < 0 the α2 vs n̄ curve is a convex parabola.
According to Eq. (23), if b2

s − 4ascs > 0 or equivalently C0 >

C2
2 /(4C4) + b2

s/(2as), then α2(n̄) = 0 has two nonzero real so-
lutions n̄+ and n̄− (noting that n̄− > n̄+ here). Thus, α2(n̄) <

0 occurs for n̄ in the interval of (n̄+, n̄−). The other condition
of q2 > 0 corresponds to the following two situations.

First, suppose q2 > 0 is satisfied for all the n̄ values in the
(n̄+, n̄−) interval. Obviously, if D11 = 0, then this is always
true since q2 is then equal to C2/2C4 (when E1122 = 0) with
both C2 and C4 being negative. As also seen in Eq. (21), if
D11 �= 0, q2 is dependent on n̄. To satisfy the condition of q2 >

0 in the whole range of n̄+ < n̄ < n̄−, we need(
C2 + 2

3
D11n̄−

)(
C2 + 2

3
D11n̄+

)

= C2
2 − 4

(
3D0C2D11 − 2C0D2

11 − C2
2 D2

11
2C4

)
9
(
E0 − 2D2

11
9C4

) > 0, (A1)

leading to

C2
2

4C4
+ b2

s

2as
< C0 <

3C2D0

2D11
− 9C2

2 E0

8D2
11

, (A2)

and if defining the midpoint of n̄+ and n̄− as n̄m,

C2 + 2

3
D11n̄m = C2 − D11

2
(
D0 − C2D11

3C4

)
3
(
E0 − 2D2

11
9C4

) < 0 or > 0,

(A3)
which yields

C2 <
2D0D11

3E0
, if −

√
9E0C4

2
< D11 < 0, (A4)

C2 >
2D0D11

3E0
, if 0 < D11 <

√
9E0C4

2
, (A5)

respectively. Thus, Eqs. (A2), (A4), and (A5) need to be
followed for the ordered-phase stability at values of n̄ within
the range of (n̄+, n̄−) in this case (i).

Second, if q2 > 0 is satisfied only for some n̄ values in the
(n̄+, n̄−) interval, then we have(

C2 + 2
3 D11n̄−

)(
C2 + 2

3 D11n̄+
)

< 0, (A6)

instead of Eq. (A1), giving

C0 >
3C2D0

2D11
− 9C2

2 E0

8D2
11

. (A7)

Since here E0 − 2D2
11/(9C4) < 0, when −√

9E0C4/2 <

D11 < 0, q2 increases monotonically with n̄ as seen from
Eq. (21). Thus the interval of n̄ for q2 > 0 is (n̄0, n̄−), where n̄0

is the solution of q2 = 0. On the other hand, when 0 < D11 <√
9E0C4/2, q2 decreases monotonically with the increase of

n̄, and hence the n̄ interval for q2 > 0 is (n̄+, n̄0). In both
situations Eq. (A7) should be obeyed as well to obtain the
stability regime of ordered phase.

(ii) When E0 − 2D2
11/(9C4) > 0, α(n̄) is a concave

parabola as a function of n̄. Similar to case (i), when C0 <

C2
2 /(4C4) + b2

s/(2as) so that b2
s − 4ascs > 0 in Eq. (23), there

are two nonzero real solutions of α(n̄) = 0, i.e., n̄+ and n̄−,

but now n̄− < n̄+. α(n̄) < 0 occurs for n̄ lying in the interval
of (−∞, n̄−) ∪ (n̄+,+∞).

If n̄0 < n̄−, since in this case (ii) E0 − 2D2
11/(9C4) >

0, then q2 increases monotonically with n̄ when D11 <

−√
9E0C4/2. The n̄ interval that satisfies both α(n̄) < 0 and

q2 > 0 for the stability of ordered phase is then (n̄0, n̄−) ∪
(n̄+,+∞). When D11 >

√
9E0C4/2, q2 decreases monotoni-

cally with the increase of n̄, and the corresponding stability
interval is (−∞, n̄0). For both scenarios Eqs. (A1) and (A3)
should be also satisfied, but resulting in different conditions
of

3C2D0

2D11
− 9C2

2 E0

8D2
11

< C0 <
C2

2

4C4
+ b2

s

2as
, (A8)

and

C2 >
2D0D11

3E0
, if D11 < −

√
9E0C4

2
, (A9)

C2 <
2D0D11

3E0
, if D11 >

√
9E0C4

2
. (A10)

To summarize, the stability regime of ordered phase is within
the n̄ range of (n̄0, n̄−) ∪ (n̄+,+∞) under the conditions of
Eqs. (A8) and (A9), or the range of (−∞, n̄0) with the condi-
tions of Eqs. (A8) and (A10).

If n̄− < n̄0 < n̄+, then α(n̄) < 0 and q2 > 0 can be satis-
fied for n̄ within (n̄+,+∞) when D11 < −√

9E0C4/2, or in
the interval of (−∞, n̄−) when D11 >

√
9E0C4/2. In either

case Eq. (A6) is also obeyed, giving

C0 <
3C2D0

2D11
− 9C2

2 E0

8D2
11

. (A11)

If n̄0 > n̄+, then, to satisfy the conditions of α(n̄) < 0 and
q2 > 0 for the stability of ordered phase, we can obtain the
same Eq. (A8) from solving Eq. (A1), but for different allowed
ranges of n̄ when following the similar derivation steps. The
solution of Eq. (A3) yields

C2 <
2D0D11

3E0
, if D11 < −

√
9E0C4

2
, (A12)

C2 >
2D0D11

3E0
, if D11 >

√
9E0C4

2
. (A13)

Eqs. (A8) and (A12) give the ordered-phase stability con-
ditions for the n̄ range within (n̄0,+∞), while Eqs. (A8)
and (A13) correspond to the conditions for the range of
(−∞, n̄−) ∪ (n̄+, n̄0).

Finally, if b2
s − 4ascs < 0 in Eq. (23), or equivalently C0 >

C2
2 /(4C4) + b2

s/(2as), then no real solution exists for α(n̄) =
0 and we have α(n̄) < 0 for all the n̄ values when E0 −
2D2

11/(9C4) > 0 in this case (ii). When D11 < −√
9E0C4/2,

q2 increases monotonically with the increase of n̄ and q2 >

0 is satisfied in the n̄ range of (n̄0,+∞). When D11 >√
9E0C4/2, q2 decreases monotonically with the increase of

n̄ and q2 > 0 is satisfied in the interval of (−∞, n̄0). These
analyses suggest that when C0 > C2

2 /(4C4) + b2
s/(2as), the

stability regime of ordered phase is (n̄0,+∞) for D11 <

−√
9E0C4/2 or (−∞, n̄0) for D11 >

√
9E0C4/2.
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All the above results of linear stability regimes for ordered
phase and the corresponding parameter conditions are sum-
marized in Table I.

APPENDIX B: DERIVATION OF THE CRITICAL
POINT FOR THE CONVERGENCE OF ALL

THE PHASE BOUNDARIES

As described in Sec. III C, in the one-mode approximation
Eq. (27) can be applied to identify the location of the critical
point in the phase diagram where all the ordered and disorder
phases coexist. Using Eqs. (15) and (16) for bcc and mbcc
phases, we get

C0 + D0n̄ + 1
2 E0n̄2 − (

C2 + 2
3 D11n̄

)
q2

eq + C4q4
eq = 0, (B1)(

D0 − D11q2
eq

) + E0n̄ = 0, (B2)

from α2 = 0 and α3 = 0 respectively, where we have assumed
E1122 = 0 for simplicity, and qeq is the equilibrium wave num-
ber of the bcc or mbcc phase obtained by solving ∂ fbcc/∂q =

0 and ∂ fbcc/∂A = 0. This leads to

q2
eq =

b0 +
√

b2
0 − 3a0c0

2a0
, (B3)

where

a0 = C4
(
405C4E0 − 48D2

11

)
,

b0 = −72C4D0D11 − 12C2D2
11 + 405C2C4E0

+ 2D11n̄
(
99C4E0 − 4D2

11

)
,

c0 = −48C2D0D11 + 32C0D2
11 + 135C2

2 E0

+ 132C2D11E0n̄ + 44D2
11E0n̄2.

On the other hand, Eq. (B2) gives

q2
eq = n̄E0 + D0

D11
. (B4)

The two solutions of q2
eq in Eqs. (B3) and (B4) should be

equivalent to each other. From this requirement and Eq. (B1)
we can then derive the expression of n̄. For the parameter
values used for the phase diagrams of Fig. 5, i.e., D0 = 0,
C2 = −2, C4 = −1, and E0 = −6, we have

n̄bcc =
−2340D11 + 111D3

11 ∓ 2
√

14580D4
11 − 1071D6

11 + C0D4
11

(
14580 − 1476D2

11 + 41D4
11

)
14580 − 1476D2

11 + 41D4
11

, (B5)

with “−” for D11 > 0 and “+” for D11 � 0. Following the similar process, we can also obtain the result of n̄hex for the
hexagonal phase (i.e., triangular or honeycomb rods) satisfying the condition that the coefficients of A2 and A3 terms equal
zero simultaneously. From Eq. (13) or (14) we get

n̄hex =
−810D11 + 39D3

11 ∓
√

4860D4
11 − 369D6

11 + C0D4
11

(
4860 − 504D2

11 + 14D4
11

)
4860 − 504D2

11 + 14D4
11

. (B6)

By solving n̄bcc = n̄hex = n̄supercool [with n̄supercool determined by Eq. (23)], we can obtain the analytic results of ε (noting ε =
1 + C0) and n̄ for the critical point, i.e., Eqs. (24) and (25).
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