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Structure of twin boundaries of cholesteric blue phase I
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We investigate numerically the structure of twin boundaries of cholesteric blue phases. Our study is based on
the Landau–de Gennes continuum theory describing the orientational order of the liquid crystal by a second-rank
tensor. We pay particular attention to blue phase I (BP I) with body-centered-cubic symmetry and consider twin
boundaries between BP I lattices in which their (110) planes are shared and the (112) plane of one lattice is
parallel to the (112) plane of the other as observed in previous experiments [Jin et al., Sci. Adv. 6, eaay5986
(2020); Zhang et al., ACS Appl. Mater. Interf. 13, 36130 (2021)]. We discuss two plausible cases in which
the twin boundaries are parallel to the {112} planes or the {111} planes. In the former, disclination lines of
obtusely bent form penetrate the twin boundaries, and in the latter straight disclination lines as well as bent
ones are found at the twin boundaries. The former twin boundaries are energetically less costly, consistent with
previous experimental identifications. From our numerical results the free energy of a twin boundary per unit
area is estimated to be � 4 × 10−6 J m−2, which indeed indicates that the formation of twin boundaries is not
prohibitively costly.

DOI: 10.1103/PhysRevE.105.044707

I. INTRODUCTION

Crystal lattices cannot be perfect unless prepared with
great care, and imperfections of a crystal lattice, such
as vacancies, dislocations of crystal lattice ordering, and
disclinations of lattice orientation, influence significantly the
macroscopic, in particular mechanical properties of the crystal
[1,2]. Crystal twinning is another typical example of crystal
imperfections, in which two separate crystal lattices of dif-
ferent lattice orientations coexist and share a crystal lattice
plane [3–5]. Twinning of crystalline lattices occur in diffu-
sionless martensitic transformations [6,7] and therefore has
drawn interest from the viewpoint of engineering as well as
from academic point of view.

Twinning of atomic crystals has been extensively studied
for a long time, and recently soft materials with specific crys-
tallographic symmetry (mainly cubic symmetry) have been
attracting interest as a system exhibiting twinning of the
underlying crystallographic ordering [8,9]. In twin bound-
aries of atomic crystals, the crystal lattices constituting the
twin boundary share the atoms there, which puts a stringent
constraint on the relative position and orientation of the con-
stituent crystal lattices, known as the twin law. On the other
hand, in soft materials with crystalline order, no discrete units
like atoms occupy the “crystal lattice,” but self-organized po-
sitional and/or orientational order of constituent molecules
exhibits crystalline symmetry; constituent molecules occupy
the space in a continuous manner in the mesoscopic scale.
Therefore there can be a richer possibility of the structures
of twin boundaries in soft materials. Indeed, in the investi-
gation of twin boundaries in bicontinuous cubic structures of
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surfactants, Han et al. [8] considered their possible structures
by varying the position of one cubic lattice with respect to the
other in their theoretical model.

Here we focus on the structures of twin boundaries of
cubic cholesteric blue phases. Cholesteric blue phases [10–13]
are complex three-dimensional ordered structures exhibited
by chiral liquid crystals and comprise an array of topologi-
cal line defects of orientational order (disclination lines) and
interwoven double twist cylinders in which the orientational
order is twisted along all the directions perpendicular to the
cylinder axis [Fig. 1(a)]. Two cubic blue phases are known;
blue phase I (BP I) possesses body-centered-cubic symmetry
and BP II simple-cubic symmetry (A third BP III is believed
to be amorphous). The arrangement of disclination lines and
double-twist cylinders is shown in Figs. 1(b) and 1(c) for BP
I and BP II, respectively.

Very recently it was shown by microscope observations
and numerical calculations that the structural transition from
carefully prepared monocrystalline BP II to BP I is martensitic
in the sense that the reorganization of the double-twist cylin-
der array is collective and diffusionless [14]. The resulting
texture of BP I is indeed highly similar to that of martensites
of atomic crystals with twin boundaries. A subsequent study
based on x-ray scattering [9] revealed the relative orientation
of twinned BP I lattices in which their (110) planes are shared
and the (112) plane of one lattice is parallel to the (112)
plane of the other. A more recent study using Kossel diagrams
confirmed the same twinning behavior and also observed the
response of twinned BP I crystal to an applied electric field
[15]. These studies indicate that crystalline order of soft ma-
terials provide an intriguing platform for the investigation of
martensitic transformations and associated twin boundaries.

However, scattering experiments do not give information
on the real-space structures of twin boundaries. Moreover, in
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FIG. 1. (a) Schematic illustration of a double-twist cylinder.
Short rods represent the orientation profile in a plane perpendicular to
the cylinder axis. [(b) and (c)] Arrangement of double-twist cylinders
(left) and disclination lines (right) in (b) BP I and (c) BP II.

addition to the absence of discrete units as in atomic crystals
already mentioned above, the absence of mirror symmetry
could complicate the investigation of twin boundaries of
cholesteric blue phases; previous knowledge on twin bound-
aries of atomic crystals often relies on the presence of mirror
symmetry. Here, motivated by the experimental finding of
twinning of BP I [9,14,15], we investigate possible structures
of twin boundaries of BP I numerically using the Landau–de
Gennes continuum theory describing the orientational order
by a second-rank tensor. The Landau–de Gennes theory has
been successfully applied to cholesteric blue phases since
the pioneering analytic studies of Hornreich and Shtrikman
[12,16,17] and extensively employed in numerical studies
(pioneering ones include those by Dupuis et al. [18] and by
Alexander and Yeomans [19]). In Sec. II, we describe the
Landau–de Gennes theory and the setup of our numerical
calculations. In Sec. III we present and discuss the results of
our calculations. We conclude this paper in Sec. IV.

II. MODEL

A. Free energy

In the framework of the Landau–de Gennes theory, we
minimize the free energy as a functional of the tensor order
parameter χi j to determine the structures of cholesteric blue

phases containing twin boundaries. We show here the essen-
tial part of our numerical calculations and refer to our previous
work [20–23] for technical details.

The free energy of the liquid crystal is written as F =∫
dxdydz [ϕlocal(χ ) + ϕelastic(χ,∇)], where

ϕlocal(χ ) = τ Trχ2 −
√

6 Trχ3 + (Trχ2)2 (1)

is the local free-energy density with Tr being the trace of a
tensor, and

ϕelastic(χ,∇) = κ2{[(∇ × χ )i j + χi j]
2 + η[(∇ · χ )i]

2} (2)

is the elastic energy involving spatial derivatives. Here sum-
mations over repeated indices are implied, (∇ × χ )i j ≡
εikl∂kχl j and (∇ · χ )i ≡ ∂ jχi j . Free-energy densities, length
and the orientational order parameter itself have been rescaled
[12,23] so that only three dimensionless parameters appear
in Eqs. (1) and (2): τ is the rescaled temperature, κ is the
strength of chirality, and η concerns the anisotropy of elastic-
ity. We choose τ = −1.0, κ = 0.7, and η = 1 (corresponding
to one-constant approximation), for which BP I is thermo-
dynamically stable [20]. The length is rescaled so that the
cholesteric pitch p is 4π . The p before rescaling is � 160 nm
for κ = 0.7 [23]. In the following calculations periodic bound-
ary conditions are employed, and hence no surface anchoring
energy is involved in the total free energy.

We denote the rescaled free energy per unit area by
F ≡ F/

∫
dx dy. Then the free energy per unit area be-

fore rescaling, denoted by F , reads [23] F � F × 1.4 ×
10−18 J/(κ3 p2). Using the above-mentioned κ = 0.7 and p �
160 nm, we have

F � F × 1.6 × 10−4 J m−2. (3)

We will use Eq. (3) for the evaluation of the free energy
of twin boundaries given later, although the numerical value
appearing in Eq. (3) depends on the material parameters in
the free-energy density before rescaling (see Ref. [23] for the
parameters used here).

B. Calculation of the orientation profile of bulk BP I

The orientation profile of bulk BP I and its lattice constant
a have to be obtained for the following calculations of twin
boundaries. For this purpose, the equilibrium profile of a unit
cell of BP I and the resulting free-energy density f = F/a3

are calculated for fixed a, and the optimum lattice constant a
is determined by a that minimizes f . The equilibrium profile
is obtained by relaxing the orientation profile from the initial
profile for the high-chirality limit (see Sec. VI.G of Ref. [12],
or Eq. (9) of Ref. [18]). The numerical lattice is a cubic one
with its axes (the x, y, and z axes) parallel to the cubic sym-
metry axes of BP I. Periodic boundary conditions are imposed.
We use the following simple relaxation equation:

∂

∂t
χi j (r) = − δF

δχi j (r)
− λ(r)δi j, (4)

where λ(r) is the Lagrange multiplier that ensures Trχ = 0
and t is the dimensionless time appropriately rescaled by the
rotational viscosity (as we are now interested in equilibrium
profiles rather than dynamics, the actual value of the rotational
viscosity is not important). The explicit Euler scheme with the
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time interval �t = 0.02 is employed for the discretization of
Eq. (4) with respect to t , and the discretization of the spatial
derivatives follows the procedures in Ref. [20]. The obtained
optimum lattice constant a is 4π , or the natural pitch, within
1% precision, and in the following calculations a is set to 4π .

C. Calculation of the orientation profiles containing
twin boundaries

In the previous experiments demonstrating the twinning of
BP I [9,14,15], the liquid crystal was sandwiched by patterned
or photoaligned surfaces that imposed specific lattice orienta-
tion. However, we employ periodic boundary conditions in all
the x, y, and z directions to avoid possible complications aris-
ing from the presence of confining surfaces and the associated
surface anchoring. Note that periodic boundaries enforce the
presence of two twin boundaries between two lattices with
different orientations, as depicted in Fig. 2.

In all the calculations we will present below, the lattice
orientations of BP I are chosen such that their (110) plane
is parallel to the xy plane, and one of the {112} planes is
parallel to the yz plane. This setup is consistent with the ex-
perimentally found lattice orientations of BP I involving twin
boundaries [9]. The thickness (or to be precise, the distance
between two periodic boundaries) in the z direction is set to√

2a, so that the numerical system accommodates one unit
BP I lattice in the z direction.

In the case of atomic crystals, when the relative orientation
of two crystal lattices is such that they share one of the {112}
planes of each lattice, the twin boundaries are parallel to
either one of the {112} planes or one of the {111} planes.
Although the absence of discrete units in our case of blue
phases allows different possibility of the orientation of the
twin boundaries, in the present study we restrict ourselves
to the above-mentioned two cases in which twin boundaries
are parallel to one of the {112} planes or one of the {111}
planes (referred to as “{112} case” and “{111} case,” respec-
tively, in the following). The numerical systems for these
two cases are depicted in Figs. 2(a) and 2(b), respectively.
The systems sizes, 2

√
6a × √

3a × √
2a in the {112} case

and
√

6a × 2
√

3a × √
2a in the {111} case, have been chosen

so that the periodicities imposed by the periodic boundaries
conform to those of the inclined BP I lattices. The system di-
mension perpendicular to the twin boundaries is large enough
for the two twin boundaries to be regarded safely as distinct
but small enough for the calculations to be carried out with
reasonable amount of numerical resources.

As mentioned in the Introduction, the BP I lattice does not
possess “lattice points” as discrete units like atoms, and there-
fore the position of a twin boundary with respect to the BP I is
not restricted as in the cases of atomic crystals. Nevertheless,
for the convenience of the following discussions, we define
the “lattice points” of the BP I lattice by the vertices and the
body center of the unit cell shown in Fig. 2(c). We start our
calculations with initial profiles in which the lattice points are
shared by the two BP I lattices with different orientations (blue
and green regions in Fig. 2), referred to as a “reference initial
profile” in the following, and let the system relax by Eq. (4)
to find an equilibrium profile. We seek the possibilities of
twin boundaries with different structures by shifting one of the

FIG. 2. [(a) and (b)] Numerical systems for (a) the {112} case
and (b) the {111} case. In both cases, the (110) lattice plane is
parallel to the plane of the figure. The region in which numerical
calculations are carried out is depicted by a rectangle with thick
black edges, whose size in the xy plane is (a) 2

√
6a × √

3a and
(b)

√
6a × 2

√
3a. Thick black edges represent periodic boundaries.

Green and blue regions (lighter-shaded and darker-shaded regions
in the print version) are filled with BP I lattices with their (110)
plane parallel to the plain of the figure. Different lattice orientation
in each region is specified by the schematic illustrations with double-
twist cylinders on the top of panel (a). Apparently separated green
(lighter-shaded in print) regions are in fact identical because of the
periodic boundaries. Twin boundaries, depicted by thick red dashed
lines, are parallel to (a) the yz plane and (b) the xz plane. Black dots
depict the “lattice points” shared by lattices of different orientation.
Black dashed horizontal lines in (a) emphasize the periodicity in the
y direction. (c) “Lattice points” of body-centered-cubic BP I (black
dots) and the lattice constant a.

lattices in the reference initial profile, and let the system relax.
The lattice to be shifted is a green one in Figs. 2(a) and 2(b).
Figure 3 illustrates how the green lattice is shifted. The initial
condition for Eq. (4) is χi j = 0 at the twin boundaries [red
dashed lines Figs. 2(a) and 2(b)], and the values of χ obtained
for bulk BP I in Sec. II B otherwise [appropriate rotations and
translations of the bulk profile obtained in Sec. II B are applied
to realize the lattice arrangement in Figs. 2(a) and 2(b). Note
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FIG. 3. Illustration of how the lattice in the green region is
shifted from the “reference initial profile” (top) by (dx, dy, dz ). The
lattice in the blue region is now shown for clarity. Note again that the
the lattices in the green regions are identical under periodic boundary.
Refer to the caption of Fig. 2 for colors.

that while the axes of cubic symmetry of BP I in Sec. II B are
parallel to the x, y, and z axes of the numerical system, they
are not in Fig. 2(a) and 2(b)].

III. RESULTS AND DISCUSSIONS

Here we show the calculation results particularly focus-
ing on the arrangement of disclination lines and double-twist
cylinders. We visualize disclination lines by drawing isosur-
faces with Trχ2 = 1 (note that Trχ2 � 1.5 far away from
the disclination, and the orientational order is weakened at
the cores of the disclinations [24]). See the Appendix for the
visualization of the axes of double-twist cylinders.

A. {112} cases

In Fig. 4, we show the profile of BP I with twin boundaries
relaxed from the reference initial profile described in Sec. II C
for the {112} case. Here and in the following, orthograpic
projection is employed for the clarity of the presentation, and
the Supplemental Material [25] provides figures of the same
structures in perspective view. It is clearly seen that some
of the disclination lines do not traverse the twin boundaries
and are acutely bent there and that double-twist cylinders are
disrupted at one of the twin boundaries. This profile looks
unfavorable because in Bulk BP I, all the disclination lines

FIG. 4. The profile of BP I containing twin boundaries relaxed
from the reference initial condition for the {112} case. Top two and
bottom two panels show disclination lines and axes of double-twist
cylinders, respectively, viewed from different directions specified by
the coordinate axes. The location of the twin boundaries is high-
lighted by dot-dashed lines. Here and in the following, the profiles
are shown with orthographic projection, and in Supplemental Mate-
rial [25], they are presented in perspective view.

are straight, and double-twist cylinders also span the whole
system without interruption.

As mentioned in Sec. II C, we seek the profiles of twin
boundaries with lower free energy by preparing an initial con-
dition with the green lattice of Fig. 2(a) shifted by (dx, dy, dz )
from the reference initial profile (Fig. 3). From the symme-
try argument, the ranges of dx, dy, and dz can be limited
to 0 � dx <

√
6a/3, 0 � dy <

√
3a/2, and 0 � dz <

√
2a/2.

We eventually find that the profile relaxed from (dx, dy, dz ) =
(
√

6a/4, 0,
√

2a/4) gives the lowest free energy. The obtained
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FIG. 5. The same as Fig. 4, except that the left part of the ini-
tial condition (connected to the right part by a periodic boundary)
is shifted by (dx, dy, dz ) = (

√
6a/4, 0,

√
2a/4) from the reference

initial condition. Solid and dotted circles highlight the bending of
disclination lines whose bending angle is cos−1(−7/9) � 141◦ and
cos−1(−1/3) � 109◦, respectively (disclination lines at dotted cir-
cles continue through the periodic boundaries).

profile is shown in Fig. 5. In contrast to those in Fig. 4, discli-
nation lines at the twin boundaries in Fig. 5 are obtusely bent.
The bending angles can be evaluated from the orientation of
disclination lines in the initial profile that would constitute
the bent disclination line in the relaxed profile. The bending
angles marked by solid circles and dotted circles in Fig. 5 are
cos−1(−7/9) � 141◦ and cos−1(−1/3) � 109◦, respectively.
The latter angle is exhibited by disclination lines that go
back to the original lattice without traversing the twin bound-
aries. Despite the small angle compared to that exhibited by
traversing disclination lines, the distortion of the disclination

FIG. 6. Detailed structure of a twin boundary in Fig. 5 over the
thickness (

√
6/5) × 4π � 0.49a. Disclination lines (red, marked by

white lines) and axes of double-twist cylinders (blue) are shown
simultaneously. The structure of one twin boundary there is the same
as that of the other.

network at the twin boundaries is quite small, as can be seen
in Fig. 5.

The two twin boundaries in Fig. 5 are identical, and
the bent parts of the disclination lines traversing the twin
boundaries lie in the xz plane as the straight parts do; the
disclination lines viewed from the y direction are almost
indistinguishable from those in the bulk BP I without twin
boundaries. Double-twist cylinders traverse the twin bound-
aries rather smoothly, in contrast to disrupted double-twist
cylinders in Fig. 4. In Fig. 6, the detailed structure of one
twin boundary in Fig. 5 is shown, which again confirms
smooth traversing of double-twist cylinders and disclination
lines.

The rescaled free energy of the whole numerical system
[with volume being 2

√
6a × √

3a × √
2a = 12(4π )3] is cal-

culated to be F = −2.294049 × 104. The free energy of twin
boundaries is estimated by subtracting F by the free energy
of bulk BP I without twin boundaries. The latter for the same
volume, from a separate calculation, is Fbulk = −2.295966 ×
104. Since the area of the twin boundaries in the system is
2 × √

3a × √
2a = 2

√
6(4π )2 (recall that two separate twin

boundaries are present), from Eq. (3) the free energy of twin
boundaries per unit area (before rescaling) is estimated to
be

F {112} � 1.6 × 10−4

× [−2.294049 − (−2.295966)] × 104

2
√

6(4π )2
J m−2

� 4.0 × 10−6 J m−2. (5)
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To give a feeling about the magnitude of the free-energy
density in Eq. (5), let us comment that 4.0 × 10−6 J m−2 is
close to typical values for weak surface anchoring energy
density. Therefore the formation of twin boundaries is not
prohibitively costly, and thus indeed observed experimentally
[9,15]. Although the resulting free-energy density (5) contains
the interaction energy between two parallel twin boundaries,
the “self-energy” is expected to be much larger, and therefore
we believe that Eq. (5) gives a reasonable estimate of the free
energy of twin boundaries.

B. {111} cases

Figure 7 shows the profile of BP I with twin boundaries
relaxed from the reference initial profile described in Sec. II C
for the {111} case. Complex arrangement of disclination lines
and double-twist cylinders is seen at the twin boundaries, and
some disclination lines are bent acutely there. As in Sec. III A,
now we prepare an initial condition with the blue lattice
of Fig. 2(b) shifted by (dx, dy, dz ) from the reference initial
profile, and let it relax by Eq. (4). The range of dx, dy and
dz is the same as that presented in Sec. III A. We find that
a profile with (dx, dy, dz ) = (

√
6a/4, 3

√
3a/32,

√
2a/4) gives

the minimum of the free energy, which is shown in Fig. 8. It
is clearly seen that, in contrast to Fig. 7, straight disclination
lines run along the y direction, which is naturally expected
to be favorable energetically. Disclination lines that traverse
the twin boundaries obliquely are bent there, with the bending
angle of cos−1(−5/9) � 124◦. Similarly to the previous case
(Fig. 5), the disclination lines viewed from the y direction
are close to those in the bulk BP I without twin boundaries.
Arrangement of double-twist cylinders is much more naturally
ordered than that in Fig. 7.

The two twin boundaries in Fig. 8 are identical, and their
detailed structure is presented in Fig. 9. Interestingly, three-
fold local rotational symmetry about the disclination lines
normal to the twin boundary is found, although not perfect due
to numerical artifacts (Recall the threefold rotational symme-
try about the straight disclination lines of bulk BP I with cubic
symmetry).

The rescaled free energy of the whole numerical sys-
tem (with volume being

√
6a × 2

√
3a × √

2a = 12(4π )3, the
same as that for the {112} case) is now calculated to be
F = −2.292155 × 104. Recalling that the area of the two twin
boundaries is now 2 × √

6a × √
2a = 4

√
3(4π )2, as we did in

Sec. III A, we can estimate the free energy of twin boundaries
per unit area (before rescaling) for the present {111} case to
be

F {111} � 5.6 × 10−6 J m−2, (6)

larger than F {112} presented in Sec. III A. This result indi-
cates that twin boundaries parallel to the {112} planes are
more preferable, consistent with the previous experimental
identifications [9,15]. In the {112} case, the bend is smaller
for disclination lines traversing the twin boundaries (� 141◦,
compared with � 124◦ for the {111} case). Moreover, appar-
ently small distortion of the disclination network is induced by
disclination lines with small bend angle (� 109◦) that do not
traverse the twin boundaries. These observations could give
an intuitive explanation on why twin boundaries parallel to

FIG. 7. The profile of BP I containing twin boundaries relaxed
from the reference initial condition for the {111} case. Top two and
bottom two panels show disclination lines and axes of double-twist
cylinders, respectively, viewed from different directions specified by
the coordinate axes.

the {112} planes are energetically more favorable than those
parallel to the {111} planes.
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FIG. 8. The same as Fig. 7, except that the upper part of
the initial condition (connected to the lower part by a periodic
boundary) is shifted by (dx, dy, dz ) = (

√
6a/4, 3

√
3a/32,

√
2a/4)

from the reference initial condition. Here the profiles seen from
the y direction are also shown to emphasize straight disclination
lines along the y direction. Circles highlight the bending of discli-
nation lines with the angle of cos−1(−5/9) � 124◦ at the twin
boundaries.

FIG. 9. Detailed structures of a twin boundary in Fig. 8, each
over the thickness (3

√
3/4) × 4π � 0.65a. Disclination lines (red,

marked by white lines) and axes of double-twist cylinders (blue) are
shown simultaneously. The structure of one twin boundary there is
the same as that of the other.

IV. CONCLUSIONS

Motivated by recent experiments that discovered marten-
sitic transformation of cholesteric blue phase of a chiral liquid
crystal, we investigated numerically the structure of twin
boundaries of BP I. Our study is based on the Landau–de
Gennes continuum theory with the orientational order param-
eter being a second-rank tensor χi j , and the free energy being
given as a functional of χi j . We considered two plausible
cases in which the twin boundaries is parallel to the {112}
planes and to the the {111} planes. In both cases we found the
profiles of twin boundaries at which the disclination lines are
connected there so that they are straight or obtusely bent. We
also found that the free energy of a twin boundary is smaller
when it is parallel to the {112} planes, consistent with previous
experimental identifications. The free energy per unit area is �
4 × 10−6 J m−2, which is small enough to allow the formation
of twin boundaries in actual systems. We note that of course
there can be twin boundaries other than those of the two
cases mentioned above. However, the consideration of general
cases requires a huge amount of numerical calculations with
independent three-dimensional rotations of BP I lattices on
both sides of the twin boundary (green and blue lattices in
Fig. 2) in addition of translational shift. Strictly speaking, the
above estimate of the free energy hence gives an upper limit
of the minimum free energy. We still believe that it gives a
reasonable estimate because twin boundaries with other plane
orientations have not been observed experimentally.

Direct experimental observation of detailed structures of
disclination lines of cholesteric blue phases is highly chal-
lenging, but real-space periodic structures of blue phases have
indeed been experimentally observed by electron microscopy
[26–28] and confocal microscopy [29]. In particular, non-
destructive confocal microscopy with the aid of numerical
generation of microscope images [30] might help the exper-
imental elucidation of how the blue phase cubic lattices are
connected at twin boundaries. We hope that our work will
motivate further experimental studies to clarify the real-space
ordering of twin boundaries of cholesteric blue phases, and
also theoretical studies on the twin boundaries and imperfec-
tions (including dislocations [31] and disclinations) of cubic
or other crystalline order of soft materials.
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APPENDIX: VISUALIZATION OF THE AXES OF
DOUBLE-TWIST CYLINDERS

Our visualization of the axes of double-twist cylinders fol-
lows the procedure in Ref. [31]. In the following, the director
n at r is taken to be the normalized eigenvector of χi j (r) with
the largest eigenvalue.

We consider an ideal double-twist cylinder whose axis
passes a certain point r. Then n(r) is parallel to the cylinder
axis, and we denote n(r) by n in the following. The distance
between a certain point r′ and the cylinder axis is

d (r′) = |(r′ − r) − [(r′ − r) · n]n|. (A1)

Let N(r′) denote the director of this ideal double-twist cylin-
der at r′. The angle between n (cylinder axis) and N(r′) is

θ (r′) = π

2

d (r′)
D

, (A2)

where D is the diameter of the double-twist cylinder. Thus
N(r′) is written as

N(r′) = n cos θ (r′) + e⊥ sin θ (r′), (A3)

where e⊥ ≡ (r′ − r) × n/|(r′ − r) × n| is a unit vector per-
pendicular to the cylinder axis and in the plane spanned by
(r′ − r) and n.

To determine whether a grid point r on our numerical
system is on or sufficiently close to one double-twist cylinder
axis, we first calculate N(r′) at the neighboring grid points
r′ using Eq. (A3) and n at r. Let N′(r′) denote the director
determined from the numerically calculated profile χi j (r′).
If r is exactly on the axis of an ideal double-twist cylinder,
cos−1(|N(r′) · N′(r′)|) = 0 at every r′. Thus, we define

A(r) ≡
∑

r′∈NN
cos−1(|N(r′) · N′(r′)|), (A4)

where
∑

r′∈NN means that the summation is taken over the
six nearest neighbors of r. When A(r) is sufficiently small,
we judge that r is sufficiently close to one double-twist cylin-
der axis. In our visualizations of double-twist cylinders in
Figs. 4, and 5, 7, and 8, we show the isosurfaces A(r) = 0.2.
We note that after some trials and errors we have chosen
D = 0.35a, where a is the lattice constant of BP I, although D
should be a/4 if BP I is regarded as a regular pile of straight
double-twist cylinders as shown in Fig. 1. Note also that,
contrary to the straight shape commonly seen in schematic
figures of cholesteric blue phases such as Fig. 1, double-
twist cylinders look wavy not only in our systems containing
twin boundaries but also in a bulk BP I, as visualized in
Refs. [31,32].
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