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Phase behavior of a lattice-gas model for biaxial nematics
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We employ a lattice-gas extension of the Maier-Saupe model with discrete orientation states to study the
phase behavior of a statistical model for biaxial nematogenic units in mean-field theory. The phase behavior
of the system is investigated in terms of the strength of isotropic interaction between anisotropic objects, as
well as the degree of biaxiality and the concentration of those units. We obtain phase diagrams with isotropic
phases and stable biaxial and uniaxial nematic structures, various phase coexistences, many types of critical and
multicritical behaviors, such as ordinary vapor-liquid critical points, critical end points, and tricritical points,
and distinct Landau-like multicritical points. Our results widen the possibilities of relating the phenomenological
coefficients of the Landau–de Gennes expansion to microscopic parameters, allowing an improved interpretation
of theoretical fittings to experimental data.
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I. INTRODUCTION

Nematic mesophases are probably the simplest states of
matter observed in liquid-crystalline systems that exhibit
long-range orientational order in the absence of translational
symmetry breaking [1–4]. Indeed, uniaxial nematic struc-
tures are characterized macroscopically by the existence of
orientation-dependent physical properties (for example, opti-
cal or magnetic anisotropies), which lead to the definition of
the director of a nematic phase. Notwithstanding, the breaking
of isotropy in the plane perpendicular to the uniaxial director
may lead to the elusive biaxial state, whose possibility was
theoretically pointed out by Freiser [5] about 50 years ago.
Experimentally, the existence of the biaxial phase was initially
confirmed for lyotropic systems [6]. More recently, there have
been claims of the identification of the phase in thermotropic
systems composed of bent-core molecules, although this re-
mains debatable (see Ref. [7] and references therein). In any
case, these claims catalyzed various experimental, computa-
tional, and theoretical investigations [8,9] of candidate biaxial
systems.

Most theoretical and computational studies looking for
biaxial phases focus on the orientational order, leaving aside
effects associated with a varying density of nematogens. Ap-
proaches based on the phenomenological Landau–de Gennes
expansion [10] are able to partially remedy this situation by
exploiting variations in the expansion coefficients, although
these are difficult to connect with microscopic parameters.
Our aim in this paper is to investigate the equilibrium phase
diagrams of a statistical model in which nematogens with
noncylindrical symmetry can move from site to site in a lattice
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whose occupation can be controlled. In our model, pairs of
nematogens interact via an isotropic potential which can be
repulsive or attractive, as well as via an anisotropic potential
which favors a biaxial arrangement, leading, at sufficiently
high occupation and sufficiently low temperature, to a biaxial
phase.

Lattice models of nematic order have a long history in
the literature. For uniaxial systems, the pioneering work of
Lebwohl and Lasher [11] inspired a number of other inves-
tigations, including a lattice-gas extension by Bates [12,13].
For biaxial systems, the Luckhurst-Romano model [14], based
on the truncation of an anisotropic potential to second-
rank terms, has been likewise influential. As a rule, Monte
Carlo calculations for nearest-neighbor versions of these
models on fully occupied cubic lattices lead to the same
qualitative predictions as those obtained from mean-field
versions [15,16], despite sometimes substantial quantitative
discrepancies [11,17].

A quite general bilinear anisotropic interaction potential
V12 between two nematogens labeled as 1 and 2 was pro-
posed by Straley [18]. In the two-tensor formulation of Sonnet
et al. [19], it takes the form

V12 = − 9
4 A{q1:q2 + ζ (q1:b2 + b1:q2) + λb1:b2}. (1)

In Eq. (1), A > 0 sets the energy scale, while the second-rank
tensors q and b are defined in terms of mutually orthogonal
unit vectors n̂1, n̂2, and n̂3 pointing along the first, second, and
third principal axes of each nematogen as

q = n̂1 ⊗ n̂1 − 1
3 I and b = n̂2 ⊗ n̂2 − n̂3 ⊗ n̂3, (2)

I being the 3 × 3 identity matrix. The operation q1:q2 is the
Frobenius inner product [20], given by Tr(q1q2), where TrM
is the trace of matrix M. The adimensional parameters ζ and
λ gauge the importance of biaxial couplings. If ζ = λ = 0,
Eq. (1) is reduced to the Maier-Saupe interaction energy [15],
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defined solely by the relative orientation of the first principal
axes of both nematogens. This is appropriate when dealing
with nematogens whose form may be properly approximated
as uniaxial. Otherwise, if the nematogens are intrinsically
biaxial, a proper description of the interaction energy requires
setting either ζ or λ to nonzero values, so that the relative
orientations of other principal axes are also relevant. Here we
work with the condition λ = ζ 2, corresponding to the London
approximation for dispersion forces [19], which allows us to
write V12 in the form

V12 = −9

4
A

(
q1 + �

3
b1

)
:

(
q2 + �

3
b2

)
. (3)

By resorting to a simplified view of a biaxial nematogen as a
rectangular platelet, the biaxiality parameter � = 3ζ can be
interpreted in terms of the sides of the platelet, so that � = 0
would correspond to a “rodlike” object, � = 3 to a “disklike”
object, and � = 1 to a maximally biaxial object [21].

In the same spirit as the lattice-gas version of the Lebwohl–
Lasher model investigated by Bates [12], we allow each site of
a regular lattice to be empty or occupied by a single nemato-
gen, adding an isotropic interaction to the potential in Eq. (3)
to obtain the contribution of two neighboring sites i and j to
the total interaction energy of the system,

Vi j = γiγ j

{
U − 9

4
A

(
qi + �

3
bi

)
:

(
q j + �

3
b j

)}
. (4)

The occupation variable γi is equal to 0 if site i is empty and
to 1 if the site is occupied. In this work we allow the isotropic
interaction parameter U to be either negative, representing at-
tractive interactions, or positive, representing repulsion. This
last case could lead to long-range sublattice ordering in cu-
bic lattices, an unphysical feature for a fluid phase. At the
mean-field level, however, describing such kind of arrange-
ment would require the explicit introduction of sublattices.
Instead, we proceed with the simplest mean-field strategy,
which would be appropriate for describing a frustrated lattice
or, for that matter, a fluid phase.

In order to perform detailed calculations, besides using
Eq. (4) to describe the pair interactions, we also employ
the Zwanzig approximation [22], which restricts the possi-
ble orientations of a nematogen to the coordinate axes. This
approximation has been applied in different contexts [21,23–
31], always leading to qualitative results which fully agree
with continuous versions of the corresponding models when
a comparison is possible. In particular, when dealing with
intrinsically biaxial nematogens, these models are capable of
reproducing the qualitative characteristics of nematic phase
diagrams, such as sequences of biaxial-uniaxial-isotropic
phase transitions with increasing temperature, and a well-
defined Landau multicritical point, which signals a direct
transition between the isotropic and the biaxial phases [28,31].

Therefore, in this work we investigate the phase diagrams
of what may be characterized as a lattice-gas (LG) extension
of the Maier-Saupe-Zwanzig model (MSZ), which from now
on we will call the LGMSZ model. The LG extension intro-
duces dilution as an extra ingredient in our model, allowing
the study of phenomena such as vapor-liquid, vapor-nematic,
and nematic-nematic (low-high concentration) coexistence.

The study of such coexistences is not possible if we treat a
model based on a fully occupied lattice.

This paper is organized as follows. Section II presents the
model description and sketches its mean-field solution. In
Sec. III we present a detailed analysis of the dilution effects,
in the absence of isotropic interactions. Section IV is dedi-
cated to the study of the effects of isotropic interactions for
molecular systems with fixed degrees of biaxiality. In Sec. V
we present an analysis of the effects of the biaxiality degree in
the multicritical points present in the phase diagrams. Con-
clusions are drawn in Sec. VI. A few technical details are
relegated to Appendices A and B.

II. THE LGMSZ MODEL

We consider a lattice system with N sites and Nm non-
spherical objects such that N � Nm. Each lattice site can be
either empty or occupied by an asymmetric object, the state
of site i being described by an occupation variable γi taking
the values 0 (empty site) or 1 (occupied site). Then, based
on Eq. (4), we define the LGMSZ model by means of the
effective Hamiltonian

H =
∑
(i, j)

Vi j = −A
∑
(i, j)

γiγ j�i:� j + U
∑
(i, j)

γiγ j, (5)

where A and U are coupling parameters, with A > 0, the sum
is performed over pairs (i, j) of neighboring sites i and j in the
lattice, and the quantity �i is a second-rank tensor associated
with the nematogen at site i. Specifically, �i is represented
by a 3 × 3 square matrix with real entries. For nematogens,
�i is a symmetric traceless matrix, its eigenvalues ωi are
real, and their sum is zero [1,8]. Then we can assume that
ω1 = (−1 + �)/2, ω2 = (−1 − �)/2, and ω3 = 1, where the
parameter � gauges the asymmetry or biaxiality degree of the
object [21]: � = 0 for rodlike shapes, � = 3 for platelike
shapes, and � �= 0, 3 for bricklike shapes. Biaxial objects
with � = 1 present a maximal degree of asymmetry. Instead
of working with continuous orientational states, we follow
the Zwanzig prescription [22] in assuming that the principal
axes of a nematogen are restricted to align in the directions
of the Cartesian axes, which leads to an effective spinlike
model with six states described by diagonal matrices �i [21].
Notice that, in the limit � = 0, Eq. (5) reduces to a discretized
version of the Lebwohl-Lasher lattice-gas model introduced
by Bates [12] (with a rescaling of energy, as our parameter A
would be equivalent to 2ε/3, ε being the energy scale of the
anisotropic interaction in Ref. [12]).

The first term in Eq. (5) represents a dilute version of the
MSZ model, and the orientation-dependent interaction may
give rise to distinct nematic phases. The second term is the
isotropic contribution to the pair potential. For the particular
case of U < 0, representing attractive isotropic interactions,
one can find phase transitions between isotropic fluid states, in
analogy with previous studies [12,13]. In the present work we
assume that the parameter U can also be positive, representing
repulsive interactions. In this latter case, as we are interested
in modeling fluid phases only, we refrain from trying to ac-
count for any kind of sublattice ordering whatsoever.

Determining the thermodynamic properties of the lattice
system defined by Eq. (5) is rather intricate, due to the
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complex interplay between the various interactions. There-
fore, we think it is appropriate to study the model in a
mean-field treatment, which is equivalent to considering the
fully connected Hamiltonian

Hmf = − A

2N

N∑
i, j=1

γiγ j�i:� j + U

2N

N∑
i, j=1

γ jγ j, (6)

where the sums over pairs of neighboring sites are replaced
by sums over all pairs of sites, and the coupling parameters
are replaced by new ones that are inversely proportional to the
number of sites to ensure that energy is extensive. This form of
effective, long-range model has been proposed to investigate
the phase behavior of statistical models with nematic-like
phases [21,24,28–30,32]. Therefore, our main interest is to
study the thermodynamics of phases transitions of the mean-
field model in Eq. (6).

The canonical ensemble is the usual route to investigate the
macroscopic behavior of Hamiltonian systems in statistical
mechanics. Nevertheless, because of its lattice-gas character,
the configurations of microscopic variables of our model are
subject to the restriction that the sum of γi over all lattice
sites should be equal to Nm, which leads to complications
in evaluating the canonical partition function. As a result, it
is more convenient to consider the formalism of the grand
canonical ensemble, where the number of nematogens may
fluctuate due to the coupling to a particle reservoir [21,24,30].
Then we must determine the grand partition function

� =
∑
{γi}

∑
{�i}

exp

(
βHmf + βμ

∑
i

γi

)
, (7)

where β = 1/kBT , kB is the Boltzmann constant (which we
take to be equal to 1 in suitable units), T is the temperature,
and μ is the chemical potential. In this ensemble, the sum over
configurations in Eq. (7) is no longer restricted, and mean-
field calculations are feasible, as indicated in Appendix A.

As a result, we obtain the Landau–de Gennes (grand-
canonical) free-energy functional

ψ (S, η, φ) = A

4
(3S2 + η2) + U

2
φ2 − μφ

+ 1

β

[
(1 − φ) ln

(
1 − φ

6

)
+ φ ln (φ)

]

− φ

β
ln [(S, η)], (8)

where

(S, η) = 2 exp

[
−3βA

4
(S + η)

]
cosh

[
3βA

4

(
S − η

3

)
�

]

+ 2 exp

[
−3βA

4
(S − η)

]
cosh

[
3βA

4

(
S + η

3

)
�

]

+ 2 exp

(
3βA

2
S

)
cosh

(
βA

2
η�

)
, (9)

φ is the concentration of nematogens,

φ = 1

N

〈
N∑

i=1

γi

〉
, (10)

and the scalar parameters S and η are associated with the
symmetric and traceless tensor order parameter [10]

Q = 〈�〉 = 1

2

⎛
⎜⎝

−S − η 0 0

0 −S + η 0

0 0 2S

⎞
⎟⎠, (11)

in which 〈·〉 denotes the ensemble average.
The equilibrium values of S, η, and φ are determined by

locating the absolute minima of ψ (S, η, φ), leading to the
mean-field (MF) equations

∂ψ

∂S
= ∂ψ

∂η
= ∂ψ

∂φ
= 0, (12)

which take the self-consistent forms S = F1(S, η, φ; β,μ,�),
η = F2(S, η, φ; β,μ,�), and φ = F3(S, η, φ; β,μ,�). De-
pending on the solutions to these mean-field equations, the
structure of the eigenvalues Qx, Qy, Qz of Q may be such that
(1) Qx = Qy = Qz = 0, corresponding to the isotropic phase;
(2) Qx = Qy �= Qz (or similar relations with permutations of
the indices x, y and z), corresponding to an uniaxial nematic
phase; and (3) Qx, Qy, and Qz all distinct, corresponding to
a biaxial nematic phase. If the eigenvalue with the largest
absolute value is positive (negative), the nematic solution is
calamitic (discotic). We use this terminology for both uniaxial
and biaxial cases throughout the paper. In terms of the quanti-
ties S and η, the isotropic solution is given by S = η = 0, and
uniaxial solutions are such that S �= 0 with η = 0 or η = ±3S,
while the remaining cases represent biaxial solutions.

We emphasize that the values of S, η, and φ at the absolute
minima of ψ represent thermodynamic equilibrium values
for fixed reciprocal temperature β, chemical potential μ, and
biaxiality degree �. The (grand-canonical) free-energy F =
F (β,μ,�) of the system corresponds to the convex envelope
of ψ determined after inserting values of S, η and φ associated
with the minima of the free-energy functional.

III. BEHAVIOR IN THE ABSENCE OF THE ISOTROPIC
INTERACTION

We start the investigation by assuming zero isotropic inter-
action, U = 0, which simplifies the analysis of the problem
by reducing the number of parameters. Some aspects of this
case were discussed by Rodrigues et al. [30], but taking into
account only a specific range of model parameters. Here we
will present phase diagrams with many distinct topologies by
exploring a wider range of values of thermodynamic fields.
The results with zero isotropic interaction are helpful in under-
standing the situation involving both isotropic and anisotropic
couplings, to be analyzed in the next section.

By considering intrinsically rodlike nematogens, for which
� = 0, we find the phase diagram shown in Fig. 1(a), which
is qualitatively equivalent and quantitatively similar to the
one obtained by Monte Carlo simulations for the Lebwohl-
Lasher lattice-gas model of Ref. [12], in the absence of
isotropic interactions. At high concentration (φ � 0.75), as
T decreases, the observed phase sequence is isotropic (ISO),
followed by a biphasic region of coexisting rod-rich uniax-
ial nematic (N+

U) and rod-poor isotropic phases, followed by
a pure uniaxial nematic and finally a reentrant coexistence
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FIG. 1. Phase diagram in terms of temperature T (in units of A) and concentration φ of nematogens, for different values of biaxiality degree
and in the absence of isotropic interactions (U = 0). ISO: isotropic phase. N+

U : calamitic uniaxial nematic phase. NB: biaxial nematic phase.
Short-dashed lines are the boundaries of biphasic region (gray). Red dot-dashed line: critical end point (CE). LTC is a Landau tricritical point.

region. At lower rod concentration the coexistence region is
stable at low temperatures. The coexistence lines signaling
the discontinuous transition from the isotropic phase to the
uniaxial nematic phase are determined by Eq. (12) evalu-
ated at (S, η, φ) = (SU, 0, φU) and at (S, η, φ) = (0, 0, φI ),
supplemented by ψ (SU, 0, φU) = ψ (0, 0, φI ), where φI and
φU are, respectively, the concentrations of the isotropic and
uniaxial phases at the transition point, and SU is the value
of S at that point. Notice that, since the nematogens are
intrinsically uniaxial, we can assume η = 0 without loss of
generality. It is worth mentioning that in the uniaxial limit
of � = 0 we see a single isotropic phase, with no sign of
vapor-liquid coexistence, in agreement with Monte Carlo [33]
and mean-field [34] calculations for the off-lattice hard-sphere
Maier-Saupe model.

For the case of objects that are noncylindrical, � �= 0 and
� �= 3, it is possible to observe stable biaxial phases (NB), as
shown in Fig. 1(b) for biaxiality degree � = 19/20. In this
diagram, at high concentrations and high temperatures, there

is a small biphasic region of coexisting uniaxial and isotropic
phases. As temperature decreases, we have a second-order
transition from the N+

U phase to a pure NB phase, and finally
the biphasic region ISO-NB appears. The conditions for de-
termining the first-order transition between ISO and NB are
given by Eq. (12) evaluated at (S, η, φ) = (SB, ηB, φB) and at
(S, η, φ) = (0, 0, φI ), as well as ψ (SB, ηB, φB) = ψ (0, 0, φI ),
where SB and ηB are the values taken by S and η in the
biaxial state at the transition point. On the other hand, the
second-order transition between uniaxial and biaxial phases
is located by Eq. (12) and ∂2ψ/∂η2 = 0, all evaluated at
(S, η, φ) = (So, 0, φo), where So and φo are the values of S and
φ at the transition point. We also find that the N+

U-NB transi-
tion line meets the ISO-NB biphase region at a critical end
point (CE), in which a critical nematic state separating uni-
axial and biaxial phases coexists with a noncritical isotropic
state. Critical end points are among the various possible
multicritical points that can be found in thermodynamic sys-
tems with many components [2,35–37]. In our case, we have
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critical end points related to nematic transitions in a lattice-gas
model with orientation-dependent interactions. These kinds
of multicritical points were also reported in a Maier-Saupe
model that mimics binary mixtures of uniaxial and biaxial
nematogens [21].

For anisotropic objects with maximal biaxiality degree,
� = 1, stable uniaxial phases are absent and the phase di-
agrams present the general aspect shown in Fig. 1(c). In
this case, for high temperatures and high concentration, the
ISO-NB transition is continuous and determined by the con-
ditions ∂ψ/∂φ = ∂ψ/∂η = ∂2ψ/∂η2 = 0, evaluated at the
transition point (S, η, φ) = (0, 0, φo). This line of continuous
transitions is actually a line of multicritical Landau points.
On the other hand, for low T and intermediate concentra-
tions, we observe an ISO-NB coexistence region associated
with a first-order transition at which ∂ψ/∂η = ∂ψ/∂φ = 0 at
(S, η, φ) = (SB, ηB, φB), ∂ψ/∂φ = 0 at (S, η, φ) = (0, 0, φI ),
and ψ (SB, ηB, φB) = ψ (0, 0, φI ). The discontinuous and con-
tinuous transitions meet at a multicritical point which we call
Landau tricritical (LTC) point. Roughly speaking, according
to the solutions of mean-field equations, the multicritical point
LTC has properties common to both Landau points [10] and
tricritical points [35,36]. Notice that in the limit of a pure
system (i.e., φ → 1) consisting of biaxial objects with � = 1,
our findings are in agreement with earlier mean-field results,
which shown a direct ISO-NB transition through a single,
isolated Landau point in the �-T phase diagram [21,28].

It is possible to determine the conditions that characterize a
Landau tricritical point by following the discussion presented
by Rodrigues et al. [30]. Indeed, in our context, an LTC point
is the endpoint of a line of Landau points, and a Landau
point happens when the stable solutions of MF equations for
ISO and N±

U become degenerate. Each point on a Landau
line satisfies ∂ψ/∂φ = d2ψ/dS2 = d3ψ/dS3 = 0, evaluated
at (S, η, φ) = (0, 0, φL ). Observe that these conditions involve
partial derivatives as well as total derivatives (with respect
to S) of the free-energy functional ψ . We must treat φ as
an implicit function of S while calculating the total deriva-
tives. Thus, one can find � = 1, (βA − 1)eβμ − 1 = 0, and
βAφL = 1, which are the same results obtained in Ref. [30].
The solutions to these equations define a line of Landau
points, which is represented by a solid line in Fig. 1(c). In the
limiting case of maximum concentration of biaxial objects,
i.e., βμ � 1 or equivalently φL → 1, we recover the results
obtained in previous treatments [21,28], apart from differ-
ences in the definitions of parameters. Nevertheless, we also
have to check whether the solution leading to a Landau point
corresponds to a minimum of the free-energy functional. This
can be done by analyzing the behavior of the total fourth-order
derivative of ψ with respect to η at (S, η, φ) = (0, 0, φL),
which gives d4ψ/dη4 = −3A4β3φL(1 − 2φL)/8. This total
derivative should be positive for stable states, but we notice
that it may change its sign from positive, for φL > 1/2, to
negative, for φL < 1/2, indicating that the Landau point is
stable only if φL > 1/2 (implying βA < 2). Thus, precisely at
φL = 1/2, both d2ψ/dη2 and d4ψ/dη4 are zero, setting the
conditions for locating a tricritical point that is also a Landau
point. The coordinates of the LTC point are (βA)LTC = 2,
φLTC = 1/2, and μLTC = 0. The stability of the LTC point
can be checked by looking at the sixth-order derivative of ψ
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FIG. 2. Lines of multicritical points in the plane �-T for zero
isotropic interaction. The line of Landau points (black solid) meets
the lines of critical end points (red dot-dashed) at a Landau tricritical
(LTC) point, which is present only for maximal biaxiality degree
� = 1.

with respect to η, which gives d6ψ/ dη6 = 2A > 0, therefore
corresponding to a free-energy minimum.

We plotted all the lines of multicritical points obtained
until now in the �-T plane shown in Fig. 2. It is worth
mentioning that, as we are assuming zero isotropic interaction,
the space of thermodynamic fields is spanned by tempera-
ture T , chemical potential μ, and biaxiality �. Due to that,
the lines presented in Fig. 2 are critical solutions of MF
equations with varying chemical potential. Besides, although
we have focused the discussion on calamitic nematic phases,
for which 0 < � < 1, the results for discotic nematics (see,
e.g., Ref. [38]) with 1 < � < 3 lead to phase diagrams with
analogous topologies. Observe that for systems with maxi-
mal biaxiality degree, the LTC point occurs when the line of
Landau points meets the two lines of critical end points. The
Landau tricritical point is present only for maximal biaxiality
� = 1.

We mention that the sequence of diagrams shown in
Figs. 1(a)–1(c) for increasing biaxility parameter is reminis-
cent of the diagrams obtained from the mean-field treatment
of the off-lattice Krieger-James model for ferronematics as the
relative strength of the quadrupolar over dipolar interactions
is increased [39]. In the latter model, a ferromagnetic phase
replaces the biaxial phase of the LGMSZ model.

IV. BEHAVIOR IN THE PRESENCE OF THE ISOTROPIC
INTERACTION

We now discuss phase diagrams in the presence of an
isotropic interaction U �= 0. In addition to uniaxial and biax-
ial structures, we may observe coexistence between isotropic
fluid-like phases, which we call isotropic liquid (IL) and
isotropic vapor (IV), as well as between nematic phases with
different nematogen concentrations.
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FIG. 3. Phase diagrams in terms of temperature T and concentration φ of nematogens, for an intrinsically uniaxial system (� = 0). Red
long-dashed line: triple point. Black short-dashed line: first-order transitions. C is a simple critical point.

A. Phase diagrams for uniaxial prolate nematogens (� = 0)

For intrinsically uniaxial, rodlike objects, a sufficiently at-
tractive (U < 0) isotropic interaction leads to the appearance
of a vapor-liquid (or a high-density–low-density transition)
coexistence analogous to the van der Walls condensation;
see Fig. 3(a). The vapor-liquid transition is determined
by ∂ψ/∂φ = 0 at (S, η, φ) = (0, 0, φIV) and at (S, η, φ) =
(0, 0, φIL ), in addition to ψ (0, 0, φIV) = ψ (0, 0, φIL ). These
first-order lines meet at a simple critical point (C), located at
φC = 1/2, βC = −4/U , μC = U/2 with ψC = U [2 ln (12) −
1]/8.

We also find a vapor-liquid-uniaxial triple point, which is
determined by evaluating Eq. (12) at (S, η, φ) = (0, 0, φIV), at
(S, η, φ) = (0, 0, φIL ) and at (S, η, φ) = (SU, 0, φU), in addi-
tion to imposing ψ (0, 0, φIV) = ψ (0, 0, φIL ) = ψ (SU, 0, φU).
For T values lower than the triple-point temperature, the IV-IL
discontinuous transition becomes metastable with respect to
the IV-N+

U first-order transition. As the strength |U | of the
attractive interaction increases, the region of stability of N+

U
decreases and tends to become limited to a very small region
near φ = 1; see Fig. 3(a). This reduction in the area of the
uniaxial phase was observed by Bates, using Monte Carlo
simulations, in a lattice-gas extension of the Lebwohl-Lasher
model [12] and later in the model proposed by Humphries
et al. [13].

For repulsive isotropic interactions (U > 0), it is possible
to notice the appearance of a very narrow coexistence re-
gion between uniaxial nematic phases, as shown in Fig. 3(b).
This biphasic coexistence region between uniaxial structures
presents an ordinary critical point C, which can be found
by imposing the conditions ∂ψ/∂S = ∂ψ/∂φ = d2ψ/dφ2 =
d3ψ/dφ3 = 0, evaluated at (S, η, φ) = (SC, 0, φC).

We plot the lines of critical points and of triple points in the
U -T plane in Fig. 4. These lines meet at higher-order critical
points, which we call multicritical end points (MCEs), in anal-
ogy with critical end points appearing when lines of first-order

and second-order transitions meet. For U < U (1)
MCE ≈ −2.596,

we find phase diagrams with a simple critical point related to
an IV-IL biphase region, in addition to a vapor-liquid-uniaxial
triple point. This kind of phase phenomenon is associated with
an attractive character of the isotropic interaction. Neverthe-
less, for U > U (1)

MCE, it is no longer possible to distinguish
between the IV and IL phases, and from a thermodynamic per-
spective there is a single isotropic phase. Then we have phase
diagrams which only show ISO-NU coexistence regions.

In the case of repulsive isotropic interactions with U <

U (2)
MCE ≈ 1.035, the phase diagrams also exhibit first-order
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FIG. 4. Lines of critical and of triple points in the U -T plane, for
the case of rodlike nematogens (� = 0). We notice that the lines of
critical points meet the lines of triple points at higher-order multi-
critical end points (MCEs). The inset shows the case for repulsive
isotropic interaction (U > 0).
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transitions between isotropic and uniaxial phases. However,
for U (2)

MCE < U < U (3)
MCE = 3/2, as illustrated in Fig. 3(b), it

is possible to find phase diagrams exhibiting a coexistence
region between uniaxial structures, with an associated critical
point, as well as a triple point connecting one isotropic and
two uniaxial states. As U increases, we notice a decrease in
the area of the low-temperature isotropic-uniaxial coexistence
region, together with the decrease in the temperature of the
critical and the triple points, until the ISO-NU coexistence
disappears completely as U → U (3)

MCE. For this limiting value
of U , the temperatures both of the critical point and of the
triple point become zero.

The sequence of diagrams in Figs. 3(a) and 3(b) ob-
tained from the LGMSZ model as the isotropic interaction is
tuned from attractive to repulsive, including the phase coexis-
tences, is qualitatively equivalent to the ones obtained from
the off-lattice Maier-Saupe model augmented by isotropic
interactions [34,40]. Other systems with similar sequences
are mixtures of rodlike colloidal particles and hard-sphere
polymers with varying diameters [41], binary mixtures of

thermotropic nematogens with increasing dissimilarity [42],
and long hard rods with short-range attractions with changing
rod length or attraction range [43,44].

B. Phase diagrams for 0 < � < 1

As previously mentioned, the discrete-state Maier-Saupe
model presents phase diagrams with stable biaxial struc-
tures when the nematogens are intrinsically biaxial [21,28].
Then, we expect that the presence of dilution and isotropic
interactions may lead to phase diagrams with more elabo-
rate topologies. Indeed, for systems with attractive isotropic
interactions, we obtain phase diagrams of the type shown
in Fig. 5(a). In this case, we have a critical point C as-
sociated with an IV-IL biphasic region, and an IV-IL-N+

U
triple point, analogous to those discussed in Sec. IV A for
intrinsically uniaxial nematogens. We also find an IV-NB

discontinuous transition, determined by the conditions in
Eq. (12), evaluated at (S, η, φ) = (0, 0, φIV) and at (S, η, φ) =
(SB, ηB, φB), supplemented by ψ (0, 0, φIV) = ψ (SB, ηB, φB).
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The coexistence between the biaxial phase and the isotropic
vapor is verified at low temperatures, below the tem-
perature of a critical end point CE (TCE ≈ 0.56 in the
figure), whose location is set by Eq. (12), evaluated at
(S, η, φ) = (0, 0, φIV) and at (S, η, φ) = (SCE, 0, φCE), sup-
plemented by ψ (0, 0, φIV) = ψ (SCE, 0, φCE) and ∂2ψ/∂η2 =
0 at (S, η, φ) = (SCE, 0, φCE). The biaxial nematic phase is
stable for high concentrations and small temperatures.

Let us now consider repulsive isotropic interactions,
(A,U ) = (1, 1), with biaxiality degree � = 4/5. The phase
diagram is shown in Fig. 5(b), where it is possible to identify
a triple point in which isotropic, uniaxial, and biaxial phases
coexist, as well as a tricritical point (TC), which satisfies
the conditions ∂ψ/∂φ = ∂ψ/∂S = d2ψ/dη2 = d4ψ/dη4 =
0, evaluated at (S, η, φ) = (STC, 0, φTC). The total derivatives
are determined by treating S and φ as implicit functions of
η. The boundaries of the coexistence region associated with
uniaxial and biaxial phases are determined by Eq. (12) evalu-
ated at (S, η, φ) = (SU, 0, φU) and at (S, η, φ) = (SB, ηB, φB),
as well as ψ (SU, 0, φU) = ψ (SB, ηB, φB). We also show in
Fig. 5(c) the phase diagram corresponding to the repul-
sive case with � = 19/20 and (A,U ) = (1, 13/10). There
are biphasic regions associated with ISO and N+

U, N+
U,

and NB, and ISO and NB. Besides, there is a triple point
marking the coexistence of ISO, N+

U and NB. Finally, we
observe the presence of a biaxial-biaxial coexistence region,
whose boundaries are determined by Eq. (12) evaluated at
(S, η, φ) = (S1, η1, φ1) and at (S, η, φ) = (S2, η2, φ2), sup-
plemented by ψ (S1, η1, φ1) = ψ (S2, η2, φ2).

C. Phase diagrams for � = 1

Following our discussion in Sec. III, we can obtain the
conditions leading to Landau points for the maximal biaxi-
ality degree and investigate the possible presence of Landau
tricritical points. Indeed, we find analogous features when
nonzero isotropic interactions are considered. Nevertheless,
the parameter U plays an important role in the criteria for
determining the LTC point. After performing the calculation,
we find that the coordinates of the Landau point satisfy (βA −
1)eβμ = eU/A and βAφ = 1. For μ → ∞, i.e., in the limit of a
fully occupied lattice, we recover the expected phase diagram
with βA = 1 at the Landau point, whereas for U/A → 0, we
obtain the results discussed in Sec. III. As we already know,
the stability of a Landau point is related to the existence
of an absolute minimum of the free-energy functional, and
high-order derivatives should be considered because we are
dealing with a multicritical point. The fourth-order derivative
is

d4ψ

dη4

∣∣∣∣
(0,0,φ)

= −3

8
A3β2

[
U + A2β − A(2 + βU )

A2β + U (βA − 1)

]
. (13)

This fourth-order derivative changes sign when A(A − U )β =
2A − U , which sets the condition for a possible LTC point.
Notice that, as long as the isotropic interaction is attractive
(U < 0), there is always a candidate Landau tricritical point
(since β must be positive). However, as in the case U = 0, the
stability of that point for U �= 0 must be checked by looking

at the sixth-order derivative of ψ with respect to η,

d6ψ

dη6

∣∣∣∣
(0,0,φ)

= (U − 2A)4(8A2 − 30AU + 15U 2)

64A(A − U )4
. (14)

We then note that, since A > 0, any LTC points are locally
unstable if the isotropic interaction is repulsive (U > 0) and
such that 0.32 � U/A � 1.68.

For U < 0, the LTC point is always locally stable, although
it may not correspond to an absolute minimum of the free-
energy functional. This is the case for U = −5, as shown by
the phase diagram in Fig. 6(a). There is a wide coexistence
region associated with isotropic phases of vapor and liquid,
and an ordinary critical point (C). For high concentrations, as
T decreases, there exists a continuous transition from the IL
phase to the NB phase. Additionally, for a fixed sufficiently
low temperature, by varying the concentration we enter a
coexistence region between the IV and the NB phases. The
line of continuous transition consists of Landau points, and
that line meets the coexistence regions at a Landau critical
end point (LE). On the other hand, for isotropic interaction
U = −3, we obtain the phase diagram exhibited in Fig. 6(b).
In this diagram, we now observe an LTC point, i.e., the LE
point is not stable, and there also exists a triple point related
to the IL, IV, and NB phases. When the isotropic interaction
is sufficiently repulsive, we have a biaxial-biaxial coexistence
region, as shown in Fig. 6(c). This biphasic region presents a
critical point C and a Landau critical end point LE. For phase
diagrams with U > 2, there are no coexistence regions and we
observe only second-order transitions between the ISO and
NB phases; see Appendix B.

Notice that the sequence of phase-diagram topologies
shown in Figs. 6(a)–6(c) as the isotropic interaction is tuned
from attractive to repulsive for maximally biaxial nematogens
is equivalent to the sequence observed for off-lattice dipolar
fluids [45–52], the biaxial phase being replaced by the ferro-
magnetic or ferroelectric phases.

For the particular case � = 1 we can plot a graph in the
U -T plane showing the multicritical points found for maximal
biaxiality; see Fig. 7. The corresponding phase diagrams in
the φ-T plane present a line of Landau points regardless of
the character of the isotropic interaction. The stability limits
of points belonging to these Landau lines are (1) at high
temperatures, the point (φ, T ) = (1, 1) (fully occupied lat-
tice) and (2) at low temperatures, a multicritical point whose
nature depends on the value of U . In the U -T plane, the
stable Landau points occupy an extensive region which we
call the Landau zone. The boundaries of this region are the line
(φ, T ) = (1, 1) and the lines of Landau critical end points and
Landau tricritical points, which meet at multicritical Landau
points ML2 and ML3. We also find a higher-order multicritical
end point MCE related to a line of triple points. These triple
points are associated with coexisting vapor, liquid and biaxial
phases. Observe that the MCE point occurs when the line of
triple points meets a line of critical points.

V. MULTICRITICAL POINTS IN THE
BIAXIALITY-TEMPERATURE PLANE

We may summarize the different topologies of the φ-T
phase diagrams of the model by constructing diagrams of
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FIG. 6. Phase diagram in terms of temperature T (in units of A) and concentration φ of nematogens, for maximal biaxiality degree � = 1.
The red long-dashed line represents a triple point. The red dot-dashed line represents a Landau critical end point (LE). C is a critical point.

multicritical points in the plane �-T for a fixed value of U ,
as shown in Fig. 8. Thus, given a nematic-like system with
parameters (A,U ), we can determine the multicritical points
in the φ-T phase diagrams for different values of �. Due to the
large parameter space, we focus on only some representative
values of the isotropic interaction U .

A. Case with U < 0

By assuming attractive isotropic interactions with
(A,U ) = (1,−3), we obtain the �-T diagram shown in
Fig. 8(a). We notice that the line of triple points meets the
lines of critical end points at higher-order multicritical points
M±

1 . Besides, the line of ordinary critical points meets the
line of triple points at the higher-order multicritical end point
MCE. For � < �+

1 ≈ 0.994, where �±
1 are the values of

� at M±
1 , phase diagrams in the φ-T plane exhibit ordinary

critical points related to vapor-liquid biphasic regions, critical
end points (CEs), and vapor-liquid-uniaxial triple points,
a topology exemplified in Fig. 5(a). Precisely at � = �+

1 ,

the lines of CE and triple points meet at the temperature
T +

1 ≈ 0.7298. For values of model parameters corresponding
to M±

1 , φ-T phase diagrams do not exhibit a coexistence
region between the isotropic vapor and the uniaxial phases.
In the range �+

1 < � < 1, the temperature of the CE point
is higher than that of the triple point, which now represents a
coexistence of isotropic (vapor and liquid) and biaxial phases.
For maximal biaxiality � = 1, only isotropic and biaxial
phases are stable, and φ-T phase diagrams are characterized
by an ordinary vapor-liquid critical point, a Landau line, and,
depending on the value of U < 0, a Landau tricritical point,
as in Fig. 6(b), or a Landau end point, as in Fig. 6(a).

On the other hand, for 1 < � < �−
1 ≈ 1.006, the φ-T

phase diagrams may exhibit uniaxial discotic phases, whose
region of stability increases with �. In addition, we have CE
points and vapor-liquid-biaxial triple points, producing the
same topology as in Fig. 5(a). When � = �−

1 , the lines of
CE and triple points meet at the temperature T −

1 ≈ 0.7322.
For �−

1 < � < �MCE ≈ 1.063, the φ-T phase diagrams
also present CE points and vapor-liquid-biaxial triple points
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whose temperature approaches that of the vapor-liquid critical
point as � → �MCE. For biaxiality degree � = �MCE, the
vapor-liquid-biaxial triple point and the ordinary vapor-liquid
critical point meet at the temperature TMCE = 3/4, and we
cannot distinguish isotropic vapor and liquid phases. For ne-
matic systems with �MCE < � < 3, the topology of the φ-T
phase diagrams is the same as the one shown in Fig. 1(b),
the only multicritical point being a CE point separating re-
gions of coexistence between the low-concentration isotropic
phase and the high-concentration biaxial (at low temperatures)
or uniaxial (at higher temperatures) phases. For the intrin-
sically uniaxial cases � = 0 or � = 3, the phase diagrams
exhibit only isotropic and uniaxial phases, as exemplified in
Sec. IV A.

B. Case with U > 0

Now, by considering repulsive isotropic interactions with
(A,U ) = (1, 1), we obtain the multicritical lines shown in
Fig. 8(b). Here lines of CE, tricritical, and triple points meet at
multicritical points M±

2 . We also have the multicritical points
M±

3 , where lines of CE, triple, and ordinary critical points
meet. The topology of the φ-T phase diagrams is essentially
symmetric with respect to the axis � = 1, except for the
change in character of the uniaxial phases, from calamitic (for
0 � � < 1) to discotic (for 1 < � � 3).

In the ranges 0 < � < �+
2 ≈ 0.525 or �−

2 ≈ 1.3743 <

� < 3, where �±
i is the biaxiality parameter at M±

i , the topol-
ogy of the φ-T phase diagrams is the same as the one shown
in Fig. 1(b), and the temperature of the CE point increases
as the value of � becomes closer to 1. For biaxiality in the
ranges �+

2 < � < �+
3 ≈ 0.872 or �−

3 ≈ 1.115 < � < �−
2 ,

there exist isotropic-uniaxial and uniaxial-biaxial coexistence
regions, as well as a tricritical (TC) point, as illustrated in
Fig. 5(b). Finally, for �+

3 < � < �−
3 , the TC point is replaced

by a low-concentration CE point (or a Landau end point

if � = 1) and an ordinary critical point associated with a
biaxial-biaxial coexistence region, a topology exemplified in
Fig. 6(c). For biaxiality exactly equal to �+

3 or �−
3 , the lines

of critical and CE points meet the line of TC points and the
biaxial-biaxial coexistence region is absent.

VI. CONCLUSIONS

We considered a lattice-gas version of the Maier-Saupe
model for biaxial nematics with discrete orientations, in
addition to an energetic term that described an isotropic inter-
action. The model is investigated in mean-field theory through
a fully connected spinlike system with inclusion of dilution
effects. The free energy functional, and the mean-field equa-
tions were obtained exactly.

For systems without isotropic interactions, U = 0, we have
drawn phase diagrams in terms of temperature and concentra-
tion of nematogens, with fixed value of �. The case � = 1
is particularly interesting due to the absence of a nematic
uniaxial phase, and we find a line of Landau points which is
limited by a Landau tricritical point (LTC). In the cases � = 0
or 3 the nematogens are intrinsically uniaxial, so that the phase
diagrams show no biaxial nematic phase. Any other value of
� leads to a diagram which presents a critical end point (CE)
at high concentration.

Systems with U �= 0 present a great variety of multicritical
points depending on the character of the isotropic interaction
and the biaxiality degree of the nematogens. To clarify this
idea, diagrams of multicritical points were constructed in the
U -T plane for some values of �, and these diagrams show the
different multicritical points that can be found in the phase
diagrams.

Although our calculations are of a mean-field nature, we
do not anticipate much qualitative difference between our
results and those which would be obtained from improved
approximations or from Monte Carlo simulations. Our basis
for this is twofold. First, there is a general agreement be-
tween our results for limiting cases and those from previous
work employing either improved off-lattice approximations
(see, e.g., Refs. [39] and [40]) or Monte Carlo simula-
tions (see, e.g., Refs. [12] and [33]). Second, mean-field
calculations for dilute lattice systems are especially sensi-
tive to effects related to percolation, as the infinite range of
mean-field interactions leads to a percolation threshold at an
infinitesimal particle concentration, in sharp contrast to the
finite percolation threshold of three-dimensional lattices with
nearest-neighbor interactions. Therefore, we expect predic-
tions of ordered phases at low concentration to be mean-field
artifacts. However, except for very strong repulsive isotropic
interactions, our calculations do not lead to such predictions.
Monte Carlo simulations focusing on both these exceptional
cases as well as on the predicted multicritical points would be
most welcome.

It would be also interesting to extend the present work
to deal with the limit in which the orientational interactions
are described by the potential in Eq. (1) with ζ = 0 and
λ �= 0. This would allow comparison with the results ob-
tained by Skutnik et al. [53] for a three-dimensional model
with short-range interactions via constant-pressure Monte
Carlo simulations. Such a comparison would point to possible
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multicritical phenomena which could be further investigated
via simulations.

Finally, we point out that our model could in principle be
used to fit experimental data from lyotropic systems, provid-
ing estimates of coupling energies and biaxiality parameters,
if we allow for variation of the parameter � with both temper-
ature and concentration of components in a lyotropic mixture.
Models for this variation should be informed by calculations

similar to those provided by Amaral et al. for the change in
micelle form induced by cosurfactant addition [54].
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APPENDIX A: MEAN-FIELD CALCULATIONS FOR LGMSZ MODEL

The mean-field version of the LGMSZ model is obtained by assuming a fully connected lattice Hamiltonian

Hmf = − A

2N

∑
i, j

γiγ j�i:� j + U

2N

∑
i, j

γiγ j, (A1)

where the sums now run over all lattice sites. The grand partition function is

� =
∑
{γi}

∑
{�i}

exp

(
βA

2N

∑
i, j

γiγ j�i:� j − βU

2N

∑
i, j

γiγ j + βμ
∑

i

γi

)
. (A2)

In order to obtain an integral representation of the grand partition function in the mean-field limit, we introduce the concentration
of nematogens as

φ = 1

N

N∑
i=1

γi, (A3)

and use the integral representation of the Dirac δ function,

δ

(
Nφ −

N∑
i=1

γi

)
= 1

2π i

∫ +i∞

−i∞
exp

[
−φ̂

(
Nφ −

N∑
i=1

γi

)]
dφ̂, (A4)

where i = √−1 represents the imaginary unit. We also have the Gaussian identity

exp

(
βA

2N

∑
i, j

γiγ j�i:� j

)
∝

∫
exp

(
−βAN

2
‖Q‖2 + βA

∑
i

γiQ:�i

)
d[Q], (A5)

where the constant of proportionality is irrelevant, and ‖ · ‖ is
the Frobenius norm. Using the identities in Eqs. (A4) and (A5)
and performing the partial trace over the occupation variables

{γi}, we can write the grand partition function in the form

� ∝
∫

I(Q, φ)e−Nβ�(Q,φ) dφ d[Q], (A6)
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where

�(Q, φ) = A

2
‖Q‖2 + U

2
φ2 − μφ, (A7)

I(Q, φ) = N

2π i

∫ +i∞

−i∞
eN f (Q,φ,φ̂) dφ̂, (A8)

and

f (Q, φ, φ̂) = −φ̂φ + ln

(
6 + eφ̂

∑
�

eβAQ:�

)
. (A9)

In the thermodynamic limit N � 1, we expect the integral
in Eq. (A8) to be dominated by the highest stationary point
of f (Q, φ, φ̂) with respect to φ̂. As for a complex function
the only stationary points are saddle points, the integral is
therefore dominated by the highest saddle point. The saddle
point, φ̂o, can be determined by the condition f ′(Q, φ, φ̂o) =
0, where the derivative is taken with respect to φ̂. Then

φ̂o = ln

(
6φ

1 − φ

)
+ ln

(∑
�

eβAQ:�

)
, (A10)

where φ̂o ∈ R, because 0 < φ < 1. In a neighborhood of φ̂o

we can write

f (Q, φ, φ̂) ≈ f (Q, φ, φ̂o) + 1
2 f ′′(Q, φ, φ̂o)(φ̂ − φ̂o)2,

(A11)

so that the integral I(Q, φ) takes the form

I(Q, φ) ≈ N

2π i
eN f (Q,φ,φ̂o)

×
∫ +i∞

−i∞
exp

[N

2
f ′′(Q, φ, φ̂o)(φ̂ − φ̂o)2

]
dφ̂.

(A12)

The integral in Eq. (A12) can be solved by the method of
steepest descents. For φ ≈ φ̂o, we write

φ̂ − φ̂o = ρeiϕ, (A13)

in which ϕ is the angle according to which the integration con-
tour passes through the saddle point φ̂o so that, in the complex
plane defined by φ̂, f ′′(Q, φ, φ̂o) is a real number. Taking into
account that in this particular problem f ′′(Q, φ, φ̂o) = φ(1 −
φ), implying ϕ = π/2 (see Ref. [55], p. 491), we obtain

I(Q, φ) ≈
√

N

2π

eN f (Q,φ,φ̂o)

√
φ(1 − φ)

. (A14)

Finally we get an integral representation of the grand par-
tition function,

� ∝
∫

R(φ)e−Nβψ (φ,Q) dφ d[Q], (A15)

where

ψ (φ, Q) = A

2
‖Q‖2 + U

2
φ2 − μφ − f (Q, φ, φ̂o)

β
, (A16)

with

f (Q, φ, φ̂o) = −φ ln φ − (1 − φ) ln

(
1 − φ

6

)

+ φ ln

[∑
�

exp (βAQ:�)

]
. (A17)

The symmetric traceless tensor Q can be parameterized by
the scalar quantities S and η as

Q = 1

2

⎛
⎜⎜⎝

−S − η 0 0

0 −S + η 0

0 0 2S

⎞
⎟⎟⎠. (A18)

In terms of these parameters, the isotropic phase is character-
ized by S = η = 0, the uniaxial phase by S �= 0 and η = 0
(or η = ±3S), and the biaxial phase by η �= 0. Using this
parametrization in Eq. (A16), we obtain the free-energy func-
tional ψ (S, η, φ) in Eq. (8).

APPENDIX B: LOW-TEMPERATURE ANALYSIS

Let us consider a diluted liquid crystal whose constituent
units interact via the Hamiltonian of the LGMSZ model,
which was presented in Sec. II. Investigating the low-
temperature limit T → 0 amounts to comparing the internal
energy of the different phases, as minimizing this quantity for
a given choice of the Hamiltonian parameters determines the
stable phase. We must also consider the possibility that the
internal energy is minimized under phase coexistence.

In the isotropic phase, the energy is minimized by having
�i:� j = 0 for any pair of particles (i, j), so the internal en-
ergy as a function of φ is given by

EI(φ) = UN

2
φ2. (B1)

On the other hand, for T → 0, �i:� j = (1 + �2)/2 in the
fully occupied nematic phase (biaxial if 0 < � < 3 or uniax-
ial if � = 0 or � = 3) for any pair (i, j). The internal energy
of the nematic phase is

EN(φ) = −AN

4
(3 + �2)φ2 + UN

2
φ2. (B2)

As for the coexistence between an isotropic phase with φ = 0
and a nematic phase with φ �= 0, the lever rule gives an inter-
nal energy

EI-N = (1 − φ)EI(0) + φEN(1) = φEN(1). (B3)

The sign of the energy difference EI-N − EN = φ(1 −
φ)EN(1) determines the stability of the nematic phase to-
wards phase coexistence as T → 0. Just when EN(1) = 0 the
nematic phase becomes metastable with respect to isotropic-
nematic coexistence. This corresponds to

EN(1) = 0 ⇒ U = A

2
(3 + �2). (B4)

Therefore, if U/A > (3 + �2)/2 the nematic phase is sta-
ble, otherwise there appears an isotropic-nematic coexistence
region.
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[16] L. Longa and G. Pająk, Liq. Cryst. 32, 1409 (2005).
[17] F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni,

Phys. Rev. Lett. 75, 1803 (1995).
[18] J. P. Straley, Phys. Rev. A 10, 1881 (1974).
[19] A. M. Sonnet, E. G. Virga, and G. E. Durand, Phys. Rev. E 67,

061701 (2003).
[20] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cam-

bridge University Press, Cambridge, 2013).
[21] E. S. Nascimento, E. F. Henriques, A. P. Vieira, and S. R.

Salinas, Phys. Rev. E 92, 062503 (2015).
[22] R. Zwanzig, J. Chem. Phys. 39, 1714 (1963).
[23] M. J. de Oliveira and A. M. Figueiredo Neto, Phys. Rev. A 34,

3481 (1986).
[24] E. do Carmo, D. B. Liarte, and S. R. Salinas, Phys. Rev. E 81,

062701 (2010).
[25] E. do Carmo, A. P. Vieira, and S. R. Salinas, Phys. Rev. E 83,

011701 (2011).
[26] D. B. Liarte and S. R. Salinas, Braz. J. Phys. 42, 261 (2012).
[27] R. A. Sauerwein and M. J. de Oliveira, J. Chem. Phys. 144,

194904 (2016).
[28] E. S. Nascimento, A. P. Vieira, and S. R. Salinas, Braz. J. Phys.

46, 664 (2016).

[29] A. Petri and S. R. Salinas, Liq. Cryst. 45, 980 (2018).
[30] D. D. Rodrigues, A. P. Vieira, and S. R. Salinas, Crystals 10,

632 (2020).
[31] C. T. G. dos Santos, A. P. Vieira, S. R. Salinas, and R. F. S.

Andrade, Phys. Rev. E 103, 032111 (2021).
[32] S. R. Salinas and E. S. Nascimento, Mol. Cryst. Liq. Cryst. 657,

27 (2017).
[33] M. J. Blair and G. N. Patey, Phys. Rev. E 57, 5682 (1998).
[34] P. I. C. Teixeira, Phys. Rev. E 59, 1280 (1999).
[35] D. I. Uzunov, Introduction to the Theory of Critical Phenomena

(World Scientific, Singapore, 1993).
[36] M. J. de Oliveira, Equilibrium Thermodynamics (Springer-

Verlag, Berlin, 2013).
[37] C. M. Knobler and R. L. Scott, in Phase Transitions and Critical

Phenomena, Vol. 9, edited by C. Domb and J. L. Lebowitz
(Academic Press, London, 1984), pp. 164–231.

[38] D. Luders, G. Arcolezi, M. Pereira, W. Braga, O. Santos, M.
Simões, N. Kimura, A. Sampaio, and A. Palangana, Liq. Cryst.
48, 974 (2021).

[39] P. I. C. Teixeira, Liq. Cryst. 25, 721 (1998).
[40] P. Teixeira and M. Telo da Gama, Mol. Phys. 86, 1537 (1995).
[41] H. Lekkerkerker and A. Stroobants, Nuovo Cimento D 16, 949

(1994).
[42] P. Palffy-Muhoray, J. J. de Bruyn, and D. A. Dunmur, Mol.

Cryst. Liq. Cryst. 127, 301 (1985).
[43] A. Khokhlov and A. Semenov, J. Stat. Phys. 38, 161 (1985).
[44] P. G. Bolhuis, A. Stroobants, D. Frenkel, and H. N. W.

Lekkerkerker, J. Chem. Phys. 107, 1551 (1997).
[45] H. Zhang and M. Widom, Phys. Rev. E 49, R3591 (1994).
[46] E. Lomba, J.-J. Weis, N. G. Almarza, F. Bresme, and G. Stell,

Phys. Rev. E 49, 5169 (1994).
[47] J. M. Tavares, M. M. Telo da Gama, P. I. C. Teixeira, J. J. Weis,

and M. J. P. Nijmeijer, Phys. Rev. E 52, 1915 (1995).
[48] J. M. Tavares, P. I. C. Teixeira, and M. M. Telo da Gama, Phys.

Rev. E 58, 3175 (1998).
[49] A. Oukouiss and M. Baus, Phys. Rev. E 55, 7242 (1997).
[50] T. G. Sokolovska, Physica A 253, 459 (1998).
[51] L.-S. Li, L. Li, and X.-S. Chen, Commun. Theor. Phys. 51, 287

(2009).
[52] B. Groh and S. Dietrich, Phys. Rev. E 50, 3814 (1994).
[53] R. A. Skutnik, I. S. Geier, and M. Schoen, Mol. Phys. 118,

e1726520 (2020).
[54] L. Q. Amaral, O. Santin Filho, G. Taddei, and N. Vila-Romeu,

Langmuir 13, 5016 (1997).
[55] G. Arfken and H. J. Weber, Mathematical Methods for Physi-

cists, 6th ed. (Elsevier Academic Press, London, 2005).

044705-13

https://doi.org/10.1016/S0370-1573(99)00049-6
https://doi.org/10.1063/1.2784685
https://doi.org/10.1103/PhysRevLett.24.1041
https://doi.org/10.1103/PhysRevLett.45.1000
https://doi.org/10.1103/RevModPhys.90.045004
https://doi.org/10.3390/cryst9030158
https://doi.org/10.1016/0370-1573(86)90007-4
https://doi.org/10.1103/PhysRevA.6.426
https://doi.org/10.1103/PhysRevE.64.051702
https://doi.org/10.1103/PhysRevE.65.041706
https://doi.org/10.1080/00268978000101341
https://doi.org/10.1515/zna-1958-0716
https://doi.org/10.1080/02678290500167873
https://doi.org/10.1103/PhysRevLett.75.1803
https://doi.org/10.1103/PhysRevA.10.1881
https://doi.org/10.1103/PhysRevE.67.061701
https://doi.org/10.1103/PhysRevE.92.062503
https://doi.org/10.1063/1.1734518
https://doi.org/10.1103/PhysRevA.34.3481
https://doi.org/10.1103/PhysRevE.81.062701
https://doi.org/10.1103/PhysRevE.83.011701
https://doi.org/10.1007/s13538-012-0085-y
https://doi.org/10.1063/1.4948627
https://doi.org/10.1007/s13538-016-0451-2
https://doi.org/10.1080/02678292.2017.1404151
https://doi.org/10.3390/cryst10080632
https://doi.org/10.1103/PhysRevE.103.032111
https://doi.org/10.1080/15421406.2017.1402640
https://doi.org/10.1103/PhysRevE.57.5682
https://doi.org/10.1103/PhysRevE.59.1280
https://doi.org/10.1080/02678292.2020.1836279
https://doi.org/10.1080/026782998205732
https://doi.org/10.1080/00268979500102901
https://doi.org/10.1007/BF02458781
https://doi.org/10.1080/00268948508080847
https://doi.org/10.1007/BF01017855
https://doi.org/10.1063/1.474508
https://doi.org/10.1103/PhysRevE.49.R3591
https://doi.org/10.1103/PhysRevE.49.5169
https://doi.org/10.1103/PhysRevE.52.1915
https://doi.org/10.1103/PhysRevE.58.3175
https://doi.org/10.1103/PhysRevE.55.7242
https://doi.org/10.1016/S0378-4371(97)00653-5
https://doi.org/10.1088/0253-6102/51/2/20
https://doi.org/10.1103/PhysRevE.50.3814
https://doi.org/10.1080/00268976.2020.1726520
https://doi.org/10.1021/la9700073

