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Defect patterns of two-dimensional nematic liquid crystals in confinement
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A two-dimensional or quasi-two-dimensional nematic liquid crystal refers to a surface-confined system. When
such a system is further confined by external line boundaries or excluded from internal line boundaries, the
nematic directors form a deformed texture that may display defect points or defect lines, for which winding
numbers can be clearly defined. Here, a particular attention is paid to the case when the liquid crystal molecules
prefer to form a boundary nematic texture in parallel to the wall surface (i.e., following the homogeneous
boundary condition). A general theory, based on geometric argument, is presented for the relationship between
the sum of all winding numbers in the system (the total winding number) and the type of confinement angles
and curved segments. The conclusion is validated by comparing the theoretical defect rule with existing nematic
textures observed experimentally and theoretically in recent years.
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I. INTRODUCTION

The bulk state of a nematic liquid crystal is a spatially
uniform fluid with the long molecular axes spontaneously
ordered in a common direction, for which a global nematic
director can be defined. A familiar example is a nematic
system composed of rodlike linear molecules, for which the
bulk state can be described by a uniform nematic field in one
direction. In an ideal nematic state, the field lines, similar to
the field lines of a uniform electric field, extend in space. For a
nonpolar system, the case considered here, these nematic field
lines have no arrows (i.e., are head-to-tail symmetric) [1].

The introduction of a physical boundary, however, disrupts
the otherwise uniform nematic field lines. Depending on how
molecules are aligned at the boundary, this could create a
frustration on the nematic field lines. When liquid crystal
molecules prefer to align along the wall surface, a so-call
“homogeneous” liquid crystal boundary surface is formed.
The nematic field lines would then line up with the surface
conditions and in the meantime, attempt to keep minimal
field-line deformation to lower the distortion elastic energies.
In a finite system, according to the physical conditions, the
nematic field lines can form defect points, lines, etc.

For example, a well-studied problem is the structures
formed by immersed colloid particles (spherical or other
shapes) or dispersed liquid droplets in a liquid crystal.
Tremendous experimental and theoretical progress has been
made in the last two decades, devoting to understanding such
systems [2–29]. The presence of colloid particle surfaces
induces liquid crystal defects and in turn, the tendency of
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minimizing the overall liquid-crystal defect free-energy cou-
ples the colloid particles in a particular form, yielding, e.g.,
ordered three-dimensional colloidal crystals.

Another commonly studied example is a liquid crystal
fluid confined to curved surfaces, which has drawn signifi-
cant theoretical and experimental attentions in recent years.
Depending on the geometry of the confining surface, the
system may display both density and orientational field de-
fects, which can be detected experimentally [30–36]. The
nature of an ordered state depends on the geometric pa-
rameters as wells as how far the system is away from the
isotropic-nematic transition. Commonly used examples in
theories and computer simulations are the nematic defect
structures formed by a two-dimensional (2D) fluid contain-
ing liquid-crystal molecules confined on a spherical surface
[30,37–46] or a toroidal surface [47–53]. A number of theo-
retical and computer-simulation approaches have been taken
to study nematic structures in confinement. The Frank elastic
and Landau-de Gennes free-energy models are often used
and contain phenomenological parameters [30,37–39,42,50,
54–57]. The molecular-level based models, either the simpler
Onsager and Maier-Saupe theories, or the more complicated
density-functional theories, contain system parameters that
can be traced back to the physical origins [43,44,46,58–63]. A
universal mathematical theorem is such that the Euler charac-
teristics of the confining manifold uniquely determine the total
winding number associated with the liquid crystal defects.
For example, the embedded director fields have either total
winding number 2 or 0, for a spherical or toroidal surface,
respectively.

Less, however, is understood about the general feature
of another type of confinement. The past two decades have
witnessed a surge in research activities on the topic of
boundary-frustrated nematic states, when a liquid-crystal-like
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FIG. 1. Schematics of local defect types with winding numbers (a) w = +1/2, (b) w = −1/2, (c), (d) w = +1, (e) w = −1, (f) w = −1/2,
and (g) w = +1/2, where panels (a)–(e) are patterns near defect points, and panel (f) as well as panel (g) patterns containing defect lines. The
blue curves represent the directions of the (headless) nematic directors in space and the red dashed circles the path taken to evaluate the winding
numbers. The same color scheme is used to illustrate the defect types in all the subsequent figures.

system in two dimensions is confined by a closed boundary
line. These systems can be a flat square box containing tra-
ditional liquid crystal molecules [64], a collection of visible
steel needles in circular and square boxes which are equili-
brated by a vibrational bed [65], micron-sized gold particles
of controlled shapes immersed in bulk liquid crystals [66],
micron-sized rodlike colloid particles in confinement [67,68],
or even semiflexible biological molecules confined in cham-
bers of various shapes [69–71], all under physical conditions
that can be classified as in quasi-2D. On the theoretical
side, various theoretical approaches have been undertaken
to model related systems, including solving Oseen-Frank
(OF) model [70,72], Landau-de Gennes (LdG) model
[64,73–78], and the density-functional theories such as the
Onsager model [63,79,80] or beyond [68]. Monte Carlo (MC)
simulations of confined rigid molecules in 2D or quasi-2D
have also been made [71,81–87]. A rich variety of defect
patterns have been obtained from these studies.

Hence, we face a fundamental question: how to set up a
universal theory that can be used to explain the total defect
winding number found in these 2D, line-confined systems,
regardless of the experimental and theoretical methods used.
The current paper serves two purposes. First, we derive the
defect rules by using the characteristics of the confining
boundaries. The simple case of a nematic fluid confined by
an outer boundary is considered first in Sec. II, then followed
by the case of a bulk nematic fluid containing an obstacle
in Sec. III]. The general defect rule for more complicated
confining geometries, also covering the above two cases, is
then generalized in Sec. IV.

The second purpose is to comprehensively review the 2D
nematic defect patterns discovered by various experimental,
theoretical, and computer-simulation studies, in light of the
defect rules that are deduced in this paper (see Sec. V A). As
summarized in Table I, most of the boundary conditions used
in these studies have the geometrical shapes of circles, tri-
angles, rectangles, and hexagons. To supplement the existing
studies, in Secs. II, III, and IV, we have provided the defect
patterns obtained from numerical solutions to the Onsager
model (see Appendix A), for more complicated confinement
types. A comparison of the defect patterns produced from the
studies listed in Table I and from our supplemented cases to
the general defect rule determined in the current work verifies
its validity.

II. TOTAL WINDING NUMBER INSIDE CONFINEMENT

A. Winding number of a single defect

For completeness, the definition of the winding number of
a single defect is reviewed here. Figure 1 illustrates some basic
types of local defect patterns, where the blue curves connect
local nematic directors. A complete spatial path is taken about
the defect, shown by the clockwise, dashed red circle. Al-
though the nematic directors have the head-to-tail symmetry,
blue arrows have been drawn for accounting purpose. As the
red path completes its circle, the nematic director spins from
the light blue arrow to the dark blue arrow; the spinning angle,
in units of 2π , is defined as the winding number w. The sign
of the winding number is positive if the arrow spins in the
same direction as the red path, otherwise negative.

B. Total winding number of defects in confinement: Theory

The summed, total winding number of all defects of a
nematic liquid crystal confined inside a polygon can be de-
termined in a procedure similar to that in the last section.
Instead of a local evaluation path around a defect point, for
this purpose, we take a complete path inside the boundary of
a polygon and evaluate the spinning of the nematic director.

The four basic types of nematic texture near polygonal
corners are illustrated in Figs. 2(a)–2(d). At a length scale
much greater than the molecular dimension, there are two
typical nematic-director patterns, splay and bend, shown here
in Figs. 2(a) and 2(b) inside an acute angle. As the evaluation
red path passes around the corners, the nematic directors spin
by angles −αi and π − β j , in Figs. 2(a) and 2(b), respectively.
The indices i and j have been added to denote the ith and
jth acute angles that contain splay and bend textures, cor-
respondingly. In rare cases, the confinement geometry may
contain a reflex angle, illustrated in Figs. 2(c) and 2(d), for
two typical patterns, splay and bend. As the evaluation red
path passes around a sharp boundary of a reflex angle, the
nematic directors of the kth splay and lth bend patterns spin
by angles 2π − γk and π − δl , respectively.

Around the interior of the confinement, assume that there
are n1, n2, n3 and n4 angles of type (a), (b), (c), and (d) in
Fig. 2, and that the other molecules near the boundary are in
parallel with the wall. The complete evaluation path takes all
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TABLE I. Comparison between the defect rule, Eq. (9), and selected defect patterns found in the recent literature, of 2D systems that follow
the same boundary conditions. The third column contains the figure numbers in the original references. M is the number of enclosed obstacles,
N1 and N3 are splay related angles or extended angles if smooth curves are involved. W is the total winding number calculated from Eq. (9)
and it matches the summed winding numbers of defects in the original figures.

Reference Approach Figure number(s) Confinement type M N1 N3 W

Dzubiella2000 [81] MC 16 Circle 0 0 0 1
Galanis2006 [65] Experiment 4(a) Square 0 2 0 0

4(b), 4(c) Circle 0 2 0 0
Tsakonas2007 [64] LdG 3 Square 0 2 0 0
Galanis2010 [89] Experiment 1(a) Circle 0 0 0 1
Soares e Silva2011 [69] Experiment 2 Square 0 4 0 −1
Evans2011 [66] Experiment 4(c) Triangle immersed 2 0 2 0
Luo2012 [90] LdG 1 Square 0 2 0 0
Chen2013 [63] Extended Onsager 1 Square 0 4 0 −1

2 Circle 0 0 0 1
Lewis2014 [70] OF 1 Rectangle 0 2 0 0

Experiment 5(D,U1) Rectangle 0 2 0 0
Experiment 5(D∗,U ∗

1 ) Rectangle 0 4 0 −1
de las Heras2014 [82] MC 2(b), 2(c) Circle 0 0 0 1
Geigenfeind2015 [91] MC 12(b) Square 0 4 0 −1
Gârlea2015 [83] MC 2(b) Square 0 4 0 −1
Gârlea2016 [84] MC 1(e) Circle 0 0 0 1

1(g) Circle 0 2 0 0
2(a)–2(c) Annulus 1 0 0 0

Experiment 4(a) Circle 0 0 0 1
4(b) Annulus 1 0 3 3/2

Everts2016 [73] LdG 6, 7(e)–7(l) Square 0 4 0 −1
Robinson2017 [74] MC 2(b)right, 3 right, 4, 6 Square 0 4 0 −1

5(a) Square 0 2 0 0
LdG 11(1–5, 10–12, 14, 15) Square 0 2 0 0

11(6) Square 0 0 0 1
11(7) Square 0 4 0 −1
11(8) Square 0 3 0 −1/2

11(9, 13) Square 0 1 0 1/2
Cortes2017 [67] Experiment 3(N) Square 0 4 0 −1
Yao2018 [79] Extended Onsager 3, 4, 7 Rectangle 0 4 0 −1
Wang2018 [75] LdG 17(h) Square-in-square 1 1 1 0

17(m) Square-in-square 1 2 3 1/2
17(q) Square-in-square 1 2 1 −1/2

Gârlea2019 [71] MC 2(except H) Circle and lens-shape 0 0 0 1
Experiment 2(except H) Circle and lens-shape 0 0 0 1

Hashemi2019 [86] MC 1(b)–1(d), 3, 5(b)–5(d) Circle 0 0 0 1
Hashemi2019 [85] MC 1(b), 1(c), 2(b), 2(c), 3(c), 7 Square 0 4 0 −1
Yin2020 [76] LdG 2(g) C±, I± Square 0 0 0 1

2(g) S, H, I, D Square 0 2 0 0
2(g)T Square 0 3 0 −1/2

Han2020 [77] LdG 4 Hexagon 0 0 0 1
LdG 9 Hexagon 0 2 0 0

Han2021 [78] LdG 2(a), 2(b) Hexagon 0 0 0 1
2(c), 2(d) Hexagon 0 2 0 0

5(c) Triangle 0 3 0 −1/2

these basic types and gives rise to a total winding number

W = 1

2π

[
n1∑

i=1

(−αi ) +
n2∑

j=1

(π − β j )

+
n3∑

k=1

(2π − γk ) +
n4∑

l=1

(π − δl )

]
. (1)

According to the geometric theory, the total sum of all angles
inside a polygon of any shape is (n1 + n2 + n3 + n4 − 2)π .
This simplifies the above expression to

W = − 1
2 (n1 − n3 − 2), (2)

which is one of the main results of the current paper. Note
that W is determined by number of corners that contain splay
patterns only.
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FIG. 2. Basic types of nematic textures, containing splay and
bend patterns. Shown in panels (a) and (b) are acute confinement
corners, αi and β j , that contain splay and bending textures; in panels
(c) and (d) reflex corners, γk and δl , that contain splay and bend
textures. Curved confinement segments in panels (e)–(h) can be dealt
with by a similar definition, by extending the linear segments in
connection with a typical curve, to form an acute or reflex angle.

One important generalization of the above expression is
for nematic defects inside a closed boundary that is either
completely composed of or partially contains a curve. Tak-
ing a curve segment, we can extend the tangent lines of the
terminal ends of the curve to form a tangent angle, shown in
Figs. 2(e)–2(h). Depending on the types of nematic textures
near the curved boundary, e.g., splay or bend, the above
formula can be directly used by counting number of splay
patterns associated with these curves.

C. Examples

In an earlier publication [79], examples of confinement
boundaries formed by acute angles, which were assumed to
contain splay patterns only, and curve segments, which were
assumed to contain bend textures only, were examined. In
such a case, W in Eq. (2) has a simpler version: W = − 1

2 (n1 −
2) where n1 is the number of acute angles of the confinement
boundary. Section V C further addresses the consistency of
how a splay or bend angle is identified.

Here, we demonstrate the usefulness of the expression in
Eq. (2) by examining the examples from the numerical so-
lutions to the extended Onsager model for lyotropic nematic
liquid crystals under various types of confinement. The model
is based on a classical free-energy model that Onsager devel-
oped for rodlike molecules of length L, interacting with each
other through excluded-volume interactions [88]. The onset
of the bulk nematic state, in which no spatial variations exist,
depends on a single, reduced parameter

ρ̃ = ρ0L2, (3)

where ρ0 is the number of rodlike molecules per unit area.
When the model is extended to include spatial dependence and
effects of the boundary conditions, it can be effectively used
to model a lyotropic liquid crystal in confinement, adding an
additional system parameter

L̃ = L/a, (4)

where a is the typical size of the confinement geometry. More
details can be found in Refs. [63,79,80] and Appendix A.

A comparison between the defect rule in Eq. (2) and the
numerical solutions can be viewed in Fig. 3, where the first
column displays the reconstructed defect patterns according
to the density profile ρ(r, u), for direct visualization. The
reduced density profile φ(r), averaged over all orientational
dependence u and normalized by ρ0, is a function of the spa-
tial position specified by r. Displayed in the second column,
depletion of the density can be clearly viewed around the
defect location. The orientational order parameter is assessed
by the order parameter tensor Q(r) as a function of the spatial
coordinates r. In 2D, it is a 2 × 2 traceless and symmetric
tensor,

Q(r) = 〈uu − I/2〉 = 1

2

[
S(r) T (r)
T (r) −S(r)

]
, (5)

where I is a unit tensor. The right-hand side is the matrix rep-
resentation of the tensor which contains the elements S(r) =
〈cos 2θ〉 and T (r) = 〈sin 2θ〉, θ being the angle that a rodlike
molecule makes with respect to the horizontal axis. The aver-
age 〈...〉 is performed with respect to the angular dependence
θ only. The eigenvalue of the Q-tensor, 
 = (S2 + T 2)1/2, is
plotted in the third row, in which a defect point shows up at a
location where 
 = 0.

Among the plots, the circular and oval confinements in
Figs. 3(a) and 3(b) are two interesting cases. They can be
viewed as smooth curves with zero angles, hence all n1 =
n2 = n3 = n4 = 0, which gives rise to W = +1 according to
Eq. (2). In geometry, a circular shape could also be viewed as
the asymptotic limit of a regular polygon when the polygon
edge number approaches infinity. From the latter perspective,
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FIG. 3. Examples of defect patterns obtained from the solution to the extended Onsager model. The reduced density used is ρ̃ = 10 and
the reduced length L̃ in Eq. (4) is in the range [0.1, 0.25]. The first column contains reconstructed schematic plots based on the numerical
solution presented in other columns, where the defect points are indicated by colored circles. The blue, green, and orange circles label the
defect locations of −1/2, +1/2, and +1 winding numbers, respectively. The relative density φ(r) and orientational order parameter 
(r) are
plotted in columns 2 and 3, respectively. The values of n1, n2, n3, and n4 are omitted when they are zero.

Fig. 3(a) corresponds to the case of n1 = n3 = n4 = 0 but
n2 → ∞; because the defect rule is not affected by the number
of angles containing bend textures, W = +1.

The boundaries in Figs. 3(c)–3(e) consist of lines and
curves, and those in Figs. 3(f)–3(l) contain polygonal seg-
ments. Most of the angles here are acute angles and
liquid-crystal molecules prefer to align in splay patterns. In
particular, there are two acute angles in Fig. 3(j) and a reflex
angle in Fig. 3(k) around which the nematic liquids are in bend
patterns. In short summary, the defect rule deduced based on
geometry consideration is fully consistent with the numerical
solutions from an actual molecular theory.

III. TOTAL WINDING NUMBER OF A NEMATIC LIQUID
CONTAINING AN OBSTACLE

A. Total winding number of defects outside an obstacle: Theory

Here the case of a two-dimensional obstacle immersed in
a nematic liquid is considered. The basic defect types in the
liquid, near a corner angle or a curved boundary, are the same
as those illustrated in Fig. 2.

Along the immediate exterior of the obstacle, a complete
evaluation path encounters m1, m2, m3, and m4 patterns of the
type αi, β j γk , and δl . The total winding number is hence the
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same as in Eq. (1), that is

W = 1

2π

[
m1∑
i=1

(−αi ) +
m2∑
j=1

(π − β j )

+
m3∑

k=1

(2π − γk ) +
m4∑
l=1

(π − δl )

]
. (6)

The only difference is that the total sum of all angles outside
a polygon of any shape is now (m1 + m2 + m3 + m4 + 2)π ,
which makes

W = − 1
2 (m1 − m3 + 2). (7)

In comparison with Eq. (2), note the sign difference in front of
2. The total winding number is related to the number of angles
(or the extended tangent angle from a curve segment) where
the nearby liquid displays splay nematic patterns.

B. Examples

Solving the same extended Onsager model, we obtain the
numerical solutions for the density profiles when differently
shaped obstacles are immersed in an originally uniform ne-
matic field. A few produced examples are displayed in Fig. 4,
in which the values of m1, m2, m3, and m4 used in the above
defect rule are also shown.

The circular obstacle in Fig. 4(a) has no angles, hence
all m’s vanish to yield W = −1. Though the obstacles in
Figs. 4(b) and 4(c) contain a sharp angle, the nearby nematic
liquid makes a bend pattern, hence m4 = 1. The value of m4,
however, does not contribute to W in Eq. (7); this places them
at the same category as Fig. 4(a) where W = −1.

The square obstacle in Figs. 4(d) and 4(e) has four corners
but the nematic liquid around them has a bending texture.
Hence m4 = 4, which makes W = −1. The nematic defects
in Fig. 4(d), though, are line defects, which can be contrasted
with the defect points in Fig. 4(e).

Plots in Figs. 4(f) and 4(g) demonstrate that the geometric
shape alone is not the determinant factor that decides the value
of W . Both obstacles are triangles but are placed in the ne-
matic liquid in different orientations. In Fig. 4(f), the nematic
liquid around the two lower corners displays splay patterns,
hence m3 = 2; the upper corner is associated with a bend
texture, which gives m4 = 1. In total, according to Eq. (7),
W = 0, which implies no defects in the nematic liquid. In
Fig. 4(g), the right-hand-side angle is the only angle that is
associated with a splay texture, hence m3 = 1. The two on
the left are associated with bend textures that give m4 = 2. In
total, using Eq. (7), we have W = −1/2, corresponding to a
defect line in this case.

The obstacle in plot Fig. 4(h) has an interesting packman
shape. Viewed from the nematic liquid, a splay pattern can
be found near the acute angle in the center, and bend patterns
near the two reflex angles on the right. This makes m1 = 1
and m4 = 2, therefore according to Eq. (7), the total winding
number of the defects is W = −3/2; indeed, there are three
−1/2 point defects in the system.

FIG. 4. Examples of defect patterns obtained from the solution
to the extended Onsager model. The reduced density used is ρ̃ = 10
and the reduced length L̃ = 0.06, defined in Eq. (4). Colors used to
indicate the defect points and gray scale used for the density plots
have the same meanings as those in Figs. 2 and 3. The nonzero values
of m1, m2, m3 and m4, together with the total W , are specified in each
plot.

IV. TOTAL WINDING NUMBER OF A NEMATIC
STATE OF A COMPLEX GEOMETRY

A. Theory

Finally, we generalize the above defect rules, Eqs. (2)
and (7), to the case of a nematic liquid confined in a 2D
boundary and containing obstacles. Inside the nematic liquid,
there are M intruding obstacles of different shapes, forming
different defect patterns nearby. These obstacles are labeled
l = 1, ..., M. The rule for the total winding number can be
easily deduced based on Eqs. (2) and (7). The sum of the two
gives

W = −1

2

{
(n1 − n3 − 2) +

M∑
l=1

[
m(l )

1 − m(l )
3 + 2

]}
, (8)
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where m(l )
1 and m(l )

3 are the number of acute and reflex angles
associated with splay patterns of the lth obstacle, respectively.

Then, it gives a final,

W = − 1
2 (N1 − N3 + 2M − 2). (9)

Here, N1 is the total number of acute angles and N3 total
number of reflex angles, all related to splay patterns nearby.
In case of the occurrence of a splay pattern at a curved bound-
ary, an extended angle is constructed from the tangent lines
at the terminal ends of a curve. The above rule could also
be viewed as a general expression that contains both rules
Eqs. (2) and (7). For example, letting M = 0 we return to
Eq. (2). Regarding the boundaryless texture in the far field
of Sec. IV as having a hypothetical, inverted boundary that
does not contribute to the defect pattern, we return to Eq. (7)
by letting M = 1 + 1 = 2, where the additional 1 takes the
hypothetical boundary into account.

B. Examples

A number of examples from solving the extended On-
sager model are shown in Fig. 5, mixing circular, triangle,
and square boundary conditions in various forms. The total
winding numbers in these examples are compared with the
general theoretical prediction in Eq. (9).

The case of annularly confined liquid crystals is a re-
cent topic of significant interest [68,80,84] [see Figs. 5(a)
and 5(b)]. The wall boundaries enforce the liquid-crystal
molecules to align along the wall direction, forming bend
texture only. Hence N1 = N3 = 0. Taking M = 1 for a single
obstacle, according Eq. (9), W = 0. The liquid crystal texture
is then either defect-free [as in Fig. 5(a)] or has all defect
winding numbers canceling each other [as in Fig. 5(b)]. While
concentric boundaries are shown in Figs. 5(a) and 5(b), the
above rule is also true for nonconcentric cases. The boundaries
in Fig. 5(c) could be viewed as two nonconcentric circles
asymptotically in tangent contact, hence N1 = N3 = 0, M =
1, which gives W = 0. They could also be viewed as forming
a single boundary, for which we return to the theory in Sec. II,
where two splay patterns exist (n1 = 2), hence W = 0. Both
analyses give the same W .

Though the center obstacle in Fig. 5(d) is a square, the liq-
uid crystal pattern around all four corners is bend. According
to Eq. (9), as it accounts for splay-related angles only, for
M = 1 we have W = 0. The two pairs of ±1/2 defects in
Fig. 5(d) cancel each other. From the perspective of having
no splay-related angles, Fig. 5(d) is in the same class as
Figs. 5(a)–5(c).

A contrasting case is Fig. 5(e), in which each corner of
the central triangle accompanies a splay pattern, hence N3 =
3. With M = 1, the defect rule Eq. (9) gives W = 3/2. The
defect pattern in Fig. 5(e) clearly shows three +1/2 defect
points.

Move now to a case where the liquid crystal is confined
in a square and excluded from a small, concentric circle [see
Fig. 5(f)]. Here, the four splay patterns near the square cor-
ners make N1 = 4 and the central circle does not contribute
to winding number counting. As the result, with M = 1 we
have W = −2, which is the sum of the four −1/2 defects
diagonally located inside the square.

FIG. 5. Examples of defect patterns obtained from the solution
to the extended Onsager model. The reduced density used is ρ̃ = 10
and L̃ is selected in the range [0.1, 0.2]. Colors used to indicate the
defect points and gray scale used for the density plots have the same
meanings as those in Fig. 3. The nonzero values of N1, N3, and M,
together with the total W , are specified in each plot.

The geometry in Fig. 5(g) can be assessed by two different
methods. In the first one, it can be regarded as having the same
geometry as the one in Fig. 5(h), with two inner circles sepa-
rated from each other, but in this case, closely spaced. We then
have N1 = N3 = 0 and M = 2, as can be clearly identified
from Fig. 5(h). The defect rule Eq. (9) then gives W = −1.
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On the other hand, the geometry in Fig. 5(g) can also be re-
garded as having one single obstacle (M = 1) which contains
two splay-related acute angles (N1 = 2). Either method makes
W = −1, which is consistent with the properties of the six
defect points and lines in Fig. 5(g).

V. DISCUSSION

A. Comparison with the literature

In the above, the defect rules of a confined nematic liquid
are discussed in light of the solutions to the extended Onsager
model as examples. The rules are quite general, independent
of the actual theoretical or experimental approaches used in
studying confined nematic liquids, as long as the liquid crystal
molecules near a confinement wall prefer to align in parallel
with the wall surface. Table I contains an incomplete list of
some examples found in the literature and the comparison
with our defect rules.

In this list, the type of the actual liquid-crystal “molecules”
varies in a large range. The images of defect patterns were
directly observed by crossed polarizers on liquid crystal E7,
confined in square cells, which were compared to a LdG
theory [64]. The observation of defect patterns of well-
equilibrated, real macroscopic steel needles confined in square
and circular cells was also made and compared to the so-
lution of an OF theory [65,89]. Biomolecules are usually
characterized by their semiflexibility; when confined in finite
geometries, they also show nematic textures containing defect
patterns [70,71,84]. A confocal-microscopy image of the ne-
matic layer of micron-size rodlike colloid particles in a square
well has also shown a pattern that contains defects [67].

In addition, the list includes the defect patterns produced
from theoretical studies of the confined liquid-crystal systems.
A short-cut to study the orientationally ordered state is the
use of a model similar to the original OF theory [1,92]. Typi-
cally, the orientational properties are oversimplified by using
a main-axis director field only, which is a unit vector field
depending on the spatial location r; the free energy is then
proposed in terms of spatial derivatives of the vector field,
where, at this stage, some of the anticipated orientational-
ordering properties are taken into account. This has been one
of the popular approaches to describe mechanical distortions
(bend, splay, twist, etc.) of the director field in response to
the external force. For confined liquid crystals, for example,
OF theories have been used to explain some experimental
observations [65,70,89].

The LdG theory for a system composed of rodlike
molecules calls for the identification of a second-order, 3 × 3
order parameter tensor, in which elements are functions of r.
The LdG theory contains physical parameters associated with
the elastic energy, typically depending on the molecular struc-
ture. A commonly used approximation is the one-coefficient
approach, which erases the molecular identity and ignores,
e.g., molecular flexibility of a molecule. The concept of the
director field is not used in LdG originally and, instead, is
produced as a result of the model. Incorporating the Dirichlet
boundary conditions that enforces parallel alignment of the
nematic directors at the confinement boundary, this has been
a popular approach in recent studies of the liquid confinement
problem [74,75,77,78,90].

A density functional theory (DFT) focuses on the prob-
ability distribution which is an inhomogeneous function of
molecular orientation described by the unit vector u and
molecular spatial arrangement described by r. Various forms
have been used for the liquid-crystal confinement problem,
with incorporation of boundary conditions. For example, the
extended Onsager model, which truncates the free-energy
expansion beyond the second virial level, contains sufficient
orientation-orientation interaction that describes a nematic
state [63,70,79,80]; it can be regarded as a simple DFT. Built
in a more complex form, the DFTs can effectively capture
high-order virial terms and have been used recently for study-
ing smectic liquid crystals in a quasi-2D confinement [68].

In addition to experimental and theoretical approaches,
direct computer simulations of liquid crystal molecules in
confinement have been taken. Typically, a liquid of anisotrop-
ically shaped molecules are placed in a confinement box;
their positions and orientations are updated either according
to the molecular dynamics or the Monte Carlo (MC) transition
probability. Then, either snapshots or overall statistics can be
collected. For a sensible comparison, only those configura-
tions that follow the parallel homogeneous boundary patterns
are included in this table [71,81–87].

As can be summarized in Table I, a rich variety of liquid-
crystal defects have been produced either experimentally or
theoretically. Regardless of the actual experimental systems
and the theoretical approaches taken, all the defect patterns
observed can be accounted for by our defect rules.

The systems included in the Table are those that can be
classified as confined 2D or quasi-2D nematic liquid crys-
tals on a flat surface. We have not included the systems of
liquid crystals confined on curved surface (e.g., spherical
or toroidal) [30–53], for which the winding-number prop-
erty has long been established. Also not included in this
Table are systems where nanoparticles or liquid droplets are
immersed in 3D liquid crystals [2–29]; the additional dimen-
sion invalidates the basic assumptions made here for the 2D
setting.

Closely related to the type of confinement studied here are
those 2D and quasi-2D systems with homeotropic boundary
conditions [93,94]; whether or not the approach taken here can
be modified for the defect properties of these systems deserves
further theoretical consideration. Recently, experimental stud-
ies of quasi-2D smectic liquid crystals confined by boundaries
of various types of geometry have emerged. The displayed
defects destroy both orientational ordering and smectic lay-
ering, which interwind with each other [68,87]. Emergent
from a recent Monte Carlo study is the tetratic defects, which
are carefully classified according to the confining boundary
shapes in Ref. [87]. We have not included these sophisticated
systems in the Table as they are beyond the simpler nematic
assumption used for the defect rules considered here, although
their boundary conditions are of the homogeneous type.

B. Other methods of counting the winding number

The total winding number W considered in this paper is
based on the method of taking a calculation loop around the
wall boundary and summing up the winding number of every
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enclosed defects inside the loop. There are other methods of
defining the total winding number.

In Refs. [74,78], for example, for a liquid crystal confined
in a regular polygon of n sides, an addition contribution from
every polygon corner is added to W . For square confinement,
n = 4, Robinson et al. added a winding number 1/2 − 1/n =
1/4 from a splay-associated corner and −1/n = −1/4 from
a bend-associated corner to W . This makes the total winding
number to be [74]

W ′ = W + n1

(
1

2
− 1

n

)
− n2

n
= 0, (10)

where W = −(n1 − 2)/2 from Eq. (2) for n3 = 0 is inserted
to the above. The same W ′ = 0 was also used to explain the
defect points observed by Han et al. for hexagonal confine-
ment (n = 6). Now 1/2 − 1/n = 1/3 from a splay-associated
corner and −1/n = −1/6 from a bend-associated corner [78].
One could generalize this method even further for nonregular
polygon confinement, which would always give a universal
W ′ = 0.

To explain the defect patterns displayed from the MC
simulations of hard ellipses confined by square boundary
condition, Hashemi added four +1/2 winding numbers to W ,
each from a square corner. For four splay-associated corners,
this makes W ′′ = W + 4/2 = 1, which is a value quoted in
Ref. [85]. The reason for using such a W ′′ is unknown.

C. Splay or bend

The theory on the total winding number developed in
Secs. II–IV depends on the identification of the number of
acute and reflex angles associated with a splay pattern in the
nematic fluid. Those with a bend pattern are not taken into
account in the formulas. The classification of a bend pattern,
however, deserves more detailed discussion.

The formation of the splay or bend patterns does not
uniquely depend on the angle size. Although, usually the liq-
uid crystals inside a sharp acute angle display a splay pattern.
An example is given in Fig. 6(a) where the molecules are
confined in a regular pentagon. Two and three angles are as-
sociated with splay and bend textures respectively, regardless
of the fact that all angles by themselves are equivalent. Near
angles A and B, the molecules prefer to fill the near-angle
space in a splay pattern, to avoid density depletion near the
angles, which would cost unwanted local depletion entropy.
The density plot in Fig. 6(b) clearly demonstrates this fact
near these angles. Near angles C, D, and E, the bend textures
are clearly visible. The molecules near these angles need to
make a compromise to accommodate the bend texture, by
leaving the immediate area inside the angles unfilled. This
affects the length scale of a several L, which is visible in the
density plot. Although the density depletion costs the entopic
term in the local free energies, the overall pattern over the
entire fluid now has no defects, which is preferred by the
total system free energy. Hence, the formation of the splay
or bend patterns near an angle is completely determined by
the balanced consideration of the total free energy.

Depending on the coarse-graining level, the classification
of a splay- or bend-associated angle is not unique. Sometimes
two different views can be taken. The example in Fig. 6(c)

FIG. 6. Examples used for the discussion of splay and bend ne-
matic textures. Plots (a) and (b) are the nematic-director map and the
density profile, respectively, for a pentagon-confined rodlike liquid
that has no interior defect. Plot (c) shows an example of a bend
pattern in the zoom-out (coarse-grained) version, which is actually
composed of a defect point and a splay pattern in the zoom-in (fine-
grained) version. Plots (d) and (e) also demonstrate that two different
views can be taken to view the bend-associated angles in plot (d).
In plot (d), the two bend angles together with two splay-associated
angles give an overall W = 0. In plot (e), all corners are associated
with splay patterns, which give W = −1. Plots (f) and (g) are the
nematic-director map of a nematic fluid confined in a shield-shape
boundary, which have different degrees of resolution. In the fine-
grained picture in panel (f), a defect is visible at the bottom and in
the coarse-grained picture in panel (g), such a defect is invisible.

shows a bend pattern at the acute angle at a scale much
greater than the molecular length, hence the angle is not
accounted for in the defect formula. A second view gives a
different accounting system, after observing at a molecular
scale that the acute angle is actually associated with a splay
pattern, which connects with a −1/2 defect point nearby.
Using Eq. (2), an additional −1/2 is produced by adding
an extra-1 to n1 because of the splay-associated acute angle,
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but this additional −1/2 is completely used to describe the
−1/2 defect point close to the angle. Therefore, there are two
ways of assessing this angle: either ignoring the defect in the
zoom-out version by regarding this angle as a bend-textured
angle, or in a zoom-in version by accounting for the defect and
the splay-associated angle. Both give the correct total winding
number counting.

Hence, a bend-associated acute angle can always be treated
as a splay-associated acute angle with a hidden −1/2 defect
point. If one takes this view, then n1 in Eq. (2) could be
regarded as the total number of acute angles of an confine-
ment, and one simply has W = −n1/2 + 1. On this basis, a
seemingly bend-associated angle would need to be augmented
by an invisible −1/2 defect point in using the above. It is
this view that was taken in Sec. II(D) of Ref. [79]. For liquid
crystal confined by a square boundary, examples in Figs. 6(d)
and 6(e) further demonstrate the concept, which gives W =
0 (with two bend-associated angles) and W = −1 (with all
splay-associated angles). Indeed, the confocal image of actin
filaments in square confinement observed in Ref. [69] displays
the texture similar to Fig. 6(d).

The interplay between splay and bend patterns can also
manifest in another form. The example in Fig. 6(f) clearly has
two splay-associated angles A and B hence n1 = 2. Again,
two different views can be taken for consideration of the
defect near the bottom, curved boundary. The first view is to
ignore the +1/2 defect point near the bottom curve, shown
in Fig. 6(f) by the green circle. The entire pattern then looks
like Fig. 6(g). According to the theory presented in Sec. II,
now the curved segment has an extended tangent angle that is
associated with a splay pattern, hence it adds to n1 an addi-
tional 1: n1 = 2 + 1 = 3. The formula in Eq. (2) then gives
W = −1/2, which is fully consistent with the only defect
point shown in Fig. 6(g). The second view gives a different
accounting system, as illustrated in Fig. 6(f). The nematic
fluid near the bottom curve has no singularity along the curved
boundary, which produces an overall W = 0 for the interior
defects, according to Eq. (2). Indeed, the sum of the winding
number of the +1/2 defect (green circle in the figure) and the
−1/2 defect (blue circle) gives W = 0. Both views are con-
sistent in the winding number analysis. The fact that a +1/2
defect very close to a smooth bend curve can be regarded as
a splay-associated, extended angle produces a simple method
to account for the winding number: one takes all curves as
bend curves and then associates a hidden +1/2 defect with a
splay defect at the curved boundary. This method, the same
as the second view presented for the example, was taken in
Sec. II(D) of Ref. [79].

D. Extreme confinement

When the ratio between the molecular length and typical
length-scale of confinement boundaries, L/a, exceeds a criti-
cal value, packing rodlike molecules in a finite confinement
space dominates over the need to maximize the orienta-
tional entropy. The characteristic property of these extreme
confinement systems is that the nematic directors along the
confinement boundary no longer prefer parallel alignment.
This was already observed in earlier granular-particle experi-
ments [65,89], recent fd-virus packing experiments [71,84],

and direct images of micron-sized colloidal particles [68].
One the theoretical side, Monte Carlo simulations [71,84] and
the numerical solution to the extended Onsager model [80]
have both demonstrated that these extremely confined liquid
crystals are thermodynamically stable phases. Furthermore,
concrete evidences [65], in particular a study of the free en-
ergy [80], all indicate that a phase transition exists between a
usually confined state and an extreme state. It is unclear how
the LdG theory, which typically requires a Dirichlet boundary
condition, can be applied to model an extreme state.

The destruction of the homogeneous boundary condition
precludes the basic assumption used in setting up the defect
rules. The total winding number formulas developed in this
work are based on the assumption of a continuous, space-
filling nematic fluid, which is not applicable to the extreme
nematic states.

VI. SUMMARY

Summing up all individual winding numbers of defect
points and lines in a two-dimensional, confined nematic liquid
crystal, how does it relate to the confining geometry formed
by angles and curved segments? In this study, we deduced
a general defect rule, which is applicable to a nematic liq-
uid crystal having homogeneous boundary conditions. As we
demonstrated above, the determinant factor is the number of
splay-related angles and curved segments, whereas the bend-
associated angles and curved segments do not contribute to
the final result.

The general defect rule, Eq. (9), which includes the spe-
cial cases in Eqs. (2) and (7), was then further validated by
a comparison with results produced from experimental and
theoretical studies in Sec. V A. While most of these studies
concern systems composed of circular and polygon shapes,
additional confinement types were also supplemented by con-
sidering the numerical solutions to the extended Onsager
model, in Sects II, III, and IV.

The main focus of the current study is specifically on 2D
liquid crystals confined by a closed line boundary. It fits into
the much greater scope of the general topic of liquid crystals
in confinement. Within the general topic, a well-established
theorem is for liquid crystals confined on a curved and closed
surface, such as on the spherical surface or toroidal surface,
for which the total winding number formed by the defects
in the liquid-crystal director lines is dictated by the Euler
characteristics of the surface. Also within the general topic
but for the specific confinement type of liquid crystals, on
a flat surface and enclosed by a line boundary, the theory
established in this paper is complementary to this theorem and
consistently explains the variety of defect patterns observed in
the recent literature.
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APPENDIX A: EXTENDED ONSAGER MODEL

Assume that the distribution density function of finding
the center of mass of rodlike molecules at a spatial position
specified by the vector r with the condition that the rods point
at the direction specified by the unit vector u is ρc(r, u). It is
normalized to n, the number of confined rodlike molecules in
an area A,

∫
dr

∫
duρc(r, u) = n. Accurate to the second-virial

term [95], the free energy of the system can be written in a
truncated Mayer expansion

βF =
∫

ρc(r, u) ln[L2ρc(r, u)]drdu

+ 1

2

∫
ρc(r, u)w(r, u; r′, u′)ρc(r′, u′) drdudr′du′

+
∫

ρc(r, u)Vc(r, u)drdu, (A1)

where β = 1/kBT , with kB being the Boltzmann constant and
T the temperature. The first term represents the entropy of a
spatially inhomogeneous and orientationally ordered fluid of
rodlike molecules, where L2 is included for dimensional con-
venience. The second term takes into account the interaction
between two rodlike molecules having the coordinates (r, u)
and (r′, u′), where the Mayer function −w = exp(−βv) − 1.
The interaction potential energy v between the two rigid
molecules takes a value v = ∞ when the configuration of two
rods overlap; v = 0 otherwise. The vector u is represented
by the variables θ , the angle a rodlike molecule makes with
respect to the horizontal axis.

The third term describes the interaction between rodlike
molecules with an external potential energy. In the current
application, Vc = 0 if the rodlike molecule has no overlap
with a boundary wall, and Vc = ∞ if it does. Unlike the wall-
potential for a small molecule where the orientation is not a
concern, the rod-wall interaction depends on the orientation
u. In the numerical calculation, we used Vc = 103 instead of
∞, which effectively produces ρc < 0.005 when part of a rod
overlaps with the wall. This masking technique is computa-
tionally efficient and requires no explicit specification of the
boundary condition of ρc(r, u). The expense, of course, is the
need to careful specify Vc(r, u) for a particular confinement
shape.

In a much simpler mathematical problem, Onsager con-
sidered a trial-function solution of the model for a spatially
homogeneous system (with Vc = 0) where ρc(r, u) is a func-
tion of u only to demonstrate the existence of the nematic
phase [88]. In 2D, one can take a bifurcation analysis and
show that the second-order isotropic-nematic phase transition
takes place when the 2D particle density ρ0 = n/A reaches a
critical ρ∗

0 L2 = 3π/2 [96–98]. Most of ρ̃ values used here are
well-above this critical density.

The reduced free energy in Eq. (A1) is the extended ver-
sion of the Onsager model and contains r-dependence. As a

functional of the function ρc(r, u), it needs to be minimized,
by solving the stationary condition,

δF

δρc(r, u)
= 0. (A2)

The actual calculation is conducted by mapping the current
problem to the equivalent self-consistent field theory of a
wormlike-chain system, where the chain rigidity is taken to
be infinity [63,99]. The current numerical scheme used in
solving the Green’s formalism of the problem is identical to
the procedure documented in an Appendix of Ref. [79], with
the addition of an external energy as the masking potential to
mimic the boundary condition.

APPENDIX B: VISUALIZATION OF THE STRUCTURES

In the text, a number of physical properties are analyzed
and displayed, calculated from the distribution function of the
center of mass of a rodlike molecule, ρc(r, θ ), obtained from
minimizing the free energy. One can deduce the distribution
density function for segments on the rodlike molecules, re-
gardless of the position on the rod, by defining

f (r, u) = 1

ρ0

∫ 1

0
ρc

[
r − uL

(
s − 1

2

)
, u

]
ds, (B1)

where the distribution of the segments at the path coordinate
s is traced back to the rod center. The integrant represents the
probability density of finding the segment labeled by s on the
rodlike molecule to appear at a location with the coordinate r.
With this definition, f (r, u) is dimensionless.

A number of properties are calculated by using f (r, u).
The distribution density function for rod segments is calcu-
lated from

φ(r) =
∫ 2π

0
f (r, θ )dθ, (B2)

which is plotted in Figs. 3, 4, 5, and 6(b). The 2 × 2 Q-tensor,

Q(r) = 1

2

[
S(r) T (r)
T (r) −S(r)

]
, (B3)

is calculated from

S(r) =
∫ 2π

0 dθ cos(2θ ) f (r, θ )

φ(r)
, (B4)

T (r) =
∫ 2π

0 dθ sin(2θ ) f (r, θ )

φ(r)
. (B5)

Both S and T characterize the orientational ordering of the
rodlike molecules by themselves and can be used directly.
The scalar orientational order parameter is determined by the
positive eigenvalue of the Q-tensor,


(r) =
√

S2(r) + T 2(r), (B6)

which is plotted in Figs. 3–5. Particularly, the locations where

 → 0 are considered as the defect points.
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Babič, N. Osterman, and I. Muševič, Phys. Rev. E 76, 051406
(2007).

[6] U. Ognysta, A. Nych, V. Nazarenko, I. Muševič, M. Škarabot,
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(2008).

[9] M. Ravnik and S. Žumer, Soft Matter 5, 4520 (2009).
[10] C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, Science 326,

1083 (2009).
[11] C. P. Lapointe, S. Hopkins, T. G. Mason, and I. I. Smalyukh,

Phys. Rev. Lett. 105, 178301 (2010).
[12] U. M. Ognysta, A. B. Nych, V. A. Uzunova, V. M.

Pergamenschik, V. G. Nazarenko, M. Škarabot, and I. Muševič,
Phys. Rev. E 83, 041709 (2011).

[13] J. Dontabhaktuni, M. Ravnik, and S. Žumer, Soft Matter 8, 1657
(2012).

[14] B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner,
T. C. Lubensky, and I. I. Smalyukh, Nature (London) 493, 200
(2013).

[15] U. Tkalec and I. Muševič, Soft Matter 9, 8140 (2013).
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