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Active Brownian motion with memory delay induced by a viscoelastic medium
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By now active Brownian motion is a well-established model to describe the motion of mesoscopic self-
propelled particles in a Newtonian fluid. On the basis of the generalized Langevin equation, we present an
analytic framework for active Brownian motion with memory delay assuming time-dependent friction kernels for
both translational and orientational degrees of freedom to account for the time-delayed response of a viscoelastic
medium. Analytical results are obtained for the orientational correlation function, mean displacement, and
mean-square displacement which we evaluate in particular for a Maxwell fluid characterized by a kernel which
decays exponentially in time. Further, we identify a memory-induced delay between the effective self-propulsion
force and the particle orientation which we quantify in terms of a special dynamical correlation function. In
principle, our predictions can be verified for an active colloidal particle in various viscoelastic environments
such as a polymer solution.
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I. INTRODUCTION

The physics of active matter is a booming research area
exploring nonequilibrium phenomena of self-propelled parti-
cles [1,2]. Apart from viscous damping in a fluid medium,
fluctuations become important if the particle size is on the
mesoscopic colloidal scale. A by now well-established model
to describe the persistent random dynamics of a single self-
propelled particle is so-called active Brownian motion [1–7].
Here the translational coordinate of the particle is coupled to
its self-propulsion direction, which is the orientational degree
of freedom establishing basically a persistent random walk.
Active Brownian motion assumes an instantaneous friction
which is a well-justified assumption for a Newtonian back-
ground fluid, or in other terms, there is no memory effect
of the medium. However, in many situations, self-propelled
or swimming particles are exposed to environments different
from a Newtonian fluid [8–19]. Important examples for non-
Newtonian backgrounds offered to self-propelled particles are
polymer solutions [20–24] and crystalline [25–27] or liquid
crystalline [28–36] environments or even biologically relevant
backgrounds such as mucus [37,38], dense tissues, [39] or soil
[40].

In this paper we use an extended model for active Brownian
motion in a viscoelastic medium. In doing so we assume
memory effects of the solvent via a friction kernel for both
translational and orientational degrees of freedom besides
fluctuations. In fact, there are different models for active
Brownian motion with memory effects induced by the sur-
rounding medium [41–53] and for passive Brownian motion
in a viscoelastic medium [54–59]. Here we include activity
explicitly. In contrast to Ref. [46] where an active Ornstein-
Uhlenbeck approach was chosen and to Ref. [52] where
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negative friction was used to achieve activity, we choose
our model to recover the established active Brownian motion
case for a Newtonian medium as a clear reference state. In
particular, the model used here is a special case of that re-
cently proposed by Narinder et al. [45], which contains an
additional term of translation-rotation coupling between the
swim force and the swim torque. We consider here the spe-
cial case of decoupled effective swim force and swim torque
with the benefit that we can solve the stochastic Langevin
equations analytically. We evaluate the solution in particular
for a Maxwell fluid which is characterized by a kernel that
decays exponentially in time and obtain analytical results for
the mean displacement, the mean-square displacements, and
the orientational correlation function. Further we define a
memory delay function which measures the memory-induced
delay between the effective driving force and particle orienta-
tion. In principle, our predictions can be verified for an active
colloidal particle in various viscoelastic environments such as
a polymer solution.

The paper is organized as follows. The model is introduced
and discussed in Sec. II. In Sec. III general results are listed.
The solution is evaluated further for a generalized Maxwell
(or Jeffrey) kernel with a memory exponentially decaying in
time in Sec. IV. We summarize in Sec. V.

II. MODEL

In our model we consider a colloidal self-propelled particle
in two spatial dimensions moving at a constant speed v0 along
its orientation n̂(t ) through a fluid with memory properties.
We describe the state of the particle by its position r(t ) and
its angle of orientation φ(t ), which denotes the angle between
the orientation vector n̂(t ) = (cos φ, sin φ) and the positive x
axis, at the corresponding time t . The time-delayed response
of the fluid is incorporated in the model in terms of a trans-
lational memory kernel �T (t ) and a rotational memory kernel
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�R(t ) which directly couple to the translation and rotation of
the particle, respectively. To further model circle swimming,
we also include an effective swim torque which acts on the
particle and leads to a circling frequency ω0. On the basis of
the generalized Langevin equation, the overdamped Brownian
dynamics of the particle is described by the coupled non-
Markovian Langevin equations∫ t

−∞
�T (t − t ′)[ṙ(t ′) − v0n̂(t ′)]dt ′ = ξ(t ), (1a)

∫ t

−∞
�R(t − t ′)[φ̇(t ′) − ω0]dt ′ = η(t ), (1b)

where ξ(t ) and η(t ) denote zero-mean Gaussian colored noise

〈ξ(t )〉 = 0, 〈ξ(t ) ⊗ ξ(t ′)〉 = IkBT γT (t − t ′), (2a)

〈η(t )〉 = 0, 〈η(t )η(t ′)〉 = kBT γR(t − t ′), (2b)

with the translational noise correlator γT (t ) and the rota-
tional noise correlator γR(t ). Here ⊗ is the dyadic product,
I is the identity matrix, kBT is the thermal energy, and 〈· · · 〉
denotes the noise average.

In discussing Eqs. (1a) and (1b), we first suppose we are at
zero temperature T = 0 (no noise). In this case, the velocity
is identical to the active propulsion and the particle performs
either linear or circular swimming motion. Now we introduce
fluctuations or noise in the system that kick the particle out of
that particular situation. Then there are two effects: first tem-
porally correlated noise which perturbs the swimming motion
and second dissipation incorporated in the memory kernels
which lead to a relaxation back to the steady state.

For reasons of generality, we first do not imply any relation
between the dissipation and the fluctuations in the system.
However, in the case of internal noise, the memory kernels
are related to the correlation function of the noise via the sec-
ond fluctuation-dissipation theorem, i.e., �T (t ) = γT (t ) and
�R(t ) = γR(t ) [60]. On the other hand, when fluctuation and
dissipation come from different sources, the memory kernel
and the noise correlator are independent [61,62]. This was
explicitly realized in a recent experiment on magnetic active
dumbbells where the rotational diffusivity was artificially en-
hanced with magnetic fields and therefore decoupled from the
thermal bath [63].

The memory kernels �T (t ) and �R(t ) describe the vis-
coelastic response of the fluid and can be determined
experimentally. Probably most commonly used are microrhe-
ological measurements on passive probe particles to extract
the functional form of the memory kernel by tracking the
particles mean-square displacement [64,65]. Alternatively, the
memory kernel can be approximately linked to the shear re-
laxation modulus of the medium which can be measured with
oscillatory shear experiments [66]. Further, we point out that
the stochastic process given by Eqs. (1a) and (1b) is defined
as stationary by setting the lower limit of the integral equal to
−∞ (see Ref. [54] for a detailed discussion on the choice of
the lower limit in the memory term).

In Eq. (1a), the effective self-propulsion force is of the
form Fv (t ) = v0

∫ t
−∞ �T (t − t ′)n̂(t ′)dt ′. This choice is not

unique but could in principle vary for different systems (for
instance, externally actuated or mesoscopic swimmers). In our

model, we describe the force-free propulsion of a colloidal
microswimmer which sets the fluid around itself in motion
and translates in the resulting flow field. As a consequence, the
propulsion force is linked to the viscoelastic response of the
fluid and the internal active force Fv (t ) lags generally behind
the orientation n̂(t ) [45].

Importantly, we remark that Eqs. (1a) and (1b) mark a
special case of the model recently proposed by Narinder et al.
[45] which contains an additional torque proportional to the
swim force, proportional to n̂(t ) × Fv (t ), explaining an in-
crease of rotational diffusion [47] and the onset of circular
trajectories [45] for self-propelled Janus particles in a vis-
coelastic fluid. Here we decouple the swim torque from the
swim force with the benefit that we can solve the stochastic
Langevin equations analytically.

Finally, the special case of active Brownian motion [67–69]
is recovered for instantaneous friction and zero-mean Gaus-
sian white noise

�T (t ) = γT (t ) = 2γtδ(t ), (3a)

�R(t ) = γR(t ) = 2γrδ(t ), (3b)

where γt and γr are translational and rotational friction coef-
ficients, respectively.

III. GENERAL RESULTS

In this section we present analytic results for the arbi-
trary memory kernel and noise correlator. By calculating the
Fourier transform of Eqs. (1a) and (1b), a solution for the
position r(t ) and the orientation angle φ(t ) can be derived as

r(t ) = r(t0) + v0

∫ t

t0

n̂(t ′)dt ′

+
∫ ∞

−∞
[χT (t − t ′) − χT (t0 − t ′)]ξ(t ′)dt ′, (4a)

φ(t ) = φ(t0) + ω0(t − t0)

+
∫ ∞

−∞
[χR(t − t ′) − χR(t0 − t ′)]η(t ′)dt ′, (4b)

with the inverse Fourier transform of

χ̃T (ω) = [iω�̃+
T (ω)]−1, �+

T (t ) = �T (t )	(t ), (5a)

χ̃R(ω) = [iω�̃+
R (ω)]−1, �+

R (t ) = �R(t )	(t ), (5b)

where we used the convention f̃ (ω) = ∫ ∞
−∞ f (t )e−iωt dt for

the Fourier transform of a function f (t ) and, multiplied with
the Heaviside function f (t )	(t ), f̃ +(ω) yields the one-sided
Fourier transform

∫ ∞
0 f (t )e−iωt dt .

The deterministic solution of Eqs. (1) (at zero temperature
T = 0) is independent of the specific form of the memory
kernel and the particle moves on either linear or circular
trajectories

r(t ) =
{

r(0) + v0t n̂(0), ω0 = 0
r(0) + v0

ω0
[n̂⊥(0) − n̂⊥(t )], ω0 �= 0,

(6)

with n̂⊥(t ) = ( − sin[φ(0) + ω0t], cos[φ(0) + ω0t])T . In the
presence of noise, the motion of the particle can be charac-
terized in terms of the low-order moments of the stochastic
process. Although Eq. (1b) is nonlocal in time (and thus
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non-Markovian), the transitional probability for an angular
displacements 
φ after a time t is still Gaussian and specified
by the mean μ(t ) = 〈
φ(t )〉 and the variance of the angular
displacement σ (t ) = 〈
φ2(t )〉 − 〈
φ(t )〉2, which are given
by

μ(t ) = ω0t, (7)

σ (t ) = kBT

π

∫ ∞

−∞
(1 − eiωt )γ̃R(ω)χ̃R(ω)χ̃R(−ω)dω. (8)

From that the orientation correlation function C(t ) = 〈n̂(t ) ·
n̂(0)〉 can be readily derived and follows from

〈n̂(t2) · n̂(t1)〉 = cos[μ(|t2 − t1|)]e−σ (|t2−t1|)/2. (9)

Due to the stationarity of the underlying stochastic process,
the two-time orientational correlation function only depends
on the time difference.

The general result for the mean displacement 〈
r(t )〉 =
〈r(t ) − r(0)〉 is

〈
r(t )〉 = v0

∫ t

0
〈n̂(t ′)|n̂(0)〉dt ′, (10)

where the conditional average

〈n̂(t2)|n̂(t1)〉 = P̂[e−σ (t2−t1 )/2+i[φ(t1 )+μ(t2−t1 )]] (11)

is the mean orientation at time t2 under the condition that the
particle had the angle φ(t1) at previous time t1 and P̂[z] =
(Re(z), Im(z))T transforms a complex number z into its two-
dimensional vector. We remark that the mean displacement is
in general independent of the specific choice of the transla-
tional memory kernel �T (t ) and only involves the coupling to
the rotational dynamics of the particle.

Next the mean-square displacement is given by

〈
r2(t )〉 = v2
0

∫ t

0

∫ t

0
〈n̂(t ′) · n̂(t ′′)〉dt ′′dt ′

+ 2kBT

π

∫ ∞

−∞
(1 − eiωt )γ̃T (ω)χ̃T (ω)χ̃T (−ω)dω.

(12)

The first term describes the active contribution to mean-square
displacement, while the second term contains information on
the passive translation caused by the noise [via γT (t )] and
influenced by dissipation [via �T (t )].

The effective self-propulsion force Fv (t ) does not follow
instantaneously the orientation of the particle. It rather con-
tains integrated information of past orientations and therefore
lags behind n̂(t ). To quantify the delay between the effective
self-propulsion force and the particle orientation, we define
the memory delay function

d (t ) = 〈Fv (t ) · n̂(0)〉 − 〈Fv (0) · n̂(t )〉 (13)

as the average difference between the projection of the active
force Fv (t ) on the initial orientation n̂(0) and the projection
of the orientation n̂(t ) and the initial active force Fv (0). In
Newtonian fluids, the effective self-propulsion force is pro-
portional and instantaneous in the orientation, and thus the
delay function equates to zero for all time. In a similar man-
ner, the inertial delay function was previously defined for

macroscopic active particles which measured the mismatch
between the particle velocity ṙ(t ) and the particle orientation
n̂(t ) [5,70,71]. In our overdamped system, this inertial delay
function is always zero since the average velocity is aligned
with the orientation. Conversely, for inertial particles subject
to instantaneous friction, the memory delay function vanishes.

In the following section we explicitly evaluate the in-
troduced quantities for an exponential memory kernel and
discuss the effect of memory on the dynamics of active Brow-
nian particles.

IV. MAXWELL KERNEL

Arguably, the most prominently used memory kernel is
given by the generalized Maxwell model (also know as Jef-
frey’s model) which adds additional exponential memory to
the instantaneous friction [72]. For simplicity, we assume
internal noise such that the memory kernels are related to the
correlation functions of the noise via the second fluctuation-
dissipation theorem. Further, the same temporal dependence
is adopted for the translation and the rotation, respectively,

�T (t ) = γT (t ) = γt

(
2δ(t ) + 


τ
e−|t |/τ

)
, (14a)

�R(t ) = γR(t ) = γr

(
2δ(t ) + 


τ
e−|t |/τ

)
. (14b)

Here γt and γr denote reference translational and rotational
friction coefficients, respectively. The first term in Eqs. (14a)
and (14b) accounts for the instantaneous relaxation, whereas
the second term introduces the time-delayed response of the
viscoelastic fluid with the relaxation time τ and the memory
strength 
. We remark that for 
 = 0, τ → 0, or τ → ∞
the translation and rotational memory kernels become solely
instantaneous and we recover the Markovian (no-memory)
active Brownian particle model [67–69].

Numerous rheological measurements have shown this
Maxwell-like behavior in fluids including polymer solutions
[73,74], micelles [75,76], and cytoplasm [77,78]. From the
theoretical side, there exist several works which considered
the effects of exponential memory on the Brownian motion of
passive [56,57] and active colloids [44–46,52].

A. Orientation correlation function

The dynamical orientation correlation function C(t ) =
〈n̂(t ) · n̂(0)〉 has a double-exponential structure

C(t ) = cos(ω0t )

× exp

[
− Dr

1 + 


(
t + τ


1 + 

(1 − e−(1+
)t/τ )

)]
,

(15)

with the short-time rotational diffusion coefficient Dr =
kBT/γr . Equation (15) simplifies to a single-exponential de-
cay for either short relaxation times τ or long ones

C(t ) ∼
{

cos(ω0t ) e−Drt , Drτ � 1 + 


cos(ω0t ) e−[Dr/(1+
)]t , Drτ � 1 + 
.
(16)

These Markovian (no-memory) extreme cases are shown in
orange (τ → 0) and black (τ → ∞) in Fig. 1, where we plot-
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FIG. 1. Orientation correlation 〈n̂(t ) · n̂(0)〉 as a function of Drt
for different reduced relaxation times Drτ , obtained with ω0 = 0
and (a) 
 = 10 and (b) 
 = 100. For Drτ → 0 and Drτ → ∞, the
orientation decorrelates single exponentially. For in-between values,
we find partial decorrelations at separated timescales.

ted the orientation correlation for sufficiently high memory
strength 
 and various values of Drτ . We note that memory
effects only occur when

Drτ 
 1 + 
. (17)

In this case, we first see a partial decorrelation at time 1/Dr

and a final decorrelation at a later time (1 + 
)/Dr (see
Fig. 1).

A double-exponential structure for the orientation correla-
tion was previously reported by Ghosch et al. [44] and for
inertial active particles [70,79]. Compared to these systems,
we find different behavior for short times where the exponent
is linear in time

C(t ) = cos(ω0t ) e−Dr [t−(
/2τ )t2+O(t3 )]. (18)

One characterizing quantity of active particles is the per-
sistence time τp = ∫ ∞

0 C(t )dt , which is the average time the
particle holds its orientation. Here the persistence time is
evaluated as

τp = τ

1 + 

Re[S−�eS�(�, 0, S)], (19)

with

S = −
τDr

(1 + 
)2
, � = τ

1 + 


( Dr

1 + 

− iω0

)
, (20)

and the incomplete Gamma function �(x, z0, z1) =∫ z1

z0
t x−1e−t dt . Obvious from Eq. (16), the persistence time

simplifies for short or long relaxation times τ to

τp ∼
{ Dr

D2
r +ω2

0
, Drτ � 1 + 


Dr (1+
)
D2

r +ω2
0 (1+
)2 , Drτ � 1 + 
,

(21)

representing the known result for active Brownian particles in
simple Newtonian fluids [68,69,80].

B. Mean displacement

Next we address the mean displacement 〈
r(t )〉 for a given
initial orientation φ(0) at t = 0,

〈
r(t )〉 = v0τ

1 + 

P̂[S−�eS�(�, Se−(1+
)t/τ , S)eiφ(0)], (22)

with the operator P̂[z] = (Re(z), Im(z))T . The mean displace-
ment increases linearly for short times 〈
r(t )〉 = v0t n̂(0) +

FIG. 2. Mean displacement 〈
r(t )〉 in the xy plane for 
 = 10,
ω0 = Dr , and several values of Drτ . The initial orientation is set
along the x axis and the starting point at t = 0 is denoted by a black
dot. For Drτ → 0 and Drτ → ∞, the trajectory displays a perfect
spira mirabilis.

O(t2) and saturates to a finite persistence length

lim
t→∞〈
r(t )〉 = v0τ

1 + 

P̂[S−�eS�(�, 0, S)eiφ0 ]. (23)

We again mention that the mean trajectory is independent of
the translational memory kernel noise [see Eq. (14a)] and only
involves the coupling to the rotational dynamics of the particle
[see Eq. (10)].

In Fig. 2 we show the mean trajectory of a circle swimmer
(ω0 �= 0) for different values of Drτ . For very long relaxation
times, the particle decorrelates before additional memory can
prolong the persistence. Consequently, the mean trajectory
displays a spira mirabilis known for active particles in Newto-
nian fluids (see the black curve in Fig. 2). When the relaxation
time τ becomes comparable to (1 + 
)/Dr , the rotational
friction gets enhanced at later times and circular motion gets
more stable against noise perturbation (see the purple and blue
curves in Fig. 2). Upon further decreasing the relaxation time
(see the green and red curves in Fig. 2) the mean displace-
ment approaches again the form of a spira mirabilis with a
decreased rotational diffusion coefficient Dr/(1 + 
) (see the
orange curve in Fig. 2).

C. Mean-square displacement

The mean-square displacement can be calculated as

〈
r2(t )〉 = 4DLt + 4
τDt

(1 + 
)2
(1 − e−(1+
)t/τ )

− 2v2
0τ

2

(1 + 
)2
[F (0) − F (t )], (24)

with the long-time diffusion coefficient

DL = Dt

1 + 

+ v2

0 τ

2(1 + 
)
Re[S−�eS�(�, 0, S)] (25)

and

F (t ) = Re

{
eS

�2 2F2

⎡
⎣ �, �

; −Se−(1+
)t/τ

� + 1,� + 1

⎤
⎦

× e−(1+
)�t/τ

}
, (26)
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FIG. 3. Mean-square displacement 〈
r2(t )〉 and the correspond-
ing dynamic exponent α(t ) as a function of time t for several values
of Drτ , obtained with ω0 = 0 and (a) and (c) 
 = 10 and (b) and
(d) 
 = 100.

where qFp represents the generalized hypergeometric func-
tion. In the passive case (v0 = 0), the particle starts in a
diffusive regime 〈
r2(t )〉 = 4Dtt + O(t2), characterized by
the short-time translational diffusion coefficient Dt = kBT/γt ,
and then enters a subdiffusive regime which leads to long-time
diffusion with a reduced translational diffusivity Dt/(1 + 
).
Considering the active contribution (Dt = 0), the particle
moves ballistic for short times ∼v2

0t2 and then undergoes a
superdiffusive (or subballistic) transition towards a long-time
diffusive regime proportional to the speed squared and the
persistence time ∼v2

0τpt/2. In Fig. 3 we plot the active con-
tribution of the mean-square displacement (Dt = 0) for two
values of the memory strength 
 over the range of relevant
values of Drτ and also show the corresponding dynamic ex-
ponent given by the logarithmic derivative

α(t ) = d log[〈
r2(t )〉]
d log(t )

. (27)

The dynamic exponent α(t ) is able to resolve the relevant
timescales of the system more clearly: If, for example, the

mean-square displacement follows a power law 〈
r2(t )〉 ∼
tα , α(t ) is equal to the power-law exponent α. For the Marko-
vian extreme cases (τ → 0 and τ → ∞), we find a clean
transition from a ballistic regime (α = 2) to a diffusive one
(α = 1). For in-between values of Drτ , the dynamic exponent
α(t ) starts decreasing when the first decorrelation happens at
times t � 1/Dr . If the memory strength 
 is sufficiently high
[see Fig. 3(d)], the dynamic exponent is increasing again at
times t � τ/(1 + 
). This event coincides with the persistent
plateau in the orientation correlation function [see Fig. 1(d)].
Finally, the particle transitions to a diffusive regime (α = 1)
for times t � (1 + 
)/Dr .

The long-time diffusion coefficient DL [see Eq. (25)] de-
pends nontrivially on the parameter of the model. In Fig. 4
we show the long-time diffusion coefficient as a function
of the memory strength 
 and various values of Drτ . For
a vanishing circling frequency (ω0 = 0), the long-time dif-
fusion coefficient is monotonically increasing as a function
of the memory strength 
 and monotonically decreasing as
a function of the relaxation time τ [see Fig. 4(a)]. How-
ever, for a finite relaxation time, the asymptotic behavior of
the long-time diffusion coefficient for high 
 is given by
DL ∼ v2

0
/2Dr . For low circling frequency [see Fig. 4(b)],
the long-time diffusion behaves nonmonotonically in 
. The
optimal memory 
opt is increasing as a function of relaxation
time τ , while the corresponding maximal value DL(
opt) is
decreasing. At higher circling frequency [see Fig. 4(c)], the
long-time diffusion decreases immediately as a function of 
,
DL ∼ v2

0Dr/2
ω2
0.

D. Delay function

In Eq. (13) we defined the memory delay function d (t ) to
quantify the memory-induced mismatch between the effective
self-propulsion force Fv (t ) and the particle orientation n̂(t ).
Evaluated for the Maxwell kernel, we find

d (t ) = γtv0

eS

1 + 

Re{S−�+ [�(�+, 0, S)e−t/τ

− �(�+, 0, Se−(1+
)t/τ )et/τ ]

+ S−�−�(�−, Se−(1+
)t/τ , S)e−t/τ }, (28)

FIG. 4. Long-time diffusion coefficient DL as a function of the memory strength 
 for several values of Drτ and different circling
frequencies (a) ω0 = 0, (b) ω0 = 0.1Dr , and (c) ω0 = Dr . The translational diffusion coefficient was set to zero, Dt = 0.
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FIG. 5. (a) Memory delay function d (t ) as a function of Drt
for different reduced relaxation times Drτ , 
 = 10, and ω0 = 0.
(b) Total delay dtot weighted with 
2 as a function of the reduced
relaxation time Drτ for different values of the memory strength 


and ω0 = 0.

with

�± = τ

1 + 


(
Dr

1 + 

± 1

τ
− iω0

)
. (29)

The memory delay function is constructed such that it
vanishes when the translational memory function responds
instantaneously [meaning �T (t ) = 2γtδ(t )]. Thus, consistent
with previous considerations, d (t ) vanishes for the Markovian
limits of the model 
 = 0, τ → 0, and τ → ∞. In Fig. 5(a)
we show the delay function d (t ) as a function of time for in-
between values of Drτ . The delay function is always positive
for a linear swimmer (ω0 = 0), starts at zero, has a positive
peak d (topt) after a typical delay time topt, and decorrelates to
zero for long times. Both the peak value and the typical delay
time depend nonmonotonically on the relaxation time τ and
show a single maximum around Drτ 
 1 + 
 [recalling the
condition for memory effects (17)].

We define the total delay of the particle as dtot =∫ ∞
0 d (t )dt , which yields

dtot = γtv0τ
2
eS

1 + 

Re[S−�+�(�+, 0, S)] (30)

and is shown in Fig. 5(b) as a function of the reduced re-
laxation time Drτ . Similar to the peak value d (topt), the total
delay becomes maximal around Drτ 
 1 + 
. For represen-
tative reasons, we decided to weight the total memory by
the memory strength square, i.e., dtot/γtv0


2 in Fig. 5(b). In
that way, we find that dtot ∼ 
2 around the relevant values
of Drτ [see Eq. (17)]. Although d (t ) → 0 for τ → ∞, the

total memory saturates to the nonzero value dtot ∼ 2
γtv0 for
τ → ∞ (the limit and integral do not commute in this case).

V. CONCLUSION

In this work we studied a self-propelled colloid in a vis-
coelastic medium. The particle itself was modeled in terms of
non-Markovian Langevin equations which included memory
effects in the particle friction to account for the viscoelastic
background. Analytical solutions were presented. This model
may serve as a benchmark and simple framework to evaluate
and interpret experimental or simulation data for particle tra-
jectories obtained in realistic and more complex environments
[50]. In particular, the nature of the memory kernel can in prin-
ciple be determined by fitting the experimental correlations to
the solutions of our model corresponding to microrheology
[81–85].

We evaluated our general results explicitly for the Maxwell
kernel, which adds exponentially decaying memory to the
standard instantaneous Stokes friction. In particular, we found
a double-exponential structure for the orientational correlation
function exhibiting partial decorrelation at short times and
the existence of persistent plateaus for intermediate times. In
order for memory effects to occur, we identified a relation
between the short-time rotational diffusion coefficient, the
memory strength, and the corresponding relaxation time [see
Eq. (17)] and discussed the influence of memory at inter-
mediate and long timescales for the mean and mean-square
displacement of the particle. Finally, we quantified the delay
between effective self-propulsion force and the particle orien-
tation in terms of a defined memory delay function.

Our model can be extended to higher spatial dimensions
[69], to harmonic confinement [86–89], to external fields
[90,91], and to include inertia [5,70,71,92–95] where an an-
alytical solution seems to be in reach as well. Moreover,
different combinations of friction and memory kernel as
well as colored noise can be considered for future work
[96–100], for instance, Mittag-Leffler noise [101,102] or
power-law memory [103,104]. Finally, the collective behavior
of many interacting active particles in a viscoelastic medium
[105–111] needs to be explored more and will be an important
area of future research.
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