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Electrical image potential and solvation energies for an ion in a pore
in a metallic electrode or in a nanotube
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Electrical image potentials can be important in small spaces, such as nanoscale pores in porous electrodes,
which are used in capacitive desalination and in supercapacitors, as argued by Bazant’s group at Massachusetts
Institute of Technology. It will be shown here that inside pores in porous metallic materials the image potentials
can be considerably larger than near flat walls, as a result of the fact that the dielectric constant for an electric field
perpendicular to a wall is much smaller than the bulk dielectric constant of water. Calculations will be presented
for the image potential in spherical and cylindrically shaped pores. The calculations for cylindrical pores can
also be applied to nanotubes. It was believed for a long time, on the basis of molecular dynamics simulations,
that in order to push a salt solution through a small radius nanotube, work must be done against the solvation
energy of the ions, which is larger inside a narrow nanotube than it is in the bulk. The relatively large image
charge potential energy in narrow nanotubes, however, tends to oppose this increase in the solvation energy. The
degree to which the image potential facilitates the flow of the salt ions into nanotubes will be discussed.

DOI: 10.1103/PhysRevE.105.044606

I. INTRODUCTION

Porous electrodes play an essential role in capacitive
desalination [1–8] and supercapacitors [9–13]. In order to de-
termine the ability of a porous material to absorb ions from a
solution, it is essential to understand the various contributions
to the energy of the ions in nanometer-scale pores. It was
pointed out in Ref. [4] that the electrical image potential en-
ergy (i.e., the interaction of an ion with charge that it induces
in the walls of a pore) makes an important contribution to the
energy of the ions in the pores. (A more extended discussion
of the relationship between the work reported in this paper and
the fit to experimental data given in Ref. [4] will be given in
Sec. V). Reference [4] and this work consider nanometer-scale
pores in porous electrodes used in capacitive desalination
and in supercapacitors, which are illustrated schematically in
Fig. 1.

The nanopores can have arbitrary shapes. They can be
compact or extended. To study these two possibilities, two
pore shapes that can be easily treated mathematically will be
considered here, a sphere and a cylinder. The electrical image
potential energy also makes an important contribution to the
energy of ions in nanotubes. In particular, they are able to
make up for the loss of solvation energy when an ionic solu-
tion enters a nanotube, making it possible for ions to flow into
even relatively narrow nanotubes. Here, the electrical image
potential and solvation energy of ions within a spherically
shaped and cylindrically shaped pore will be studied.

II. SPHERICAL PORES

First, let us consider, as a model for an ion, a spherical
shell of radius a with a uniform charge q on its surface at the
center of a spherical pore of radius b in a metallic electrode.

The image is a charged spherical shell of radius R, as illus-
trated in Fig. 2.

The permittivity inside the pore is likely a tensor, which
when diagonalized has an r-r diagonal element equal to εperp

which is considerably smaller than the permittivity in bulk
water. For the case of an ion at the center of the pore, the
electrical potential V satisfies Poisson’s equation:

εperp
1

r2

d

dr

(
r2 dV

dr

)
= 0. (1)

The image charge, equal to −q(a/r), is distributed uni-
formly over the image sphere. Then, the total potential at a
distance r from the center of the pore is given in MKS units
by

V = q

4πεperpr
− b

r

q

4πεperp(b2/r)
= q

4πεperpr
− q

4πεperpb
.

(2)
Consequently, the electrical image potential energy of the

ion is given by

Uimage = − q2

4πεperpb
= − 2ε||

εperp

a

b

q2

8πε||a
, (3)

where ε|| is the permittivity parallel to the pore’s wall, since
the second term in Eq. (2) is the potential due to the charge
induced in the walls of the pore. Its interaction with the charge
q is the image potential energy. The permittivity for fields
normal to the pore wall εperp is 2.1ε0 [14] (assuming that
εperp for a curved surface is comparable to its value for a
flat surface), where ε0 is the permittivity of free space. The
permittivity assumed in Ref. [4] was a scalar of magnitude
between 8ε0 and 16ε0. Therefore, the image potential energy
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FIG. 1. A nanopore in a porous electrode is illustrated in this
figure. As shown, the nanopore is generally connected to a meso-
scopic pore.

for an ion at the center of a pore, given by Eq. (3), with b of
the order of a nanometer is larger than the estimate in Ref. [4].

The image potential which lowers the energy of an ion
when it is inside the pore is opposed by the self-energy, which
is larger inside the pore than in the bulk fluid. In order to
calculate the self-energy at the center of the pore, we use the
electric field due to a charged spherical shell of radius a at
the center of the pore, as a model for the ion, without the
contribution from the charge rearrangement on the boundary
of the pore needed to satisfy the boundary conditions [15]. It
is given by

E = q

4πεperpr
. (4)

The Born self-energy [16] is then given by

U = (1/2)εperp(4π )
∫ ∞

a
r2drE2 = q2

8πεperpa

= ε||
εperp

q2

8πε||a
. (5)

U is independent of b. This likely occurs because U only
depends on the form of the tensor permittivity, which has been
assumed to have the form that was used to calculate U above
no matter how large we choose b to be. In reality, however,
if the radius is large enough (greater than 0.75 nm), the per-
mittivity at the center of the tube will revert to its bulk water
value [14]. If ε|| = ε = 81ε0, εperp = 2.1ε0 [14], where ε|| is
the permittivity component parallel to the wall of the pore,
assumed to be comparable to the permittivity of the bulk fluid
ε, we find from Eqs. (3) and (5) that Uimage/U = 2a/b at the
center of the pore. U inside the pore is a factor ε||/εperp = 38.6
larger than the Born self-energy in the bulk fluid, which is
equal to q2/(8πεa). (Equation (5) can also be obtained by
calculating the interaction of the charge on the surface of the
spherical shell with itself, as was done in the second section
of Ref. [16]). In the case of capacitive desalination, the energy
barrier for an ion to enter the pore due to U can be overcome
by the voltage difference between the bulk solution and the
electrode if it exceeds the difference between U in the pore and
U in the bulk solution divided by q, which is approximately

FIG. 2. Illustration of a charged ion of radius a at the center of a
spherical cavity of radius b, which results in an image charge, which
resides on a spherical shell of radius R.

equal to 2V. Ionic screening of the electric field, however, can
provide a sizable reduction in the self-energy. Reference [4]
does not include the solvation energy.

Using Nordblom’s screening theory [16,17], which is valid
for high ion concentrations, we have

E = Q

4πεperpr2

(
1 − r3 − a3

h3 − a3

)
θ (r − a)θ (h − r), (6)

where h ≈ [3/(4πnB) + a3]1/3, with nB equal to the number
of ions per unit volume in the pore, and hence,

U = (1/2)εperp(4π )
∫ ∞

a
r2drE2

= q2

8πεperp(h3 − a3)2

(
h6

a
+ h3a2 − 9h5 + a5

5

)

= q2

8πεperpa
�, (7)

where

� =
(

h3

a3
− 1

)−2(
h6

a6
+ h3

a3
− 1.8

h5

a5
− 0.2

)
. (8)

Some values of � are given in Table I. The correlation
hole approach to screening used in Ref. [4], appears to be
equivalent to the approach used in Ref. [17] in the high ion
density limit. The “correlation hole” referred to in Ref. [4] is
identical to the screening charge sphere of radius h discussed
above when a � h, but the maximum ion concentration in
the data fit with the model presented in Ref. [4] of 60 mM
(3.61 × 1025m−3) is considerably smaller than the concen-
tration at which one expects the Nordblom theory [17] is
expected to be valid. Therefore, the screening length should
be of the order of the Debye-Hückel screening length, which
for this concentration is equal to 0.538 nm, and hence the
argument used in Ref. [4] might still be qualitatively correct.
On the basis of the values of � given in the table, the screening
will not be sufficient to reduce the self-energy at the center of
the pore by a sufficient amount to make it smaller than the
self-energy in the bulk fluid. This implies that the ions would

044606-2



ELECTRICAL IMAGE POTENTIAL AND SOLVATION … PHYSICAL REVIEW E 105, 044606 (2022)

TABLE I. � is given for several values of nB, including 3.65 × 1026 m−3, the salt concentration of sea water and 3.65 × 1027m−3, the salt
concentration at the solubility limit of sodium chloride.

nB h/a for a Na+ ion � for a Na+ ion h/a for a Cl− ion � for a Cl− ion

1026 m−3 11.5 0.848 8.00 0.793
3.65 × 1026 m−3 7.48 0.771 5.20 0.672
2 × 1027 m−3 4.24 0.594 2.99 0.475
3 × 1027 m−3 3.73 0.560 2.63 0.411
3.65 × 1027 m−3 3.50 0.517 2.47 0.383

not be able to enter the pore, in the absence of an electrical
potential difference due to an external source between the bulk
solution and the pore.

If the center of the ion were within a distance a from the
wall of the pore which is much less than b (assuming that a �
b), the ion would “see” the surface of the pore as a plane to a
good approximation, and hence, from Table III in Ref. [15] for
the image potential resulting from a metallic planar surface,
we obtain for an ion located at the wall

Uimage ≈ −1.3
q2

8πε||(b − d )
= −1.3

q2

8πε||a
, (9)

where d is the distance of the center of the ion from the center
of the pore for ε|| = 81ε0, εperp = 2.1ε0. Of course, for ions
lying against the wall there will be a van der Waals potential
energy comparable and possibly larger than the image poten-
tial energy, which drops off rapidly when one moves a short
distance from the wall. The image potential as a function of
the distance from a flat wall is plotted in Fig. 3 as a function of
its distance z from the wall below using Eq. (26) in Ref. [16].
Also included is a plot of Uimage(z = a)(a/z) (the lower plot).
This shows that Uimage(z) is approximately inversely propor-
tional to z.

FIG. 3. The top curve is a plot of the image potential energy for
a charged sphere of radius a as a function of the distance z of its
center from a plane metallic wall. Lower curve is a plot of Uimage(z =
a)(a/z) as a function of z.

Also, the self-energy near a plane wall (and hence near the
wall of the spherical pore) from Table I in Ref. [16] is

U ≈ 2.55
q2

8πε||a
. (10)

An approximate calculation of the image potential for a
point ion located away from the center of the pore, in the
limit of small εperp/ε||, on the basis of a solution of Poisson’s
equation for the tensor permittivity as an expansion in d/b,
where d is the distance of the ion from the center of the pore,
is given in Appendix A. The resulting image potential from
Eqs. (A25) and (A26) is given by

Uimage = − q2

4πεperpb

[
1 + A

(
εperp

ε||

)1/2
]
, (11)

where

A = b

4πd

∞∑
�=1

[�(� + 1)]1/2v
[�(�+1)]1/2

, (12)

where v = (d/b)(ε||/εperp )1/2
, which is given in Table II below.

The results are also plotted in Fig. 4.
A plot of Uimage versus d/b is given in Fig. 4.
The summation for A in Eq. (12) diverges as d/b ap-

proaches 1, indicating that this solution most likely breaks
down as d/b approaches 1. The results for Uimage cannot be
used to obtain Eq. (9) because this calculation treated the ion
as a point charge, which is correct only for ions that are a
distance much larger than a from the wall. Since for relatively
small values of d/b, A is smaller than 1, it appears that for
ions that are far from the walls of the pore, Uimage is of the
order of the value given in Eq. (3). The image potential at the
center of the pore, given by Eq. (3), is larger than it is near the

TABLE II. This table gives the parameter A as a function of d/b.

d/b A

0.2 4.08 × 10−7

0.7 0.0084
0.8 0.0321
0.9 0.180
0.95 0.792
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FIG. 4. Plot of the results of Table II for −Uimage for a circular
pore in units of q2/(4πεperpb) vs d/b.

wall if
2ε||
εperp

a

b
> 1.3. (13)

On the basis of Eq. (13) we find that for ε|| = 81ε0, εperp =
2.1ε0, if a/b > 0.017, the image potential at the center of a
spherical pore is larger than it would be near a flat wall or
between two parallel walls or near the wall of a spherical pore.
The value of U + Uimage near the wall of the pore can be less
than the value of U in the bulk fluid for the screening that
occurs for an ion concentration of 2 × 1027m−3 or more [16].
This is possible because if the ion is at the wall and a < h, the
screening due to the other ions does not eliminate the image
potential energy of the ion. From Eqs. (3) and (5), however, it
appears that U + Uimage inside and away from the walls of the
pore will be larger than U in the bulk fluid. If U + Uimage inside
the pore is less than U outside of the pore, ions can be ab-
sorbed in the pore even without a voltage difference between
the regions inside and outside of a nanopore. In contrast, if
U + Uimage inside the pore is larger than U outside of the pore,
ions will only be absorbed by the pore if a voltage is applied
between the electrodes greater than the difference between
these energies divided by q. The treatment of nanopores in
Ref. [18] considers the Born self-energy but does not include
the tensor nature of the permittivity near a surface and the
electrical image potential energy.

III. CYLINDRICAL PORES AND NANOTUBES

Let us now consider the image potential energy for a point
charge to represent an ion a distance d from the axis of a
metallic cylinder of radius b. The Coulomb potential in cylin-
drical coordinates is the solution to Poisson’s equation:

εperp

(
∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ

)
+ ε||

(
∂2V

∂z2
+ 1

ρ2

∂2V

∂φ2

)

= − q

ρ
δ(ρ − d )δ(φ)δ(z). (14)

The details of the solution of Eq. (14) are given in
Appendix B by adapting the solution of Poisson’s equation
in Ref. [19]. We obtain for the image potential energy from

TABLE III. This table gives I ′ as a function of d/b.

d/b I ′

0. 0.280
0.2 0.283
0.3 0.287
0.5 0.300
0.7 0.329
0.9 0.446
0.95 0.599

Eq. (B26)

Uimage = − q2

8πεperpb

× 4

π

∞∑
m=0

∫ ∞

0
dk′ Imu1/2 (k′u1/2d/b)

2
Kmu1/2 (k′u1/2)

Imu1/2 (k′u1/2)
,

(15)

where Ia(x), Ka(x) are the modified Bessel functions of
order a and where k′ = kb. In Table III, the results for
Uimage are shown for ε|| = 81ε0, εperp = 2.1ε0, where I ′ =
Uimage (8πεperpb/q2).

The results in Table III are plotted in Fig. 5.
Again, as was the case for a spherical pore, Uimage ap-

pears to diverge as d/b approaches 1, and since the ion was
represented as a point charge in this calculation we cannot
use it to make contact with Eq. (9). Since Ref. [20] shows
that for tubes with radii of the order of a nanometer, ε||
becomes larger than the bulk water permittivity of 81ε0, let
us calculate Uimage for larger values of ε||. For example, for
d = 0 and for ε|| = 200ε0, Uimage = 0.179 (q2/8πεperpb) and
for ε|| = 300ε0, Uimage = 0.146 (q2/8πεperpb).

If we apply the results given in Table III to pores in porous
electrodes, we conclude that for a pore with a radius of the
order of a nanometer, the image potential is noticeably larger
than the value used in Ref. [4]. It is difficult to evaluate Uimage

for d close to b, but since the wall should appear to the ion
as being nearly flat, it should be well approximated by Eq. (9)

FIG. 5. Plot of the results of Table III for I ′ =
Uimage (8πεperpb/q2 ).
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FIG. 6. Illustration of the calculation of the self-energy of an ion
modeled as a charged spherical shell of radius a.

[16], for b−d = a, for an ion of radius a in contact with the
wall. Inside the cylinder

Uimage = −I ′ ε||
εperp

a

b

q2

8πε||a
. (16)

The self-energy can be calculated for an ion at the center
of the cylinder as follows: Since from Eqs. (B19)–(B22) in
Appendix B the Green function is given by

G(�r − �r′) =
∞∑

m=−∞
eim(φ−φ′ )

∫ ∞

0
dk

× Ju1/2m(u1/2kρ)Ju1/2m(u1/2kρ ′)e−k(z>−z< ), (17)

with u = ε||/εperp, where for calculating the self-energy of a
charged spherical shell model for the ion, we will set ρ =
(a2 − z2)1/2, ρ ′ = (a2 − z′2)1/2 and z> is the larger of z and
z′ and z< is the smaller of z and z′. This is a Green function
because e−ik(z>−z< ) is the Green function for the operator
d2/dz2 − k2. It is the solution of the equation(

∂2G(�r − �r′)
∂ρ2

+ 1

ρ

∂G(�r − �r′)
∂ρ

)

+ u

(
∂2G(�r − �r′)

∂z2
+ 1

ρ2

∂2G(�r − �r′)
∂φ2

)

= − 1

εperpρ
δ(ρ − d )δ(φ)δ(z). (18)

Then U is given by

U = 1

2

(σa)2

4πεperp

∫∫
||�r|,|�r′|=ad3rd3r′G(�r − �r′)

= 1

2

(σa)2

4πεperp

∫ 2π

0
dφ′

∫ 2π

0
dφ

∞∑
m=−∞

eim(φ−φ′ )

×
∫ a

−a
dz′

∫ a

−a
dz

∫ ∞

0
dk

× Ju1/2m(u1/2kρ)Ju1/2m(u1/2kρ ′)e−k(z>−z< ), (19)

as illustrated in Fig. 6, where ρ = (a2 − z2)1/2/a, ρ ′ =
(a2 − z′2)1/2/a, since the element of area is given by dA =

a sin θdθadφ = a2dzdφ (where θ is the azimuthal angle from
spherical coordinates), and similarly for the primed quantities.
Doing the integrals over φ and φ′ and making the substitution
k′ = u1/2k, we obtain

U = q2

32πu1/2εperpa2

∫ a

−a
dz′

∫ a

−a
dz

∫ ∞

0
dk′

× J0(k′ρ)J0(k′ρ ′)e−k′u−1/2(z>−z< ). (20)

Doing the integral with u = 81/2.1 gives

U = q2

32πu1/2ε||a2
u

∫ a

−a
dz′

∫ a

−a
dz

∫ ∞

0
dk′

× J0(k′ρ)J0(k′ρ ′)e−k′u−1/2(z>−z< )

= u1/2I

4

q2

8πε||a
= 8.86

q2

8πε||a
, (21)

where I is the above triple integral in Eq. (20). As is pointed
out below Eq. (5), U is independent of b. This likely occurs
because U only depends on the form of the tensor permittivity,
which has been assumed to have the form that was used to
calculate U above no matter how large we choose b to be. In
reality, however, if the radius is large enough, the permittivity
at the center of the tube will revert to its bulk water value
[14]. If ε|| = εperp = ε, I = 4 and hence U reduces to the Born
value for a scalar permittivity of U = q2/(8πεa), as expected.
(Incidentally, the calculations of the of the self-energy and the
image potential energy performed in Ref. [16] by an approx-
imation valid to lowest order in εperp/ε|| can also be done by
direct integration. Identical numerical results are obtained).

Let us now give some numerical illustrations of the effects
of Uimage and U for a solution of sodium chloride. Near the
wall (a distance d−a � b), Uimage is given by Eq. (9) and U is
given by Eq. (10). We found that at the center of the tube U is
given by Eq. (21). If a = 0.167 nm (i.e., for chlorine ions) and
b = 1 nm, Uimage at the center of the cylinder given by Eq. (16)
is

Uimage = −1.80
q2

8πε||a
, (22)

without considering the effect of screening on the image
potential, (e g., if the screening length h is larger than
the distance of the ion from the cylinder’s wall). Because
of screening, the image potential energy is not likely to
have a significant effect for ions located a distance greater
than h from the cylinder’s wall. Hence, even if the ionic
concentration in the pore is close to the solubility limit
(i.e., the ion concentration 3.65 × 1027m−3), which gives,
using the screening factor � given in Table I for this concen-
tration, the screened self-energy given by

U = 3.39
q2

8πε||a
, (23)

from Eqs. (7) and (21) and Table I. (Although the treatment
of the effect of ionic screening used here of just multiplying
the self-energy in the low concentration limit by � is strictly
speaking only valid for spherical pores considered in the last
section, the discussion of screening in Ref. [16] indicates that
it should not be a bad approximation). Therefore, U + Uimage
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within the cylinder will still be greater than U in the bulk
solution, which is equal to

U = q2

8πε||a
. (24)

This will certainly be the case unless the ion is within a
distance from the wall less than h. Near the walls, however, for
an ion solution with concentration 3 × 1027m−3, U + Uimage

will be less than the value of U in the bulk solution [16]. In
the case of capacitive desalination, the solvation energy can be
overcome by the external potential applied to the electrodes if
the potential difference between the bulk solution and inside
the pore or nanotube is greater than the difference between
Eqs. (23) and (24) divided by q, which is equal to 0.127 V. If
b were equal to 0.4 nm, however, Uimage = −5.07q2/(8πε||a),
for chloride ions, from Table III and Eq. (16), and hence
U + Uimage, even at a distance less than d = h = 0.269 nm
from the walls of the pore or nanotube (corresponding to
d/b ≈ 0.7), using the value of U given by Eq. (23), will be
less than the value of U in the bulk solution. Although for
b = 0.4 nm the continuum approximation used in this paper is
no longer valid (as the water forms one-dimensional chains)
[21–28], this result suggests the importance of the image
potential energy in allowing ions to occupy nanotubes or
nanometer pores in electrodes.

Perhaps a more realistic, although crude, picture for an ion
in a nanotube that is sufficiently narrow so that water enters
the tube as a one-dimensional chain is the following: We as-
sume that inside the tube, the permittivity is equal to ε0 and the
ion only interacts with the dipole moment of nearest-neighbor
water molecules (assuming that the water dipole moments in
the chain are completely disordered) with an interaction of the
order of

Ue = −2
1

4πε0

qp

r2
, (25)

where p = 6.17 × 10−30C m is the dipole moment of a wa-
ter molecule and r2 = a2 − d2/4, where d = p/e. For a =
0.167 nm, we obtain Ue = −1.25 eV. Then, the solvation en-
ergy �U , which is the difference between the self-energy of
the ion inside the tube and in the bulk solution, is

�U = q2

8πε0a

(
1 − ε0

ε

)
+ Ue = 3.05 eV, (26)

substituting a = 1.67 × 10−10m and ε = 81ε0. The image po-
tential energy for an ion at the center of the tube found from
Eq. (15) with ε|| = εperp = ε0 is given by

Uimage = −1.74
q2

8πε0a
= −7.50 eV, (27)

which means that

�U + Uimage = −4.45 eV, (28)

and hence, the total of the self-energy and the image potential
inside the tube is lower than the self-energy outside of the
tube.

So far, it has been assumed that the cylinder’s wall is metal-
lic. If the cylinder is taken to represent a single-wall nanotube,

it can be assumed to be a two-dimensional conductor if the
electron mean-free path is smaller than the circumference. If
not, it behaves as a 1D conductor (with conduction only along
the z axis, the axis of the tube). Even if the tube behaves as
a one-dimensional conductor, it will still be an equipotential,
because of the following argument: The z component of the
electric field is given, using Eq. (B24), by

Ez = −∂V

∂z
= q

2π2εperp

∞∑
m=−∞

eimφ

×
∫ ∞

0
dkk sin kz[Imu1/2 (ku1/2ρ<)Kmu1/2 (ku1/2ρ>)

+ Am(k)Imu1/2 (ku1/2ρ)]. (29)

If the tube is a one-dimensional conductor, when
ρ< = d, ρ> = ρ = b,

0 = Ez = −∂V

∂z

= q

2π2εperp

∞∑
m=−∞

eimφ

∫ ∞

0
dkk sin kz[Imu1/2 (ku1/2d )

× Kmu1/2 (ku1/2b) + Am(k)Imu1/2 (ku1/2b)], (30)

which gives the above value for Am(k). This means that

0 = Eφ = − 1

ρ

∂V

∂φ

= − q

2π2εperp
i

∞∑
m=−∞

meimφ

∫ ∞

0
dk cos kz

× [Imu1/2 (ku1/2ρ<)Kmu1/2 (ku1/2ρ>)+Am(k)Imu1/2 (ku1/2ρ)]
(31)

on the surface of the cylinder where ρ< = d, ρ> = ρ =
b, implying that the wall is an equipotential. In Misra and
Blankschtein’s simulation [29], graphene is assumed to be
an perfect insulator, and thus, there is no electrical image
potential energy. As long as the walls have any nonzero
conductivity, however, when the ion is stationary, there will
always be an image charge potential energy, as long as the one
waits long enough for electrons in the wall to flow towards
or away from the region in the wall opposite the ion. If the
ion is moving parallel to the wall, however, it was shown in
Appendix B of Ref. [30] that the image charge lags behind the
ion by a distance parallel to the wall of

�x ≈ ε||v
σ2d

, (32)

where v is the velocity of the ion and σ2d is the two dimen-
sional electrical conductance of the wall. Thus, the ion will
interact with the wall with an electrical image potential energy
unless σ2d is sufficiently small so that σ2d/ε|| � v.

IV. TREATMENT OF THE INTERACTION OF AN ION
WITH INSULATING WALLS

In Misra and Blankschtein’s simulation [29], the interac-
tion of an ion with the wall results from polarization of the
individual carbon atoms, which was treated by a model in
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which the polarization of the graphene is assumed to result
from displacement of the electrons on a carbon atom with
respect to its nucleus. In order to make contact with the po-
larization interaction in Misra and Blankschtein’s simulation
[29], consider the following continuum model for the polar-
ization interaction between a point ion of charge q and a 2D
surface:

Vpol(�r) = 1

4πε0

∑
j

�p j · (�r − �r j )

|�r − �r j |3

≈ 1

4πε0

∫
d2r′ �σp(�r′) · (�r − �r′)

|�r − �r′|3 , (33)

where the integral is over the surface of the cylinder and where
Vpol(�r) is the potential at �r due to the dipole moment induced
in the surface per unit area �σp(�r′), created by the electric field
due to an ion located at the point �r0. Then, �σp(�r′) is given by

�σp(�r′) = 1

4πε0
χp

q(�r′ − �r0)

|�r′ − �r0|3 , (34)

where χp is the susceptibility that gives the dipole moment per
unit area induced by the ion’s electric field. Then, substituting
for �σp(�r′) in the above expression for Vpol(�r), evaluated at
�r = �r0 = z0ẑ gives the interaction between the ion and the
polarization that it induces in the surface (which is the analog
of Uimage for an insulating surface) is given by

Upol = qVpol(�r0) = q2χp

(4πε0)2

∫
dxdy

1(
z2

0 + x2 + y2
)2

= q2χp

16πε2
0z0

2
. (35)

It is proportional to z0
−2, in contrast to the electrical image

potential energy for a metallic surface, which is proportional
to z−1

0 . When there is water present,

Vpol(�r) = 1

4πε||

×
∫

d2r′ σpz(z−z′)+(εperp/ε||)[σpx(x−x′)+σpy(y−y′)]

[(z−z′)2+(εperp/ε||)[(x−x′)2+(y−y′)2]]
3/2

(36)

and

�σp(�r′) = χp
q

4πε||

(z′ − z0)ẑ + (εperp/ε||)(x′2 + y′2)

[(z′ − z0)2 + (εperp/ε||)(x′2 + y′2)]
3/2 .

(37)

Substituting in the expression for Vpol(�r) at �r = �r0 = z0ẑ,
we obtain

Upol = qVpol(�r0) = χpq2

(4πε||)2 2π

∫ ∞

0

ρ ′dρ ′[
z2

0 + (εperp/ε||)ρ ′2]2

≈ χpq2

16πε||εperpz2
0

. (38)

The susceptibility in mks units is given by

χp = 4πε0nα, (39)

where n is the number of carbon atoms per unit area and α

is the polarizability of a carbon atom [29] (which in cgs units
has units of distance cubed), giving

Upol = ε0nαq2

4ε||εperpz2
0

. (40)

Since εperp ≈ ε0 and nα is of the order of or a little smaller
than a unit-cell dimension, the image potential energy in the
polarization model is of the order of or a little smaller than the
image potential energy for metallic surface. In other words it
is reduced by a factor of ε0/ε|| from its vacuum value.

For an ion at the center of a nonmetallic cylinder, the
electrical potential produced by the ion at the origin is given
in cylindrical coordinates by

V (ρ, z) = q

4πεperp[(ε||/εperp)ρ2 + z2]1/2 , (41)

and hence,

�E (ρ, z) = q

4πεperp

[
ρ(ε||/εperp)ρ̂ + zẑ

[(ε||/εperp)ρ2 + z2]3/2

]
. (42)

Since �σp(�r) = χp �E (�r) and

Upol = 2πbq
∫ ∞

−∞
dz�σp · ⇀

E (�r), (43)

Upol = q2χpb

8πε2
perp

∫ ∞

−∞
dz

b2(ε||/εperp)2 + z2

[(ε||/εperp)b2 + z2]3

= q2χp

8πε2
perpb2

∫ ∞

−∞
dz̄

(ε||/εperp)2 + z̄2

[(ε||/εperp) + z̄2]3

= q2χp

8πε2
perpb2

[3(ε||/εperp) + 1)]π

8(ε||/εperp)3/2 , (44)

where z̄ = z/b. For ε||/εperp = 81/2.1,

Upol = 0.191
q2χp

8πε2
perpb2

= 0.095
q2nε0α

ε2
perpb2

, (45)

using the above expression for χp, which makes it larger than
the interaction with a flat insulating surface by a factor of
0.38ε||/εperp or a factor of 14.7 for the above values of the
permittivity components. From Table III,

Uimage = 0.28
q2

8πεperpb
. (46)

At the center of a metallic tube with the above values of
the permittivity components, the ratio of the image potential
energy for an insulating wall to that for a metallic wall is
8.52(ε0/εperp)(nα/b). Since nα ≈ a, the ratio of the image
potential for an insulating and for a metallic nanotube is of
the order of a/b.

V. RELATIONSHIP OF SOME OF THE RESULTS
PRESENTED HERE TO SOME EXPERIMENTS ON IONS IN

NANOPORES IN ELECTRODES AND TO IONS IN
NANOTUBES

In Ref. [4] a model based on the screened electrical image
potential energy was used to fit experimental data on absorp-
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FIG. 7. Plot of a solution of Eq. (48) for v vs C.

tion of ions in nanopores in porous electrodes. In particular,
Ref. [4] presents the following expression for the total con-
centration of ions (both positive and negative) in a pore based
on Eqs. (6) and (12) in that reference:

cions,mi = 2c∞ cosh �φd e−μatt , (47)

where c∞ is the concentration of ions outside of a nanopore,
�φd is the electrical potential difference between inside the
nanopore and outside of it divided by kBT , and μatt is the sum
of all the interactions of the ion with the pore walls which are
independent of the sign of the ion’s charge divided by kBT . In
their model, the only contribution to μatt is the electrical image
potential with screening, which is argued to be inversely pro-
portional to cions,mi. If we write it as μatt = − f /cions,mi, where
f is a constant (equal to the ratio of the Bjerrum length and
mean distance of the ion from the wall of the pore), and we
set v = cions,mi/ f , we can write the above expression for the
mean ion concentration in a pore as

v = Ce1/v, (48)

where C = 2(c∞/ f ) cosh(�φd ) as plotted in Fig. 7. If we
solve the above equation for v numerically, we obtain the
following plot, which has the same form as Fig. 6 in Ref. [4].
As was discussed above, at the ion concentrations at which
capacitive desalination takes place, Debye-Hückel screening
should be more appropriate than the Nordblum method [17]
used in Sec. II. Applying Debye-Hückel screening to the
image potential obtained from Eqs. (2) and (3) at the middle
of the pore, one obtains

Uimage = − q2

4πεperpb(1 + Ka)
e−K (b−a), (49)

where K = (8πcim,ions�B)1/2. Uimage in units of q2/(4πεperpb)
is plotted vs Ka below for b = 2a. See Fig. 8.

The self-energy, obtained by applying Debye-Hückel
screening to Eqs. (4) and (5), is given by

U = 1

2

εperp(4π )

(1 + Ka)2

∫ b

a
r2dr

[
q

(4πεperp)r2
e−K (r−a)

]2

= q2

8πεperpa

Kae2Ka

(1 + Ka)2

∫ Kb

Ka

dx

x2
e−2x, (50)

FIG. 8. Plot of Eq. (49) of Uimage vs Ka for b = 2a.

where x = Kr. U in units of q2/(8πεperpa) is plotted below
versus Ka for Kb = 2 and Kb = 10 in Fig. 9.

We can see from the above figures for the image potential
and the self-energy as a function of the ion concentration
that the image potential energy is approximately proportional
to 1/cions,mi(since K ∝ cions,mi

1/2), whereas the self-energy is
closer to being approximately proportional to 1/cions,mi

1/2.
Since the self-energy contribution to μatt is positive, the
exponential factor from the self-energy pushes the ion con-
centration in a pore to smaller values, unless �φd is increased
to compensate for this. To include both the image potential
energy and the repulsive self-energy, we write the above equa-
tion to solve for v as

v = Ce(1/v−g/v1/2 ), (51)

where g is a constant and where g/v1/2 represents the
self-energy. (The exponential should contain the difference
between this term and the self-energy outside the pore, which
would be equal to the solvation energy, but since the self-
energy outside is independent of cions,mi, it can be absorbed
into C). This equation is solved for v versus C and plotted as
a function of v.

Since the plot in Fig. 10 has the same approximate shape
as the plot in Fig. 7, we see that even with the self-energy
included, it should be possible to fit the data with this model.
This is clearly correct if the image potential energy can be-
come larger in magnitude than the self-energy at some point in
the pore. Otherwise, the ions cannot enter the pore unless the
applied potential exceeds the self-energy, as discussed above
in Secs. II and III.

Recent experiments show that dissolved salt ions are able
to flow through carbon nanotubes with a diameter smaller
than a nanometer, contrary to previous molecular dynamics
simulations [31], which predict that salt ions should not be
able to enter such tubes because their solvation energy is
much larger inside than outside the tube [32]. These results
are explained by the existence of an attractive energy due to
the polarization of the carbon atoms in the nanotube walls
which counters the increase in the solvation energy when an
ion enters the tube.
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FIG. 9. Plot of U vs Ka from Eq. (50) for (a) b = 2a and (b) b = 10a.

VI. CONCLUSIONS

It has been shown that electrical image potential energy
can play an important role in allowing ions in an ionic so-
lution to be absorbed by nanometer-scale pores in metallic
electrodes, but it appears that it is only in pores of size less
than a nanometer that the sum of the ion’s solvation energy
and its image potential energy within the pore is smaller than
the ion’s solvation energy in the bulk solution, which would
allow the ions to reside in the pore. This is the case unless
the potential difference between the bulk solution and the
inside of the pore exceeds the difference between the solvation
energy in the bulk solution and the sum of the solvation and
image potential energy inside the pore, which is only 0.127 V.
For a subnanometer-radius cylindrical pore or a nanotube,
however, the sum of the electrical image potential energy and
the Born self-energy of an ion is able to be lower than the
self-energy of an ion in the bulk water, making it possible
for ions to spontaneously enter the pore or nanotube. The
Born expression for the self-energy is believed to be an over-
estimate [33–36]. Therefore, these conclusions can only be
used to predict trends. In fact, for sodium ions, the solvation
energy can be as much as a factor of 57% smaller than the

FIG. 10. Plot of a solution of Eq. (51), with g = 2, for v vs C.

value given by the Born approximation [16,33]; for chloride
ions, it is only reduced by a factor of 94%. This implies that
positive ions will be more likely to be able to enter nanotubes
and pores, because U + Uimage inside the tube or pore is more
likely to be smaller than U outside the tube or pore. With the
exception of motion of solutions in tubes or pores which are
comparable in size to water molecules, there is good reason to
believe that continuum theories of nanoscale fluids are valid
at the nanoscale [37]. The polarization energy for insulating
nanotubes (the analog of Uimage) was shown to be comparable
Uimage to for nanometer-scale tubes, dominating for b not too
much larger than a.
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APPENDIX A: IMAGE POTENTIAL ENERGY FOR A
SPHERICAL PORE

Consider Poisson’s equation in spherical coordinates [19],

εperp
1

r

∂2

∂r2
(rV ) + ε||

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ ε||

r2sin2θ

∂2V

∂φ2

= q
1

r2
δ(r − r′)δ(cos θ − cos θ ′)δ(φ − φ′). (A1)

If the ion is assumed to lie on the z axis, Poisson’s equa-
tion has azimuthal symmetry. When a trial solution of the
form V (r, θ ) = r−1R(r)P(cos θ )Q(φ) is substituted in the as-
sociated homogeneous equation (i.e., Laplace’s equation), we
obtain

εperp

R(r)

d2R(r)

dr2
+ ε||

r2 sin θP(cos θ )

d

dθ

(
sin θ

dP(cos θ )

dθ

)

+ ε||
r2sin2θQ(φ)

d2Q(φ)

dφ2
= 0. (A2)
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Let us set

1

sin θP(cos θ )

d

dθ

(
sin θ

dP(cos θ )

dθ

)
= −�(� + 1) + m2

sin2θ
,

(A3)
and

1

Q(φ)

d2Q(φ)

dφ2
= −m2, (A4)

with 0 < � < ∞, −� < m < �, whose solutions are spherical
harmonics Y m

� (θ, φ); we find that R(r) is a solution to the
equation

d2R(r)

dr2
= ε||

εperp

�(� + 1)

r2
. (A5)

For � �= 0 and large values of ε||/εperp, we can look for a
solution of the form R(r) = eu(r). Substituting in the above
equation we obtain[

d2u

dr2
+

(
du

dr

)2
]

eu =
(

ε||
εperp

)
�(� + 1)

r2
eu. (A6)

Neglecting d2u/dr2 gives solutions of the form

u = ±
(

ε||
εperp

)1/2

[�(� + 1)]1/2 ln
r

b
, (A7)

where b is a constant. Since

d2u

dr2
= ∓

(
ε||

εperp

)1/2 [�(� + 1)]1/2

r2
(A8)

and (
du

dr

)2

= ε||
εperp

�(� + 1)

r2
, (A9)

we are justified in neglecting the second derivative if
(ε||/εperp)1/2 is sufficiently large. This approximation becomes
better as � increases. Since in our case (ε||/εperp)1/2 is only
equal to 6.21, this solution is only a crude approximation. For
� = 0, the solution for R(r)/r has the form

R(r)

r
= A + B

r
, (A10)

where A and B are constants to be determined by boundary
conditions. For � > 0,

R(r)

r
= r−1

[
A′

( r

b

)α� + B′
(

b

r

)α�
]
, (A11)

where A′ and B′ are constants and α� =
[(ε||/εperp)�(� + 1)]1/2.

Following the derivation of the Green function in Ref. [19],
we look for a Green function of the form

G(�r, �r′) =
∞∑

�=0

�∑
m=−�

g�(r, r′)Y m
� ∗ (θ ′, φ′)Y m

� (θ, φ). (A12)

Substituting in Poisson equation above, we obtain the fol-
lowing equation for g�(r, r′):

1

r

d2

dr2
[rg�(r, r′)] −

(
ε||

εperp

)
�(� + 1)

r2
g�(r, r′)

= 1

εperpr2
δ(r − r′). (A13)

Integrating this equation over r from r′ − δ to r′ + δ, where
δ � 1, we obtain

d

dr
[rg�(r, r′)]r=r′+δ − d

dr
[rg�(r, r′)]r=r′−δ = 1

εperpr′ . (A14)

Using the above approximate solution to Laplace’s equa-
tion, we can write

g�(r, r′) = C
1

r<

( r<

b

)α� b

r>

[( r>

b

)α� −
(

b

r>

)α�
]
, (A15)

for � > 0, where r> (r>) is the larger (smaller) of r and r′. We
have chosen b to represent the radius of the pore, where the
potential must vanish. From the above continuity condition,
we can write

d

dr
[rg�(r, r′)]r=r′+δ − d

dr
[rg�(r, r′)]r=r′−δ

= C

r′

(
r′

b

)α�

α�

[(
r′

b

)α�−1

+
(

b

r′

)α�+1]

− C

r′ α�

(
r′

b

)α�−1[(
r′

b

)α�

−
(

b

r′

)α�
]

= − 1

r′ , (A16)

which gives

C = − 1

2α�εperp

r′

b
. (A17)

Therefore, for � �= 0

g�(r, r′) = − 1

2α�εperp

(
r<

b

)α�
[(

r>

b

)α�

−
(

b

r>

)α�
]

r′

r<r>

.
For � = 0,

g0(r, r′) = (1/2)

(
1

r
− 1

b

)
. (A18)

Consider a uniformly charged sphere of radius a and total
charge q. The charge density is given by

ρ(r′) = q

4πa2
δ(r′ − a). (A19)

The potential is given by

V =
∫

d3r′G(r, r′)ρ(r′) = q

4πεperp

(
1

r
− 1

b

)
, (A20)

our previous result. Since it is independent of a, it is also the
result for a point charge at the origin. Now, let us consider the
potential due to a point charge q at the point z = d on the z
axis. Then,

ρ(r′) = q

2πd2
δ(r′ − d )δ(cos θ ′ − 1), (A21)
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which gives for the potential

V =
∫

d3rG(�r, �r′)ρ(r′) = q

2πεperp

[
(1/2)

(
1

r
− 1

b

)

− 1

8πr

∞∑
�=1

[2� + 1]P�(cos θ )
1

α�

(
d

b

)α�

×
[(

r

b

)α�

−
(

b

r

)α�
]]

(A22)

The image potential energy is then

Uimage = − q2

4πεperp

[
1

b
+ 1

4πd

∞∑
�=1

�(� + 1)
1

α�

(
d

b

)2α�

]
,

(A23)
assuming that the (b/d )α� term in the last square bracket
is part of the self-energy, since it gives a divergent contri-
bution as b/d → ∞. Also, the solution without a boundary
only includes the (b/d )α� term. Then, Uimage can also be

written as

Uimage = − q2

4πεperp

[
1

b
+ 1

4πd

(
εperp

ε||

)1/2

×
∞∑

�=1

[�(� + 1)]1/2v
[�(�+1)]1/2

]
, (A24)

where v = (d/b)(ε||/εperp )1/2
. Then,

Uimage = − q2

4πεperpb

[
1 + A

(
εperp

ε||

)1/2]
, (A25)

where

A = b

4πd

∞∑
�=1

[�(� + 1)]1/2v
[�(�+1)]1/2

. (A26)

APPENDIX B: IMAGE POTENTIAL ENERGY FOR A CYLINDRICAL PORE OR NANOTUBE

In order to determine the Coulomb potential in cylindrical coordinates for an ion lying on the cylinder’s axis, we must
solve [19]

εperp

(
∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ

)
+ ε||

(
∂2V

∂z2

)
= − q

ρ
δ(ρ)δ(z). (B1)

Making the substitution ρ̄ = ρ/ε
1/2
perp, z̄ = z/ε1/2

|| , this equation becomes(
∂2V

∂ρ̄2
+ 1

ρ̄

∂V

∂ρ̄

)
+

(
∂2V

∂ z̄2

)
= − 1

ε
1/2
|| εperp

q

ρ̄
δ(ρ̄ )δ(z̄). (B2)

Since the solution to this equation without the factor 1/(ε1/2
|| εperp) is the Coulomb potential, the solution with this factor is

q

4πε
1/2
|| εperp(ρ̄2 + z̄2)1/2 . (B3)

Then, the solution can be written as

q

4πεperp[ρ2(ε||/εperp) + z2]1/2 . (B4)

The solution by separation of variables V = R(ρ)Z (z) is as follows:

1

R(ρ)

(
d2R(ρ)

dρ2
+ 1

ρ

dR(ρ)

dρ

)
+ ε||

εperp

1

Z (z)

d2Z (z)

dz2
= 0. (B5)

Requiring that Z(z) satisfy

d2Z (z)

dz2
= −k2Z (z), (B6)

where k2 is a constant, we find that R(ρ) satisfies

d2R(ρ)

dρ2
+ 1

ρ

dR(ρ)

dρ
− ε||

εperp
k2R(ρ) = 0, (B7)

which is the equation for the modified Bessel function I0(ukρ), where u = (ε||/εperp)1/2. Then, we can write

V (ρ, z) = q

4πεperp[(ε||/εperp)ρ2 + z2]1/2 + (1/2)
∫ ∞

−∞
dkA(k)eikzI0(ukρ). (B8)
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We require that

0 = V (b, z) = q

4πεperp[(ε||/εperp)b2 + z2]1/2 + (1/2)
∫ ∞

−∞
dkA(k)eikzI0(ukb), (B9)

where b is the radius of the pore. Then,

A(k)I0(ukb) = − 2q

4πεperp

1

2π

∫ ∞

−∞
dz

e−ikz

[(ε||/εperp)b2 + z2]1/2 . (B10)

Therefore, the image potential energy is given by

Uimage = − q2

8πεperp

4

π

∫ ∞

0

dk

I0(kub)

∫ ∞

0
dz′ cos(kz′)

[u2b2 + z′2]1/2 , (B11)

or setting k′ = kb and z′′ = z′/b, we get

Uimage = − q2

8πεperpb

4

π

∫ ∞

0

dk′

I0(k′u)

∫ ∞

0
dz′′ cos(k′z′′)

[u2 + z′′2]
1/2 . (B12)

Let us now consider a point charge which is a distance d off the axis (i.e., it is located at x = d). The potential due to the
point charge satisfies

εperp

(
∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ

)
+ ε||

(
∂2V

∂z2
+ 1

ρ2

∂2V

∂φ2

)
= − q

ρ
δ(ρ − d )δ(φ)δ(z), (B13)

or (
∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ

)
+ u

(
∂2V

∂z2
+ 1

ρ2

∂2V

∂φ2

)
= − q

εperpρ
δ(ρ − d )δ(φ)δ(z), (B14)

where u = ε||/εperp. The solution by separation of variables V = R(ρ)Z (z)Q(φ) is as follows:

1

R(ρ)

(
d2R(ρ)

dρ2
+ 1

ρ

dR(ρ)

dρ

)
+ u

(
1

Z (z)

d2Z (z)

dz2
+ 1

ρ2

∂2Q

∂φ2

)
= 0. (B15)

Requiring that Z(z) satisfy

d2Z (z)

dz2
= −k2Z (z), (B16)

where k2 is a constant, and

d2Q

dφ2
= −m2Q, (B17)

we find that R(ρ) satisfies

d2R(ρ)

dρ2
+ 1

ρ

dR(ρ)

dρ
− u

(
k2 + m2

ρ2

)
R(ρ) = 0, (B18)

whose solutions are Imu1/2 (u1/2k), Kmu1/2 (u1/2k). Then, the Green function can be written as

G = 1

2π2

∞∑
m=−∞

∫ ∞

0
dkeim(φ−φ′ ) cos k(z − z′)gm(ρ, ρ ′), (B19)

where gm(ρ, ρ ′) satisfies

1

ρ

d

dρ

(
ρ

dgm

dρ

)
− u

(
k2 + m2

ρ2

)
gm = − 1

ρ
δ(ρ − ρ ′). (B20)

Integrating from ρ = ρ ′ − δ to ρ = ρ ′ + δ, where δ � 1, we get

dgm

dρ

∣∣∣∣
ρ=ρ ′+δ

− dgm

dρ

∣∣∣∣
ρ=ρ ′−δ

= − 1

ρ ′ . (B21)

The solution is

gm = CImu1/2 (x<)Kmu1/2 (x>), (B22)
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where C is a constant, x = ku1/2ρ, ρ< is the smaller of ρ, ρ ′ and ρ> is the larger of ρ, ρ ′. Then, we have

C

[
Imu1/2 (x′)

dKmu1/2 (x)

dx
− Kmu1/2 (x)

dImu1/2 (x)

dx

]
x=x′

= − 1

x′ . (B23)

Since the bracketed expression (the Wronskian) is a constant for the equation satisfied by gm, we can evaluate it at one point,
such as the in the large-ρ limit, which gives a value of −x′−1, and hence, we find that C = 1. Thus, from the above expression
for the Green function we find that the potential due to a point charge located a distance d from the cylinder axis along the x axis
(i.e., ρ ′ = d, φ′ = 0, z′ = 0) is given by

V = q

2π2εperp

∞∑
m=−∞

eimφ

∫ ∞

0
dk cos kz[Imu1/2 (ku1/2ρ<)Kmu1/2 (ku1/2ρ>) + Am(k)Imu1/2 (ku1/2ρ)]. (B24)

The coefficient Am(k) is obtained by requiring that V (ρ = b, z, φ) = 0, which gives

Am(k) = − Imu1/2 (ku1/2d )Kmu1/2 (ku1/2b)

Imu1/2 (ku1/2b)
. (B25)

Inserting this expression for this coefficient and substituting ρ = d and multiplying the second term in the square bracket by
q we obtain for the image potential

Uimage = − q2

8πεperpb

4

π

∞∑
m=0

∫ ∞

0
dk′ Imu1/2 (k′u1/2d/b)

2
Kmu1/2 (k′u1/2)

Imu1/2 (k′u1/2)
, (B26)

where k′ = kb. In performing the integral over k′, the upper limit is chosen as the value of k′ at which the integrand becomes
negligibly small. Similarly, the upper limit on the summation over m was chosen as the value of m at which the summand
becomes negligibly small.
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