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Identifying structural signature of dynamical heterogeneity via the local softness parameter
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In this work we study the relationship between the softness of a mean-field caging potential and dynamics
at the local level. We first describe the local softness, which shows a distribution, thus identifying structural
heterogeneity. We show that the lifetime of the softness parameter is connected to the lifetime of the well-known
cage structure in supercooled liquids. Finally, our theory predicts that the local softness and the local dynamics is
causal below the onset temperature where there is a decoupling between the short and long time dynamics, thus
allowing a static description of the cage. With the decrease in temperature, the correlation between structure and
dynamics increases. The study shows that at lower temperatures, the structural heterogeneity increases, and since
the structure becomes a better predictor of the dynamics, it leads to an increase in the dynamical heterogeneity.
We also find that the softness of a hard, immobile region evolves with time and becomes soft and eventually
mobile due to the rearrangements in the neighborhood, confirming the well-known facilitation effect.
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I. INTRODUCTION

When a liquid is cooled fast, it evades crystallization, and
below the onset temperature enters a supercooled liquid do-
main where the properties of the liquid appear quite different
from that at high temperatures. Although the average structure
across the onset temperature appears to change continuously,
the dynamics shows a marked difference and below the onset
temperature it slows down substantially and also becomes
heterogeneous [1,2]. The origin of this dynamic heterogeneity
in supercooled liquids is a topic of intense research [1–8].
In analogy with crystals where under external perturbation
regions with structural defects show a higher probability of re-
arrangements [9,10], it is often suggested that in supercooled
liquids such structural defects may also be present, giving
rise to the dynamic heterogeneity. However, while identify-
ing structural defects in crystals with otherwise well-defined
structure is trivial, doing the same in a supercooled liquid
where particles are arranged in a disordered manner is a non-
trivial task [11].

Harowell and co-workers investigated different properties
of the initial configuration of a supercooled liquid and ana-
lyzed their correlation with irreversible rearrangements in the
system [3–5]. They found that the local inherent structure
potential energy [4] and free volume [5] does not have any
correlation with these rearrangements, but the Debye-Waller
factor [4] and the low-frequency normal modes of the sys-
tems are spatially correlated with the irreversible structural
rearrangements [3]. Liu and Manning have shown that under
shear, the rearrangements of particles take place in the regions
which contribute to these low-frequency normal modes [12].

*mb.sarika@ncl.res.in

Smessaert and Rottler did a quantitative analysis of these
low-frequency soft modes and showed that they are long lived
[7]. There are also studies where the dynamics is connected to
the elastic properties of the system [13–16]. The heterogeneity
of the local elastic modulus was found to be correlated with
the dynamic heterogeneity showing regions with low shear
modulus having higher plastic activity [14]. A recent study has
proposed that the slowing down of the dynamics is controlled
by the mesoscopic elastic stiffness parameter, which is more
sensitive than the shear modulus [15].

Apart from the above mentioned correlation between vi-
brational and elastic modes with the dynamics, there are also
other studies that calculate properties that are purely struc-
tural in nature and correlate them with the dynamics. Using
a mutual information technique, it was shown that coarse-
grained energy and density correlates with the dynamics [17].
Another technique that has been quite successful in recent
times is machine learning (ML). ML techniques allow for the
identification of a softness parameter that encodes in a single
number a large number of structural descriptors [6,8,18]. It
was shown that below the onset temperature, the dynamics
is controlled by this softness parameter [6] and this softness
parameter for attractive and repulsive systems is different,
which eventually leads to the difference in their dynamics
[18]. It was also shown that this softness parameter could
identify structural defects which are similar to dislocation in
the crystalline solids, and ductile materials have a large num-
ber of soft spots compared to brittle materials [19]. A recent
experimental study of colloidal glasses showed that this ML
softness parameter can predict the devitrification process [20].
Unfortunately, this softness consists of a linear reweighting
of the local pair correlation, the weights being blindly found
by the ML algorithm and its physical connection to structure
remains unclear.
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Interestingly in the liquid state theories [21] like mode
coupling theory [22] and density functional theory [23] the
structure plays an important role in determining the dynamics.
However, in the supercooled liquid regime, since the change
in the structure is small and gradual, whereas the dynamics
slows down dramatically, the validity of these theories has
been questioned. Also, studies showing that in this regime
systems with similar structures have orders of magnitude dif-
ferences in their dynamics further supports the idea that in this
regime structure does not play a role in the dynamics [24,25].
However certain extensions of these theories have been found
to work reasonably well in the supercooled regime [26–36]. In
a study involving some of us, the dynamic density functional
theory (DDFT) [23,32] was used to develop a microscopic
mean-field theory [37]. It was shown that the softness of the
mean-field caging potential described by the structure of the
liquid is connected to the dynamics for a wide variety of
systems, even for those which are out of equilibrium [29].
However, all these theories have their root in the liquid state
theory and thus only deal with the average properties of the
system. Also note that both softness and dynamics can have
a local microscopic variation and it is well known that the
correlation between average quantities does not guarantee a
correlation at a microscopic level. Thus using liquid state
theories to study local properties and a causal relationship be-
tween structure and dynamics at the local level is a nontrivial
and challenging task.

In this paper we study the correlation between softness
and dynamics at a microscopic level. Using DDFT formalism
we first describe the softness parameter at a local level in
terms of the structure of the liquid. We then show that this
microscopic softness can capture the structural heterogeneity,
and the lifetime of the softness parameter is similar to the
lifetime of the cage. This, we believe, is a nontrivial result.
The most important result is the observed causal relationship
between local softness and local rearrangements.

The rest of the paper is organized as follows. In the next
section we provide the simulation details. In Sec. III we
present the formalism we use to identify local rearrangements.
Section IV presents the details of the calculation of the soft-
ness parameter at the local level and looks at its distribution
and time evolution. In Sec. V we study the correlation between
the local rearrangement events and the local softness. Finally,
in Sec. VI we present the conclusion.

II. SIMULATION DETAILS

The system we studied is the Kob-Andersen model for
glass-forming liquid, which is a binary mixture (80:20) of
Lennard-Jones (LJ) particles [38]. The interaction between the
particles i and j, where i, j = A, B (the type of the particles),
is given by

Ui j (r) =
{

U (LJ)
i j (r; σi j, εi j ) − U (LJ)

i j

(
r (c)

i j ; σi j, εi j
)
, r � r (c)

i j ,

0, r > r (c)
i j ,

(1)

where u(ri j ) = 4εi j[(σi j/ri j )12 − (σi j/ri j )6], ri j is the distance
between particles i and j, σi j is the effective diameter of

the particle, and r (c)
i, j = 2.5σi j . The length, temperature, and

time are given in units of σAA, εAA/kB, and (mσ 2
AA/εAA)1/2,

respectively.
We use σAA = 1.0, σAB = 0.8, σBB = 0.88, εAA = 1.0,

εAB = 1.5, εBB = 0.5, mA = mB = 1, and Boltzmann constant
kB = 1. In our simulations we have used periodic boundary
conditions and a Nosé-Hoover thermostat with an integration
time step 0.0025τ . The time constants for the Nosé-Hoover
thermostat are taken to be 100 time steps. The total number
density ρ = N/V = 1.2 is fixed, where V is the system vol-
ume, and N = 4000 is the total number of particles.

III. IDENTIFYING REARRANGEMENTS

In this work we aim to correlate structure parameter with
the mobility at a local level; for identifying a fast particle
or an event, there are many ways which can be used, such
as doing isoconfigurational runs and identifying irreversible
reorganizations [3] or tracking the mean square displacement
over a period of time. Here we have used a method which was
first proposed by Candelier et al. [39,40] where they calculate
a quantity phop(i, t ) which captures for every particle i in a
certain time window W = [t1, t2], the cage jumps when the
average position of the particle changes rapidly. The expres-
sion for phop(i, t ) is

phop(i, t ) =
√

〈(�ri − 〈�ri〉U )2〉1/2
V 〈(�ri − 〈�ri〉V )2〉1/2

U , (2)

for all t ∈ W , where averages are performed over the time
intervals surrounding time t , i.e., U = [t − �t/2, t] and V =
[t, t + �t/2] where �t should be a timescale over which the
particles can rearrange. For a time window W the small value
of phop means the particle is contained within the same cage
and conversely if phop is large this means the particle is within
two distinct cages (see Appendix A for details). To identify
a rearrangement event, we set a threshold value pc, as done
in Ref. [18], where pc is chosen as the root mean squared
displacement 〈�r(t )2〉 value, computed at a time where the
non-Gaussian parameter α2 = 3〈�r4(t )〉

5〈�r2(t )〉2 − 1 has a maximum.
When phop > pc we consider that a rearrangement event has
taken place. The pc values are 0.115 for T = 0.47, 0.130 for
T = 0.53, 0.141 for T = 0.58, 0.159 for T = 0.7, and 0.178
for T = 0.8. We also vary �t from 15 to 75 LJ units and
find that qualitatively the results remain quite similar. For the
rest of the work we consider �t = 15 LJ units. We also find
that the neighborhood of the fast particles are structurally less
ordered (see Appendix B for details).

IV. COMPUTING LOCAL SOFTNESS

We present a brief sketch of the DDFT formalism which
is discussed in detail in earlier studies [29,32,37]. The time
evolution of the density, under mean-field approximation, can
be written in terms of a Smoluchowski equation in an effective
mean-field caging potential [23,32,37] which is obtained from
the Ramakrishnan-Yussouff free energy functional [41].
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The mean-field potential is written as

β	av
q (�r) = −

∫
dq

(2π )3

∑
uv

Cuv (q)
√

xuxv

× [Suv (q) − δuv]e
−q2�r2

6 . (3)

This formalism is similar to that used by Schweizer and
co-workers [31,32,42]. Here �r is the displacement
of the central particle from its equilibrium position.
β = 1/kBT and xu/v represent the fraction of particle of
type A/B in the binary mixture. In the above expression,
Suv (q) = (1/

√
NuNv )

∑Nu
i=1

∑Nv

j=1 exp[−iq · (ru
i − rv

j )] and
C(q) = 1 − S−1(q), where S(q) is the partial structure factor
of the liquid and C(q) and S(q) are in matrix form. Note that
this is a mean-field potential, and the assumption is that the
cage described by the structure of the liquid remains static
when the particle moves by a distance �r. The superscript
“av” implies that these are global quantities averaged over all
particles and also over ensembles. To quantify the average
softness of the potential, we fit the potential near �r = 0 to
a harmonic form β	av(r) = β	av

q (�r = 0) + 1
2 (�r)2/Sav,

where Sav is the softness parameter and 	av
q (�r = 0) is the

value of the potential at the minima,

β	av
q (�r = 0)

= −
∫

dq
(2π )3

∑
uv

Cuv (q)
√

xuxv[Suv (q) − δuv]. (4)

The subscript q in 	av
q (�r = 0) implies that for the calcu-

lation of the depth of the potential, the parameters are first
expressed in the wave number plane and then integrated over
q. From our earlier study [29] and, also as shown in Fig. 1(a),
we find that the softness is inversely proportional to the depth
of the potential 	av

q (�r = 0). We can write 1/Sav = a0 +
a1	

av
q (�r = 0) where the parameters a0 and a1 appear to be

constant.
In this present work the aim is to study the softness at the

local level, i.e., the softness of each particle in a single time
frame. According to our theory, this will require calculating
the structure factor in a single snapshot for each particle. The
calculation of the structure factor without time and particle av-
eraging leads to a sharply fluctuating nonintegrable function.
Thus we cannot use Eq. (4) to calculate the depth of the mean
caging potential at the local level.

However, this equation can also be written as an integration
over the radial distance and is given by

β	av
r (�r = 0) = −ρ

∫
dr

∑
uv

Cuv (r)
√

xuxvguv (r), (5)

where ρ is the density, guv (r) is the partial radial distribution
function, and Cuv (r) is the partial direct correlation function in
real space. Here again, the subscript r in β	av

r (�r = 0) im-
plies that for the calculation of the depth of the potential, the
functions are first expressed in the r plane and then integrated
over r. This r denotes the distance between the central tagged
particle whose softness is being calculated and its neighbors.
We should not confuse it with �r in Eq. (3), which denotes
the displacement of the tagged particle within its cage.
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FIG. 1. (a) β	av
q (�r = 0) is plotted against 1/Sav at differ-

ent temperatures and in inset β	av
r (�r = 0) is plotted against

β	av
q (�r = 0) at different temperatures, they both show linear pro-

portionality. (b) β	av
r (�r = 0) vs 1/Sav is also linear.

Interestingly, although Eqs. (4) and (5) are derived from a
microscopic theory, we can arrive at the same expression from
an intuitive argument. The direct correlation function repre-
sents the short-range effective interaction potential between
two particles [21]. Thus the product of the direct correla-
tion function and the structural information should provide
the effective two-body level caging potential of the tagged
particle.

The depth of the potential can be expressed both in terms
of the structure factor and the radial distribution function (rdf)
[Eqs. (4) and (5)]. In Eq. (5) apart from the rdf we need the
information of the direct correlation function. This is usually
calculated by Fourier transforming C(q), which in turn de-
pends on S(q). Since the aim here is to formulate a theory
that can calculate the local softness and, as discussed before,
calculating S(q) at a local level is not possible; thus, for the
calculation of C(r), we make an approximation. In the integral
equation theory, the hypernetted chain (HNC) approximation
[21] provides an expression for C(r) in terms of the rdf and
the interaction potential,

Cuv (r) = −βUuv (r) + [guv (r) − 1] − ln[guv (r)], (6)

where Uuv (r) is the interaction potential given by Eq. (1),
which is an input to the theory. Here we neglect the bridge
function present in the HNC approximation. Using this ap-
proximate form for C(r) we calculate 	av

r (�r = 0) and
compare it with 	av

q (�r = 0) [inset Fig. 1(a)]. Since we use
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an approximate form for C(r) we find that 	av
r (�r = 0) �=

	av
q (�r = 0) but they are proportional to each other. This can

be expressed as 	av
q (�r = 0) = b0 + b1	

av
r (�r = 0). Note

that if we know the values of b0 and b1 which appear to be
independent of temperature, then from the approximate value
of the depth of the potential 	av

r (�r = 0) we can obtain the
actual value of the depth of the potential 	av

q (�r = 0). We
can then exploit the relation between 	av

q (�r = 0) and S to
obtain the softness parameter. Thus we can write

1/Sav = a0 + a1 ∗ [
b0 + b1	

av
r (�r = 0)

]
= c0 + c1	

av
r (�r = 0), (7)

where c0 = a0 + a1 ∗ b0 and c1 = a1 ∗ b1. This predicted lin-
earity between the softness and the approximate depth of the
potential 	av

r (�r = 0) is shown to be valid in Fig. 1(b). The
values of the parameters are independent of temperature, and
we obtain them by calculating the depth of the potential and
its softness at the whole system level. We now assume that
Eq. (7) also describes the relationship between the local soft-
ness and the depth of the local potential with the same values
of the parameters (c0 and c1). Thus to calculate the softness at
a local level, we need to calculate the local 	r (�r = 0). The
parameters without the superscript “av” describes them at a
local level. Note that the expression of the depth of the local
caging potential is the same as Eq. (5), but the rdf and the
direct correlation function, which are input in the calculation,
are now obtained at the local level.

Although at local level we cannot calculate S(q), we can
calculate the rdf. The single-particle rdf in a single frame can
be expressed as a sum of Gaussians and is given by [43]

gi
μν (r) = 1

4πρr2

∑
j

1√
2πδ2

e− (r−ri j )2

2δ2 , (8)

where δ is the variance of Gaussian distribution. The variance
is used to make the otherwise discontinuous function a con-
tinuous one. In this calculation we assume δ = 0.09σAA. The
smaller the value of δ, the more accurate is the description of
the rdf and thus the potential (see Appendix B for details).

Using Eqs. (5), (6), and (8) we calculate the 	r (�r = 0)
at a local level. Then using Eq. (7) we calculate the softness
at a local level where c0 and c1 are predetermined from the
correlation of Sav and 	av

r (�r = 0). The results shown here
are only for the A particles [further calculation details of
	r (�r = 0) are given in Appendix B].

A. Distribution of local softness

In Fig. 2(a) we plot the distribution of β	r (�r = 0). With
decrease in temperature the distribution broadens and shifts to
higher values. Thus our formalism captures the heterogeneity
in the structure and its temperature variation. The broadening
of the distribution at lower temperatures predicts that with
a decrease in the temperature, there is an increase in the
heterogeneity of the structure. The shift to higher values is
an effect of the structure becoming more well defined at lower
temperatures leading to a deeper caging potential.

Exploiting the relationship between the depth of the caging
potential and the softness we obtain the distribution of soft-
ness P(S) at different temperatures [Fig. 2(b)]. The study
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FIG. 2. (a) Distribution of β	r (�r = 0) at different tempera-
tures. 	r (�r = 0) is calculated from Eq. (5) using the local g(r)
(see Appendix B). (b) Distribution of softness for different tempera-
tures. The softness values mentioned in the axis properties are scaled
by 10−3.

shows that with lowering of temperature, the distribution
moves to lower values of softness and also becomes narrower.
The narrowing of the P(S) at lower temperatures might appear
to contradict the increase in structural heterogeneity. However,
note that this is a combined effect of the inverse correlation
between the depth of the mean-field potential and the softness
and the fact that at lower temperatures P[β	r (�r = 0)] shifts
to higher values of β	r (�r = 0). This narrowing of softness
distribution at lower temperatures can also be seen in the ML
studies [18].

The shift of the softness distribution with temperature is
similar to but more prominent than that observed in the ML
study [6] and different from the study where the softness
was expressed as low-frequency vibrational modes, and the
distribution was found to be almost temperature independent
[7]. To the best of our knowledge, such a strong temperature
effect of the softness distribution has not been seen in other
existing formalism. However, in one of the earlier studies,
such shift in the local (per molecule) inherent structure energy
distribution with temperature was observed [44].

B. Time evolution of local softness

For the softness field to have some effect on the dy-
namics, it has to have a finite lifetime. Following an earlier
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FIG. 3. (a) Time evolution of softness for different temperatures. For comparison we also plot the overlap function. The solid lines are
CS (t ) and dotted lines are q(t ) values. The temperatures studied are 0.80 (black), 0.53 (red), and 0.47 (dark green). (b) The time evolution of
the softness propagator G(S, S0, t ) for a collection of particles that do not move beyond 0.5 till time t . The initial softness S0 ≈ 0.001. The
data are obtained at t = 0 (black), t = 0.01 (red), t = 10 (dark green), and t = 1000 (blue). (c) The time evolution of the average softness for
particles that do not move beyond 0.5 till time t . This is plotted for several groups of particles which have initial softness values ranging from
S0 ≈ 0.002 (black) to S0 ≈ 0.001 (magenta). The softness values mentioned in the axis properties are scaled by 10−3.

work [7] we define the time evolution of the softness field
as the average of the Pearson correlation given by CS (t ) =
〈 [Si (t ′ )−S̄(t ′ )][Si (t+t ′ )−S̄(t+t ′ )]

σS(t ′ )σS(t+t ′ )
〉 where S̄(t ) = 1/N

∑
i Si(t ) is aver-

age softness value at time t over all particles and σS(t ) is the
standard deviation of the softness at time t . The final average
given by the angular brackets is over time origin t ′, and also
over particles.

In Fig. 3(a) we plot the time evolution of the softness
CS (t ) and compare it with the overlap function q(t ) given
by q(t ) = 1

N 〈∑N
i=1 ω[|ri(t ) − ri(0)|]〉 where function ω(x)

is 1 when 0 � x � a and ω(x) = 0 otherwise. The cut-off
parameter a = 0.3 is chosen such that particle positions sep-
arated due to small amplitude vibrational motion are treated
as the same and a2 is comparable to the value of the MSD
in the plateau between the ballistic and diffusive regimes [45].
The α relaxation time τα is defined such that q(t = τα ) = 1/e.
We find that the time evolution of the softness shows a similar
two-step decay as the overlap function. The plateau becomes
more prominent at lower temperatures. This connects the soft-
ness parameter to the local cage around a particle. Ideally we
would expect that when a particle moves leading to the decay
of the overlap function, the local softness around that particle
changes. However, the softness field can change even when
the particle does not move out of the cage. This change in the
softness field around a particle happens due to rearrangements
in the neighborhood. Following the ML study [6], we define
the softness propagator G(S, S0, t ) which describes the time
evolution of the softness of particles that move less than a
distance 0.5 till time t . In Fig. 3(b) we plot G(S, S0, t ) at
T = 0.47 where we choose particles whose initial value of
softness S0 = 0.001. Note that in terms of the softness param-
eter value, these are hard (low softness) particles. We see that
with progress in time, the softness distribution of these parti-
cles, which is initially sharply peaked because of our choice
of particles, becomes wider, and the peak position shifts to the
right. Eventually, the distribution reaches the average form.
This evolution of softness of particles which are confined in a
region of �r = 0.5 leads to the initial sharp drop in CS (t ).

In Fig. 3(c) we plot the time evolution of the average soft-
ness 〈S(t )〉S0 for those particles which start with the softness
value S0 and displace less than the distance 0.5 at a time t .

We find that the softness evolves with time and at times larger
than the alpha relaxation time (τα = 700 at T = 0.47) all of
them reach the average value. This evolution of the softness
field has also been observed in the ML study [6].

V. CORRELATION BETWEEN LOCAL
REARRANGEMENT AND LOCAL SOFTNESS

The main objective of this work is to identify a parameter
that can describe structural heterogeneity and understand its
role in dynamical heterogeneity. We have already shown that
the softness of the mean-field potential can explain struc-
tural heterogeneity. We also find that the lifetime of this
softness parameter is comparable with the timescale of the
system dynamics. We now put this parameter through a more
stringent test and study the causal relationship between the
softness and dynamics. The dynamics expressed via local
rearrangement events is computed using a well-established
method [18,39,40,46]. We find that particles that undergo
local rearrangements have a less structured neighborhood (see
Appendix B for details). We also find that the percentage of
particles with a softness value greater than the peak, which
undergoes rearrangement increases with a decrease in tem-
perature. At T = 0.7 it is 65%, at T = 0.58 it is 69%, and at
T = 0.47 it is 75% (see Fig. 4).

To quantify the correlation between softness value and a
rearrangement event, we calculate the fraction of particles
having a specific value of softness that undergoes rearrange-
ment PR(S) as a function of S at different temperatures
[Fig. 5(a)]. We find that at all temperatures PR(S) has a soft-
ness dependence. Particles with higher values of softness have
a higher rearranging probability.

This dependence becomes orders of magnitude stronger at
lower temperatures. This shows that at lower temperatures,
the dynamics get more coupled to the local structure. We have
already demonstrated that with a decrease in temperature, the
structural heterogeneity increases. We believe that these two
factors, (i) increase in structural heterogeneity and (ii) larger
coupling between structure and dynamics, together lead to the
well-known increase in the dynamic heterogeneity at lower
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FIG. 4. The distribution of softness of all particles P(S) in the
system (black) and of those which are about to rearrange (red) at
different temperatures. The softness values mentioned in the axis
properties are scaled by 10−3.

temperatures. Particles with small softness values (confined
in a deeper mean-field potential) are less mobile compared to
particles that have larger values of softness (confined in a shal-
lower mean-field potential). We now check if the probability
of a local rearrangement can be expressed in an Arrhe-
nius form, i.e., PR(S) = P0(S) exp[−�E (S)/T ] where the
activation energy is a function of softness. log10 PR(S) as a
function of inverse temperature for different softness values
show a linear behavior [Fig. 5(b)], thus confirming the Arrhe-
nius form. The energy barrier �E (S), the slopes of the lines
are a function of S. PR/P0 against �E (S)/T [inset of Fig. 5(b)]
shows a data collapse, thus further validating the Arrhenius
form. At smaller values of softness PR(S) strongly depends
on T . In Fig. 5(b) we find that the extrapolated lines cross

each other at a certain temperature, and above this temperature
it appears that PR(S) increases with a decrease in S, which
is an unphysical result. Thus above this temperature, where
the extrapolated lines cross the correlation between PR(S) and
softness, does not remain valid. Interestingly the extrapolated
lines cross at T = 0.801 which is similar to the onset temper-
ature of the system [47]. Below we argue why it should be
related to the onset of the glassy dynamics.

The soft spots are equivalent to the defects in the crystals.
Thus they should come from a solidlike description of the
system. When describing the softness, we assume a well-
defined cage that remains static over the time period that we
are calculating the dynamics. We have also shown that the
lifetime of the softness has a correlation with the lifetime of
the cages. It is well known that in supercooled Kob-Andersen
model liquid, these cages appear below the onset temperature,
where the decoupling between the short and long time dy-
namics starts [48,49]. Thus our theoretical formalism rightly
predicts that the correlation between softness and dynamics
starts around the onset temperature, and at lower temperatures
where there is a larger decoupling between the short and long
time dynamics leading to a longer lifetime of the cages, the
local softness becomes a better predictor of the local rear-
rangement events.

In Fig. 5(c) we plot the activation energy �E (S) as a
function of S, and it shows that as softness decreases, the
activation energy increases. The range of energy in our study
(1.2–2.9) is narrower than that obtained in the ML study
(5.0–11.0) [6], but the energy values are similar. There are two
possible reasons why our study predicts a narrower range. (i)
To calculate the activation energy for different softness values,
we need to plot a temperature dependence of PR(S) which can
be done in the range of softness where the P(S) at different
temperatures overlap. Since P(S) in our study shows a larger
shift with temperature, this overlapping range is narrower than
the ML study. (ii) Our calculation of softness is obtained
from a mean-field microscopic theory, thus bound by the
two-body microscopic correlation functions. It is possible that
beyond what the theory predicts, other correlation functions
contribute to the softness parameter and are picked up in the
weight function of the ML study. However, as discussed in
the ML study, our study reveals that the dominant contribu-
tion comes from the two-body terms. In Fig. 5(d) we plot
the softness dependent overlap function q(S, t ) at different
softness values (highest, lowest, and moderate) and at two
temperatures. The timescale of the overlap function shows
a stronger softness dependence at lower temperatures. This
clearly shows a causal relationship between the softness and
the dynamics that manifests itself more at lower temperatures.

VI. CONCLUSION

In this work we describe the softness at the local level. We
find that the softness parameter predicts the presence of struc-
tural heterogeneity, which grows at lower temperatures and is
also longer lived. The lifetime of the softness parameter is cor-
related with the well-known cage structure in the supercooled
liquids. We establish a causal relationship between the local
softness and the local rearrangement events. We further show
that even for particles that do not undergo rearrangement, the
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FIG. 5. (a) The softness dependence of the fraction of particles with softness value S that undergo rearrangement PR(S), for different
temperatures. (b) PR(S) as a function of 1/T for five different softness values from S ≈ 0.001 (magenta) to S ≈ 0.0025 (black). �E is
obtained from this plot assuming PR(S) = exp(−�E/T ). The inset shows the collapse of these probabilities when PR/P0 is plotted against
�E/T . (c) The softness dependence of energy barrier �E . (d) q(S, t ) at different softness values (highest, lowest, and moderate), and at two
temperatures T = 0.58 (dashed line) and T = 0.47 (solid line). The softness values mentioned in the axis properties are scaled by 10−3. The
base of log is 10.

softness parameter evolves in time due to the dynamics in the
neighborhood, giving rise to the well-known facilitation effect
[50,51]. An immobile hard region can eventually become soft
and have a higher probability of becoming mobile due to
rearrangements in the neighborhood.

The results presented here are strikingly similar to that
obtained in the ML work, although the methodology of ob-
taining the softness in the two different studies are entirely
different [6]. As suggested by the authors themselves in the
ML study, since the softness depends on a large number
of local parameters, it is difficult to interpret the physical
meaning of the softness [52]. The conjecture is that through
the multiple local parameters, the information of the local
cage around particles is incorporated in the softness; however,
there is no direct proof of it. The advantage of the present
study is it calculates the softness from a microscopic theory
that describes the caging potential in terms of the structure
of the liquid. The depth of the caging potential is similar to
the local energy that is obtained by reweighting the local pair
correlation by the direct correlation function. We find that
there exists a causal relationship even between the depth of
this local caging potential and the dynamics (see Appendix B
for details). Given the direct correlation of the present softness
parameter and the liquid structure, it will be interesting to
understand its correlation with other existing definitions of

the soft fields like the softness parameter obtained in machine
learning studies, the quasilocalized vibrational modes, and the
elastic stiffness parameter. These problems will be addressed
in future studies.
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APPENDIX A: IDENTIFYING REARRANGEMENTS

In this work we aim to correlate structure parameter with
the mobility at a local level; for identifying a fast particle
or an event, there are many ways which can be used, such
as doing isoconfigurational runs and identifying irreversible
reorganizations [3] or tracking the mean square displacement
over a period of time. Here we have used a method which
was first proposed by Candelier et al. [39,40] where they
calculate a quantity phop(i, t ) which captures for every par-
ticle i in a certain time window W = [t1, t2], the cage jumps
when the average position of the particle changes rapidly. The
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FIG. 6. The value of phop as a function of time for a represen-
tative particle at T = 0.47. The dashed black line is the pc value at
T = 0.47. When phop > pc we consider a rearrangement event has
taken place.

expression for phop(i, t ) is

phop(i, t ) =
√

〈(�ri − 〈�ri〉U )2〉1/2
V 〈(�ri − 〈�ri〉V )2〉1/2

U , (A1)

for all t ∈ W , where averages are performed over the time
intervals surrounding time t , i.e., U = [t − �t/2, t] and V =
[t, t + �t/2] where �t should be a timescale over which the
particles can rearrange. For a time window W the small value
of phop means the particle is contained within same cage and
conversely if phop is large this means the particle is within
two distinct cages. To identify a rearrangement event, we
set a threshold value pc, as done in Ref. [18] where pc is
chosen as the root mean squared displacement 〈�r(t )2〉 value,
computed at a time where the non-Gaussian parameter α2 =
3〈�r4(t )〉
5〈�r2(t )〉2 − 1 has a maximum. When phop > pc we consider
that a rearrangement event has taken place. The pc values are
0.115 for T = 0.47, 0.130 for T = 0.53, 0.141 for T = 0.58,
0.159 for T = 0.7, and 0.178 for T = 0.8. We also vary �t
from 15 to 75 LJ units and find that qualitatively the results
remain quite similar. For the rest of the work we consider
�t = 15 LJ units. In Fig. 6 we plot the phop for a particle
which shows few rearrangement events.

In Fig. 7 we plot the rdf of the fast A particles gAA(r)
and gAB(r). For comparison we also plot the rdf of all A
particles. We find that the neighborhood of the fast particles
are structurally less ordered.
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FIG. 7. The r dependence of gAA(r) and gAB(r) for all particle
and its comparison with the ones which are rearranging. We see that
particles which are rearranging have a less structured neighborhood.
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FIG. 8. gAA(r) vs r when the rdf is calculated for each particle
using the approximate form given by Eq. (8) and then averaged over
time and particles. For comparison we also plot the simulated rdf.
With increase in δ the first peak becomes wider.

APPENDIX B: CALCULATION OF LOCAL RDF AND ITS
EFFECT ON THE SOFTNESS PARAMETER

The single particle rdf in single frame can be expressed as
a sum of Gaussians and is given by [43]

gi
μν (r) = 1

4πρr2

∑
j

1√
2πδ2

e− (r−ri j )2

2δ2 , (B1)

where δ is the variance of Gaussian distribution. The variance
is used to make the otherwise discontinuous function a con-
tinuous one. Usually the value of δ is assumed to be 0.12σBB

[17,19,43]. Now, if we take an average of gi
μν , then we should

recover the simulated rdf,

gμν (r) = 1

N

N∑
i=1

gi
μν (r), (B2)

where N is the number of particles over which we average
the rdf. In Fig. 8 we plot this average rdf between the A
particles for different δ values. In the same figure we also plot
the simulated rdf, which is obtained in the usual manner by
averaging the histograms. As expected, we find that with a
decrease in the width of the Gaussian [in Eq. (B1)] the rdf
obtained from Eq. (B2) better resembles the average rdf. Thus
this introduction of a finite value of δ does introduce some
error in the value of the rdf. In Fig. 9 we plot the rdf obtained
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FIG. 9. gAA(r) vs r for a particle calculated at a single snapshot,
for different δ values. For low δ values, even the first peak of rdf
splits into multiple peaks.
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FIG. 10. Single particle, single snapshot (local) radial distribu-
tion function of a representative particle for which phop > pc (red
square)and a particle for which phop < pc (black circle). The rdf is
calculated assuming δ = 0.09. It shows that the structure around the
fast particle is less well defined.

for a particle in a single snapshot for different values of δ using
Eq. (B1). We find that as δ decreases, even the first peak of the
rdf splits into multiple peaks. In Fig. 10 we plot the local rdf
of a representative particle for which phop > pc and a particle
for which phop < pc. It shows that the structure around the fast
particle is less well defined.

In the calculation of β	r (�r = 0) there are two terms, one
describing the interaction with other A particles and is a func-
tion of gAA and the other describing the interaction with the B
particles and is a function of gAB. We find that the correlation
between the dynamics and softness is best described when we
set an upper limit to the r integration such that they correspond
to the respective minimum of gAA and gAB. This implies that
it is the first nearest neighbors which contribute most to the
softness. Since we have a finite value of δ, the approximate rdf
at low r has a finite value where the actual rdf goes to zero.
The depth of the mean-field caging potential 	r (�r = 0) is
calculated as a product of C(r) and g(r) and the C(r) has terms
proportional to the interaction potential U (r) which diverges
at small r. Thus in this range, small errors in the rdf value get
magnified in the calculation of 	r (�r = 0). To minimize this
error, we also put a lower cutoff in the r integration. This lower
cutoff in r range is chosen as the value where the average rdf
calculated from the histogram vanishes.
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FIG. 11. Distribution of softness values for different values of δ

and we see that as δ increases the corresponding softness distribution
also widens, this is because the first peak in g(r) also spreads for
high δ values. The softness values mentioned in the axis properties
are scaled by 10−3.
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FIG. 12. The correlation of softness at different δ values. Al-
though the value of the softness depends on δ the relative degree
of softness of any particle is almost independent of δ. The softness
values mentioned in the axis properties are scaled by 10−3.

As expected, the value of the softness parameter is de-
pendent on the δ we use to describe the local rdf. However,
we show in Fig. 11 that the variation of δ just shifts the
value of the softness parameter. Since our analysis depends
more on the relative value of the softness parameter rather
than the exact value, the physics is expected to be independent
of δ. In Fig. 12 we plot the correlation of the softness of the
particles calculated using different values of δ. We find that
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FIG. 13. The distribution of softness of all particles P(S) in the
system (black) and of those which are about to rearrange (red) P(S|R)
for different δ values. Irrespective of the choice of δ, the softness
values of particles which are rearranging are higher. The softness
values mentioned in the axis properties are scaled by 10−3.
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FIG. 14. PR(S) vs S for different values of δ at different tempera-
tures. The softness values mentioned in the axis properties are scaled
by 10−3. The base of the logarithm is 10.

although the value of the softness depends on δ, the relative
degree of softness of any particle is almost independent of δ,
and the softness values show a strong correlation.

In Fig. 13 we plot the probability distribution of the local
softness P(S) at T = 0.47. In the same figure we also plot
the probability distribution of the softness of the particles just
before they undergo a rearrangement P(S|R). This comparison
is done for different δ values and the percentage of particles
that undergo rearrangement and has a value of softness greater
than the peak varies a little with δ. We find that for δ = 0.02
it is 66%, δ = 0.04 it is 74%, δ = 0.09 it is 75.2%, and for
δ = 0.12 it is 71%. This is similar to that observed in the
machine learning study where they found that the rdf provides
77% prediction accuracy of rearrangements [6]. In Fig. 14
we plot the fraction of particles that undergo rearrangement
as a function of softness at few temperatures. This plot is
done at different δ values. We find that irrespective of the δ

value, the study shows that the probability of rearrangement
depends on softness, and this dependence is stronger at lower
temperatures. For the rest of the study we assume δ = 0.09,
which is similar to the value used in earlier studies [17,43].
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FIG. 15. (a) The distribution of β	r (�r = 0) for all particles
in the system (black) and of those which are about to rearrange
(red). (b) Fraction of particle with β	r (�r = 0) value that un-
dergo rearrangement as a function of β	r (�r = 0) plotted for
different temperatures. (c) PR[β	r (�r = 0)] as a function of 1/T .
(d) β	r (�r = 0) dependence of energy barrier obtained from (c).
The base of the logarithm is 10.

In Fig. 15 we study the causal relationship between the
depth of the local caging potential β	r (�r = 0) and the local
rearrangements. We find that 62% of the particles that undergo
rearrangement has a depth of potential lower than the peak
value of the distribution [Fig. 15(a)]. We also find that the
probability of rearrangement is dependent on 	r (�r = 0)
and this dependence becomes stronger at lower temperatures
[Fig. 15(b)]. We also find that the dynamics can be expressed
in an Arrhenius form where the barrier is dependent on
	r (�r = 0) [Fig. 15(c)]. The correlation between the local
rearrangement and the depth of the local potential is present
only below the temperature where the log10 PR vs 1/T plots
cross each other. This temperature T = 0.80 is similar to that
predicted from the softness parameter and is connected to
the onset temperature of the system [47]. The barrier for the
Arrhenius dynamics is linearly proportional to the depth of the
caging potential.
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