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Mean-field description for the architecture of low-energy excitations in glasses
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In amorphous materials, groups of particles can rearrange locally into a new stable configuration. Such
elementary excitations are key as they determine the response to external stresses, as well as to thermal and
quantum fluctuations. Yet, understanding what controls their geometry remains a challenge. Here we build
a scaling description of the geometry and energy of low-energy excitations in terms of the distance to an
instability, as predicted, for instance, at the dynamical transition in mean-field approaches of supercooled liquids.
We successfully test our predictions in ultrastable computer glasses, with a gapped spectrum and an ungapped
(regular) spectrum. Overall, our approach explains why excitations become less extended, with a higher energy
and displacement scale upon cooling.
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I. INTRODUCTION

If a liquid is cooled rapidly enough to avoid crystallization,
its dynamics rapidly slows down until the glass transition
where equilibration cannot be achieved: a glass is formed, and
the material acts as a solid [1]. What controls the dynamics in
such supercooled liquids is a long-standing question of con-
densed matter [2,3]. Yet, new observations further constrain
the descriptions of this phenomenon. The “swap” Monte Carlo
algorithms [4] (in which nearby polydisperse particles can ex-
change positions, in addition to their usual translation move)
can speed up the dynamics by 15 orders of magnitude or more
and can change the glass transition temperature Tg by up to
a factor of 2 [5]. Because swap algorithms achieve thermal
equilibrium, theories of the glass transition in which thermo-
dynamics governs kinetics [6,7] appear ill suited to explain
such a dramatic difference [8] (see Ref. [9] for an alternative
view). Several theoretical works (including real-space [10],
replica [11], and mode-coupling [12] approaches) predict that
the dynamical transition temperature Tc below which thermal
activation becomes the dominant mechanism of relaxation
[2] decreases in the presence of swap, plausibly explaining
the speed up of this algorithm. However, understanding the
dynamics in the vicinity of Tc in finite dimension d remains a
challenge. By contrast, in the infinite dimensional limit [13],
mean-field treatments are exact: one finds that for T < Tc a
gap appears in the vibrational spectrum such that there are
no vibrational modes with a frequency ω < ωc, whereby ωc

grows upon cooling [14], and that the relaxation time diverges
at T → T +

c [15]. For finite d , the vibrational spectrum instead
presents a pseudogap (i.e., the spectrum vanishes as a power
law for small ω) consisting of quasilocalized modes (QLMs)
[16]. Moreover, thermally activated events or “hopping pro-
cesses” still occur for T < Tc, leading to a finite relaxation
time. What controls their architecture and energy scale is
unclear.

In a parallel development, there has been recently a consid-
erable effort to analyze both QLMs and elementary excitations
(minimal rearrangements leading to a new metastable state,

which form the building blocks of hopping processes) as a
function of glass stability [17–25]. Numerically, liquids are
equilibrated at a parent temperature, Tp, before being rapidly
quenched to T = 0, thus obtaining an inherent structure where
the Hessian of the energy can be analyzed and where excita-
tions can be triggered using a short thermal cycle. Strikingly,
it is found that the density of excitations is reduced by several
decades as Tp decreases [24] and that the characteristic num-
ber of particles involved rapidly decreases upon cooling. The
former observation is consistent with recent experiments on
vapor-deposited glasses [26,27]. Both facts are unexplained.

In this article, (i) we use mean-field and real-space argu-
ments to express the typical scales, namely, the length �loc, the
displacement δloc, the number of particles Nloc, and the energy
Eloc of low-energy excitations, assuming the presence of an
underlying gap of magnitude ωc in the vibrational spectrum.
We find our predictions to be accurately satisfied in gapped
glasses [28,29]. (ii) Our analysis implies scaling relations
among local properties �loc, δloc, Nloc, and Eloc, which we
find to be also satisfied also in regular ultrastable (gapless)
glasses. These predictions give an alternative way to study
the relaxation of glasses. Together with mean-field results
predicting a growing gap ωc upon cooling, they also explain
why low-energy excitations become smaller with a higher
energy as the glass stability increases.

The outline of the paper is as follows. In Sec. II, we provide
a scaling description for typical features of local excitations.
We then test its predictions, first, on gapped glasses in Sec. III
and, second, on regular ultrastable glasses in Sec. IV. We
conclude in Sec. V.

II. SCALING DESCRIPTION FOR LOCAL EXCITATIONS

We construct scaling relations for local excitations’ typical
volume, length, and particle displacement as a function of
an underlying ωc. Since the dynamic transition in a mean-
field description of liquids corresponds to the point where the
Hessian of the energy becomes stable [14,30], we consider a
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material with the stability control parameter ε > 0 [31]. An
instability driven by temperature occurs when T approaches
T −

c , and we thus consider ε ∼ (Tc − T ). Infinite-dimensional
[14,30] calculations, as well as effective medium theory [31],
then predict a vanishing minimal eigenvalue λc of the Hessian
that generically depend linearly on ε, corresponding to a gap
frequency of ωc ∼ √

λc ∼ √
ε, above which the spectrum of

the Hessian of the energy is a semicircle. In finite dimensions,
hopping processes between stable configurations will, how-
ever, occur.

To estimate the hopping processes’ spatial extension, we
consider two replicas of the system in the glass phase ε > 0,
and we denote by Q(r) their overlap. Q(r) characterizes the
similarity between two configurations at location r and is
unity if they are identical.1 In (infinite-dimensional) mean
field, the free energy of this coupled system undergoes a
saddle-node bifurcation as ε → 0 [34], at which point the
overlap is finite; we denote its value as Q∗. To describe the
spatial fluctuations of Q(r), we use the following Ginzburg-
Landau free energy [35,36],2 which schematically reads as
follows:

F [Q] =
∫

dd r

[
−ε(Q − Q∗) + 1

3
(Q − Q∗)3 + 1

2
(∇Q)2

]
.

(1)
At a finite ε, this free energy has a local minimum at an
homogeneous overlap Qeq such that Qeq − Q∗ = √

ε, which
characterizes the “distance” to the instability. By performing
an expansion around Qeq, we obtain the following for overlaps
close to the local minimum (only keeping terms that depend
on Q):

F [Q] ≈
∫

dd r

[√
ε(Q − Qeq)2 + 1

2
(∇Q)2

]
. (2)

The overlap Q(r) displays thermal fluctuations, whose length
scale and correlation volume can be deduced from the corre-
lation function G(r) = 〈(Q(r) − Qeq)(Q(0) − Qeq)〉. For the
quadratic free energy of Eq. (1), when r/ξ < 1, with ξ being
the correlation length, this classical computation [see Ap-
pendix A] gives

G(r) ∼ 1

rd−2
exp(−r/ξ ), with ξ ∼ ε−1/4. (3)

A similar length scale was predicted to affect the dynamics in
mode-coupling theory [37,38] and was observed to character-
ize the linear response near an instability [39]. Equation (3)
also leads to a characteristic volume in which fluctuations
are correlated. The typical volume V of an excitation can be

1The overlap between two configurations A and B can be de-
fined, for instance, from the square of their Euclidean distance
QAB = exp(−�AB), where �AB = 1

N

∑N
i=1(
xA

i − 
xB
i )2. A local over-

lap QAB(r) is then easily obtained by restricting this sum to particles
close to position r, see also Refs. [32,33].

2In Ref. [36], it is shown that an additional term should enter Eq.
(1). This relevant term is equivalent to spatial fluctuations of ε and
is also present in descriptions of the random-field Ising model. As
discussed below, the success of our approach suggests that this term
is small in our glasses and will affect physical properties only on
length scales beyond those we can reach.

related to the correlation length ξ by the spatial integration
V ∼ ∫

dd rG(r) ∼ ξ 2
∫

dr̃r̃ exp (−r̃) ∼ ξ 2 (where r̃ ≡ r/ξ ),
which is independent of dimension. Such a quadratic relation
between volume and length is already known to hold near
jamming [21,40]. We thus have V ∼ ξ 2 ∼ 1/

√
ε. In d = 3,

it implies dimensionally that V ∼ d0ξ
2, where d0 is the char-

acteristic particle size. In what follows we make the natural
assumption that low-energy elementary excitations do occur
on the characteristic volume and length scale of spontaneous
fluctuations, such that their number of particles Nloc ∼ V and
their length �loc ∼ ξ .

To obtain the characteristic displacement and
energy scale of such local excitations, we per-
form an expansion of a symmetric double well,
E (X ) = −mω2

c X 2 + χX 4 + o(X 4) ≡ E2 + E4 + o(X 4) (for
an asymmetric double well, both the energy barrier and the
difference generically scale as the result we obtain [29]).
Here X is the norm of the displacement field of the excitation,
which satisfies X 2 ∼ Nlocδ

2
loc, where δloc is the typical particle

displacement. By analyzing the extrema of E (X ), one readily
obtains that the energy barrier between the two minima is
Eloc ∼ m2ω4

c/χ ,3 and the distance between the local minima
follows X 2 ∼ mω2

c/χ , implying that δ2
loc ∼ mω2

c/(χNloc).
Ultimately, the term E4 ≡ χX 4 stems from the quartic

nonlinearity in the interparticle interaction potential (which
we assume to be short ranged). We denote its characteristic
magnitude κ , a microscopic quantity, which is thus finite even
as ωc → 0. Writing that the total quartic term is a sum of
the microscopic ones leads to E4 ∼ Nlocκδ4

loc, implying that
χ ∼ κ/Nloc. This scaling relation is confirmed empirically
for QLMs in Appendix C. We thus obtain δ2

loc ∼ mω2
c/κ and

Eloc ∼ m2ω4
c Nloc/κ . In summary, we get the following scaling

description (disregarding constant prefactors):

Nloc ∼ 1

ωc
, Eloc ∼ ω3

c , δloc ∼ ωc, �loc ∼ 1√
ωc

. (4)

Thus, we predict that close to an instability (e.g., ωc ∼√
ε ∼ √

Tc − T ), hopping processes are extended with small
characteristic displacement and energy scales. Away from an
instability, on the contrary, they become localized with large
displacements and energy.

III. GAPPED GLASSES

We first test Eq. (4) in three-dimensional gapped glasses,
obtained with “breathing” particles [10,28]. We use the pro-
tocol and parameters of Ref. [29] reviewed in Appendix B.
In a nutshell, we perform molecular dynamics (MD) simula-
tions in which the radius of all N particles is an additional
degree of freedom, whose stiffness K controls the particle
polydispersity. A long run at finite temperature is followed by
an instantaneous quench using the “FIRE” algorithm to zero
temperature. We then freeze the particle radii and measure the
vibrational spectrum, which presents a gap of magnitude ωc

that strongly depends on K .

3In Ref. [29], χ was assumed to be a constant, leading to the
incorrect relation Eloc ∼ ω4

c .
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Next, we study elementary excitations using thermally
activated rearrangements. They are obtained by heating our
samples with standard (nonbreathing) MD to a temperature Ta

for a duration ta, followed by an instantaneous quench using
again the FIRE algorithm to zero temperature. In practice,
Ta and ta are chosen so as to trigger one rearrangement per
sample on average. In practice we observe up to four rear-
rangements per sample in practice, which we then separate
into individual ones using an algorithm developed in Ref. [29].
A displacement field |δR〉 ≡ {δRi}, i = 1, . . . , N , which is a
vector of dimension Nd , is associated with each excitation.
We focus on elementary excitations that go to higher-energy
states. In doing so, we eliminate events where one double well
is very asymmetric and lies close to a saddle-node bifurcation
(and would then present a tiny activation barrier not captured
by our scaling assuming a symmetric well). These events can
also be suppressed if the quench is not instantaneous, as we
use below for regular glasses.

For each ωc, we obtain on the order of 100 excitations.
We consider the median of the following observables: (i) the
number of particles involved in a rearrangement, Nloc ≡ NPr ,
where Pr ≡ ∑

i(δRi )2/(N
∑

i(δRi )4) is the participation ra-
tio of |δR〉; (ii) the particle characteristic displacement
δloc ≡ X/

√
Nloc, where X = ||δR||; (iii) the length �loc, de-

fined from the second moment of the position of the particles
involved in the rearrangement, namely, �loc ≡ 2

√
I , where I ≡∑

i mi||�Ri||2, mi = ||δRi||2/
∑

i ||δRi||2, and �Ri = Ri −∑
j m jR j is the relative position of particle i with respect to

the center of the rearrangement; and (iv) the energy difference
before and after the rearrangement Eloc. We compare this
last quantity to another estimate of the characteristic energy,
obtained in Ref. [29]. In particular, after thermal cycling, the
density of quasilocalized modes no longer presents a gap.
Rather it presents the pseudogap DL(ω) = A4ω

4 for small ω.
From it, we extract a characteristic energy scale by fitting
A4(Ta) by an Arrhenius behavior.

Our results are presented in Fig. 1 (left column) (see Ap-
pendix D for the whole distributions): the vanishing scale
of particle displacement δloc ∼ ωc is tested in Fig. 1(a),
and Eloc ∼ δ3

loc is tested in Fig. 1(b). It is found to be
slightly smaller but comparable to the previously reported
quantity Ea (open markers) [29]. Nloc ∼ 1/δloc is tested in
Fig. 1(c), and �loc ∼ 1/

√
δloc is tested in Fig. 1(d). Overall,

we find a good agreement between our scaling predictions and
measurements.

IV. REGULAR ULTRASTABLE GLASSES

In regular glasses, the density of QLMs does not display
a gap [17–19] even before reheating. Indeed, at any finite
temperature a gap must necessarily fill up in finite dimensions,
because some excitations transition to their high-energy state.
If the latter is barely stable, a low-frequency quasilocalized
mode appears (see illustration in Appendix E). This effect
does not affect the scalings of excitations (which are un-
changed), but it leads to the emergence of a pseudogap [29]
that makes the characteristic frequency ωc hard to extract.

Moreover, in finite dimension due to the spatial hetero-
geneity of the material, the distance to an elastic instability
must vary spatially. This effect is a relevant perturbation:

FIG. 1. Test of our scaling predictions in gapped (left) and
regular (right) glasses. As a function of the particle characteristic
displacement δloc, from top to bottom we have the following: (a) Gap
magnitude ωc for the gapped glasses (different markers and color),
and (e) inverse of the parent temperature Tp for regular glasses, at
different reheating temperatures Ta (different color and markers).
(b), (f) Energy difference of a local excitation Eloc, and (b) for
gapped glasses also its global proxy Ea obtained from the density
of quasilocalized modes [29] (open markers). (c), (g) Number of
particles Nloc in a rearrangement. (d), (h) Characteristic length �loc

of a rearrangement. Note that we report the frequency ω in units of
the Debye frequency ωD, the parent temperature Tp in units of the mi-
croscopic energy divided by the Boltzmann constant, the energy E in
units of the system’s interaction energy density u0, and length (� and
δ) in terms of the typical interparticle distance d0 (see Appendix B
for details).

exponents entering Eq. (3) should depart from their mean-
field value [35,36]. Yet, if these structural fluctuations are
small, they will affect exponents only at large length scales
inaccessible in glasses,4 and mean-field exponents will be
observed. As shown above, it appears to be the case in our
very homogeneous gapped glass. Yet, it may not be so in
“normally” prepared ultrastable glasses.

To study this question, we focus on the local scaling re-
lationships that follow from Eq. (4), which can readily be
tested. Configurations equilibrated by swap at different parent

4The marginality condition ωc = 0 is not observed even when
quenching from high temperatures, leading to a finite length scale
[31].
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temperatures Tp are taken from Rainone et al. [25], who used
the specific liquid model of Ref. [41], which we then instanta-
neously quench from Tp to Tp/3, followed by a small cooling
rate Ṫ to zero temperature. This preparation protocol is used
so as to minimize the number of modes that are close to an
instability. Thus, it limits the number of excitations that go to
a lower-energy state upon temperature cycling and allows us
to more easily sample statistics on the excitations’ increasing
energy.

For each Tp, we again obtain on the order of 100 excitations
of these inherent structures through temperature cycles at a
low Ta and a short time ta, from which Nloc, Eloc, �loc, and
δloc are then extracted. As shown in Fig. 1, right column, we
again find a very good agreement with our predictions: the
geometrical description of localized excitations that follows
from Eq. (4) appears to hold also in regular glasses. We
checked that the scaling predictions also hold well at other
two higher reheating temperatures Ta (see Appendix F). Thus
a simple mean-field approach already captures the geometry
and energy of excitations quite satisfyingly.5

Our second claim is that the increased stability upon
cooling predicted by mean-field methods (corresponding to
a growing characteristic frequency ωc(Tp) as Tp decreases),
together with our scaling relations, Eq. (4), implies that in reg-
ular glasses local excitations must then become less extended
and involve fewer particles—precisely as has been observed
in the literature [18–20,22–25] and is confirmed in Figs. 1(g)
and 1(h). We further predict that the characteristic energy
of excitations and the displacement should (rapidly) increase
upon cooling (i.e., decreasing Tp) as confirmed in Figs. 1(e)
and 1(f).

Note that a (crude) estimate of some effective ωc(Tp) can be
obtained by comparing the displacement magnitude δloc of the
lowest-energy excitations in our samples to those of gapped
samples, i.e., comparing Figs. 1(a) and 1(e), which corre-
sponds to a rapidly growing characteristic frequency upon
cooling (see Appendix G for details).

V. CONCLUSION

We have developed a scaling description for the archi-
tecture of local excitations in glasses, expressed in terms of
the distance to an elastic instability where their characteristic
length diverges. In gapped glasses obtained with breathing
particles, this distance is embodied in the magnitude of the
gap ωc. This description appears to provide guidance in reg-
ular glasses as well, where a characteristic frequency is more
challenging to identify from the vibrational spectrum [29].

Using the mean-field result that the gap ωc grows upon
cooling, together with our arguments, explains why excita-
tions become less extended upon cooling and leads to two

5When the displacements δ become of order of the particle size,
we found for the gapped glass that a small fraction of excitations are
strings [29]. As we will report elsewhere, it is also true for regular
glasses. Although strings are presumably not accurately described
by mean-field arguments, their fraction is small: removing them from
the statistics does not change our observations.

other confirmed predictions. First, excitations have larger dis-
placements in stable glasses. Second, we predict a rapidly
growing low-energy scale for local excitations, corresponding
to two decades in the temperature range probed as is appar-
ent in Fig. 1(f). The density of two-level systems should be
diminished by this growing energy, as observed numerically
[24,42], since it implies a larger tunneling barrier that will
eventually become hard to overcome by quantum fluctuations
on experimental timescales [29].

Note that our mean-field arguments appear to yield appro-
priate exponents in three-dimensional simulations, at least in
the limited range accessible in glasses [43]. This situation is
reminiscent of the jamming literature [13,31] and suggests
that structural disorder in glasses induces limited hetero-
geneities in their elastic properties. It would be interesting
to design a Ginzburg criterion, in the spirit of Ref. [32], to
estimate beyond which length scale finite-dimensional effects
could be detectable.

Another interesting question concerns the differences be-
tween the geometry of QLMs and excitations [42]. In
particular, the length scale �c below which continuum elastic-
ity breaks down when a force dipole is exerted [39], reported
to characterize the core of QLMs [21,25], also decreases un-
der cooling [25]. In Appendix H, we observe that �c indeed
decouples from the excitations’ length scale �loc in our most
stable glasses (gapped or regular).

Looking forward, the scaling description of low-energy
elementary excitations in glasses may give an alternative way
to describe hopping processes in glasses, going beyond simple
“elastic” models proposed in the past [44]. A positive item is
their predicted rapidly growing energy scale Eloc under cool-
ing, reminiscent of the fragility of liquids. Yet, a description
of all elementary excitations (not only the low-energy ones
studied here) is ultimately needed to make progress on that
long-standing question.
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APPENDIX A: DERIVATION OF CORRELATION
FUNCTION G

For pedagogical completeness, here we rederive the cor-
relation function G(r − r′) of the overlap Q(r), which is a
standard result from the Ginzburg-Landau theory developed
in critical phenomena. Note that we denote the distance r − r′
explicitly, while in the main text we use translational invari-
ance to render the notation shorter.
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TABLE I. Parameters beyond those listed in Refs. [25,29,41].

Gapped glasses

ω̃c ωD u0 d0 Ta ta nall npos Separation G B

1.64 17.794 2.0643 0.738 0.15 500 655 442 Yes 21.488 78.591
1.19 18.686 4.4520 0.918 0.07 500 915 175 Yes 18.570 73.843
0.85 18.698 5.3497 0.963 0.03 500 1245 117 Yes 17.581 72.993
0.65 18.565 5.8704 0.988 0.01 500 1823 95 Yes 16.840 72.599

Regular glasses

Tp ωD u0 d0 Ta ta nall npos Separation G B

0.30 18.134 4.8245 1.305 {0.4, 0.5, 0.6} 100 {115, 196, 406} {95, 169, 360} No 14.267 44.032
0.35 17.718 4.9115 1.305 {0.1, 0.2, 0.3} 100 {197, 328, 432} {135, 235, 324} No 13.592 44.542
0.40 17.298 4.9870 1.305 {0.01, 0.02, 0.05} 100 {167, 246, 406} {80, 127, 260} No 12.930 44.982
0.45 16.841 5.0551 1.305 {0.005, 0.01, 0.02} 100 {283, 417, 532} {96, 179, 264} No 12.233 45.374
0.50 16.361 5.1147 1.305 {0.003, 0.005, 0.01} 100 {411, 560, 794} {121, 181, 294} No 11.523 45.726
0.55 15.928 5.1668 1.305 {0.001, 0.002, 0.005} 100 {280, 450, 798} {69, 107, 264} No 10.907 46.028

Let us define φ(r) ≡ Q(r) − Qeq. The two-point correlation function is defined as an average over all possible overlap
configurations, with a weight given by the free-energy F [φ]. It thus reads

G(r − r′) = 〈φ(r)φ(r′)〉

=
∫

Dφ φ(r)φ(r′) exp(−βF [φ])

=
∫

Dφ φ(r)φ(r′) exp

{
−β

∫
dd r

[
2
√

ε(φ(r))2 + 1
2 (∇φ(r))2]}

=
∫

Dφ φ(r) φ(r′) exp

⎧⎪⎨
⎪⎩−

∫
dd r

∫
dd r′

⎡
⎢⎣φ(r′) βδ(d )(r − r′)

(
2
√

ε − 1
2∇2

)
︸ ︷︷ ︸

∼G−1(r−r′ )

φ(r)

⎤
⎥⎦

⎫⎪⎬
⎪⎭. (A1)

Note that
∫
Dφ is a functional integral over all possible over-

lap configurations, and the last line is obtained by integrating
by parts.

Because this path integral has been put in a quadratic form,
this simply amounts to computing a Gaussian integral where
the operator δ(d )(r − r′)(2

√
ε − 1

2∇2) ∼ G−1(r − r′) is the
functional inverse of the correlator G(r − r′). This literally
means that G−1(r − r′) and G(r − r′) must satisfy the relation

∫
dd r′G−1(r − r′)G(r′ − r′′) = δ(d )(r − r′′)

⇒ (
2
√

ε − 1
2∇2

)
G(r − r′) ∼ δ(d )(r − r′). (A2)

This differential equation can be easily solved in Fourier
space, for instance. In direct space, when |r − r′|/ξ < 1, we
reach Eq. (3) in the main text:

G(r − r′) ∼ 1

|r − r′|d−2 exp (−|r − r′|/ξ ),

with ξ = 1
2ε−1/4.

APPENDIX B: PARAMETERS

We list all parameters beyond those listed in
Refs. [25,29,41]. For gapped glasses we use ensembles
comprising n = 103 samples at N = 8000 particles in three
dimensions for four different gap frequencies ω̃c (ω̃c ≡ ωcωD,
see below for the definition of ωD), taken from Ji et al. [29].
For regular glasses we use ensembles comprising n = 104

configurations at N = 2000 particles in three dimensions for
six different parent temperatures Tp, taken from Rainone et al.
[25]. The relevant parameters are listed in Table I, where, in
addition to the parameters described in the text, we have the
following.

(i) d0, the typical interparticle distance, is defined as the
peak in the particle-particle correlation function.

(ii) nall is the total number of excitations triggered using
temperature cycling; npos is the number of excitations going
to higher-energy minima (“positive” excitations).

(iii) ωD = [18π2ρ/(2c−3
t + c−3

l )]1/3 is the Debye
frequency, with the particle number density ρ ≡ N/V
and where V is the volume; ct = √

G/(mρ) and
cl = √

(B + 4G/3)/(mρ) are the transverse and longitudinal
velocity, related to the shear modulus G and bulk modulus B;
and m is the particle mass (taken to be equal for all particles).
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FIG. 2. NPn vs 1/χ in gapped glasses (left panel) and in regular
glasses (right panel).

(iv) u0 is the summation of the pair interaction energy
divided by N .

Note that ωD, G, B, and u0 are obtained as average values
of sample-to-sample fluctuating quantities.

The units in Table I are as follows. Length (d0) is in units
of D0, the initial diameter of small particles in gapped glasses
and the diameter of smallest particles in regular glasses
(particles sizes are inverse power law distributed, and D0 is
the smallest diameter, i.e., the lower bound of the diameter
distribution). Energy (u0) is in units of ε0, the prefactor of the
interparticle interaction potential. Temperature (Ta and Tp) is
in units of ε0/kB, where we set Boltzmann’s constant kB to

1. Time (ta, ω̃−1
c , ω−1

D ) is in units of
√

mD2
0/ε0, where m is the

particle mass (equal for all particles). The bulk modulus B and
the shear modulus G are in units of ε0/D3

0.
Note, furthermore, the following.
(i) In preparing regular glasses, a protocol is adopted

where we instantaneously quench to Tp/3 and then slowly
quench at a rate of Ṫ = 10−3 so that the fraction of “pos-
itive” excitation is not low (see Table I). We checked that,
if the glasses are instead prepared by instantaneous quench
(like we do for the “breathing” particles), not more than
5% of excitations are “positive” excitations at the high-
est Tp we consider, which is inefficient to obtain good
statistics.

(ii) Since less than 10% of samples rearrange in reg-
ular glasses, we assume that each rearrangement is an
elementary excitation, and we do not apply our separation
algorithm [29].

(iii) For the “breathing particles” the pressure is fixed to a
constant value. This is why d0 is different at different ωc, and
we adopt the notation V ≡ 〈Vs〉, with Vs being the volume of
the individual samples. In regular glasses, instead, the volume
is fixed to a constant value.

APPENDIX C: QUARTIC TERM FOR
QUASILOCALIZED MODES

Here we show that the participation ratio Pn of quasilocal-
ized modes is proportional to the inverse of the coefficient
χ of the quartic term along quasilocalized modes, both in
gapped glasses and in regular glasses. In particular, NPn ≡
1/

∑
i ||�i||4, where i is the eigenmode component on the

ith particle. χ ≡ (∂4
rα

U )i jkl�i� j�k�l , where (∂4
rα

U )i jkl is the
fourth-order (spatial) derivative of the total interaction poten-
tial energy, and it is a rank four tensor of size (Nd )4. For
details see Refs. [29,45]. The scatter plots in Fig. 2 show that
at low NPn the scaling is consistent with NPn ∼ 1/χ . We use
25 samples at N = 32 000 in gapped glasses and 100 samples
at N = 2000 in regular glasses to calculate NPn and χ , and
these samples are also used in Appendix H.

APPENDIX D: DISTRIBUTIONS FOR
HOPPING PROCESSES

Figure 3 shows the distributions of the bare quanti-
ties NPr , of the energy difference E12, of the length

√
I ,

and ||δR||/√NPr of thermally activated rearrangements, i.e.,
“hopping processes.” The medians are shown using a vertical
line, defining Nloc ≡ median(NPr ), Eloc ≡ median(E12/u0),
�loc ≡ median(2

√
I/d0), and δloc ≡ median(||δR||)/(Nlocd0).

Data are taken with the conditioning on excitations going to
higher-energy state: E12 > 0 both in gapped glasses (first row)

FIG. 3. The first row shows the corresponding distributions for gapped glasses. The second row shows the distributions for regular
ultrastable glasses at the highest Ta that we consider (see Fig. 5), as it corresponds to the highest number of excitations. The solid vertical
lines indicate the median values of Nloc, Elocu0, �locd0/2, and δlocd0 that are discussed in the main text.
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FIG. 4. (a) Sketch of density of QLMs in log-log scale for a
“gapped” (blue) and a “regular” (red) glass. (b) Sketch of the reser-
voir picture [29], in which a gap in the vibrational spectrum is filled
up by thermally activating excitations of frequencies ω > ωc. This
process (c) corresponds to excitations moving from a lower-energy
minima with a characteristic frequency ω ≈ ωc to a higher-energy
one with a characteristic frequency ω < ωc.

and regular glasses (second row). Distributions are peaked
around a maximum, except for the energy distribution whose
distribution is maximum in zero (corresponding to symmetric
double wells).

APPENDIX E: FILLING UP THE GAP

Figure 4 shows that, in finite dimension, the gap in the
vibrational spectrum is filled up by thermally activating ex-
citations. In particular, we expect that upon reheating with
a small temperature, the vibrational spectrum will be filled
up with modes with excitations from a “reservoir” of excita-
tions at frequencies ω > ωc [29]. This process corresponds
to excitations moving from a lower-energy minima with a
characteristic frequency ω ≈ ωc to a higher-energy one with
the characteristic frequency ω < ωc. Ultimately, this effect
leads to a pseudogap DL(ω) = A4ω

4 at ω < ωc. Yet, the exci-
tations responsible for populating the gap have a characteristic
frequency ω ∼ ωc in their lower-energy state, and their archi-
tecture and energy must follow our predictions for a gap of
magnitude ωc.

FIG. 5. Test of our scaling predictions in regular glasses for three
reheating temperatures Ta (the reheating duration ta is kept constant,
see Table I).

FIG. 6. The estimated ωc vs Tp, in regular glasses.

APPENDIX F: DIFFERENT REHEATING
TEMPERATURES Ta (REGULAR GLASSES)

Figure 5 investigates the scaling predictions at three tem-
perature Ta in regular glasses. The results found are overall
robust toward the change of Ta. We can still discern some sys-
tematic effects: excitations have a larger energy, present larger
displacements, and involve more particles as Ta increases.

APPENDIX G: CRUDE ESTIMATE OF
ωc IN REGULAR GLASS

In this section, we estimate ωc in regular glasses. We sup-
pose in gapped glasses and regular glasses ωc varies with
δloc in the same way. Since we know both ωc and δloc in
gapped glasses, we fit the data by ln(ωc) = c1 + c2 ln(δloc) to
extract c1 and c2. We employ them to get an estimate of ωc

at the lowest-energy excitations (lowest δloc at each Tp). The
results in Fig. 6 show ωc increases with decreasing Tp, as we
expected.

FIG. 7. Correlation function c(r) of the response to a dipole force
response (left panels) and rescaling to extract �c (right panels), for
gapped glasses (top panels) and regular glasses (bottom panels).
Note that we find for gapped glasses A1 = {1.1, 6.2, 10, 15}, and
for regular glasses we find A1 = {1, 1.2, 1.4, 1.6, 1.9, 2.3}.
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APPENDIX H: MEASUREMENT OF �c

To extract the typical global length �c, we perturb the
glasses with a local dipole force and look at the correlation
function c(r), which is defined as in Refs. [25,39]. �c is de-
fined as the length where rescaling c(r) collapses the data (see
Fig. 7). Note that for this global measurement we use a bigger
system (25 samples at N = 32 000; whereby we checked that
these lc collapse the rescaled c(r) at N = 8000 as well, except
for a small difference at our smallest gap) at each ω̃c in gapped
glasses, and we use 100 samples at N = 2000 at each Tp in
regular glasses to extract �c.

In Fig. 8, we show that �c decouples from the excitation
length scale �loc in stable (i.e., gapped and regular) glasses, at
large δloc.

FIG. 8. Figures 1(d) and 1(h) from the main text with superim-
posed �c (open markers). �c in regular glasses is shown as a function
of δloc for the smallest Ta for each parent temperature Tp (for that
reason we only show �loc for those Ta). Notice that, like �loc, �c is
reported in units of d0.
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