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Experimental evidence for logarithmic fractal structure of botanical trees
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The area-preserving rule for botanical trees by Leonardo da Vinci is discussed in terms of a very specific
fractal structure, a logarithmic fractal. We use a method of the numerical Fourier analysis to distinguish the
logarithmic fractal properties of the two-dimensional objects and apply it to study the branching system of real
trees through its projection on the two-dimensional space, i.e., using their photographs. For different species of
trees (birch and oak) we observe the Q−2 decay of the spectral intensity characterizing the branching structure
that is associated with the logarithmic fractal structure in two-dimensional space. The experiments dealing with
the side view of the tree should complement the area preserving Leonardo’s rule with one applying to the product
of diameter d and length l of the k branches: di li = k di+1 li+1. If both rules are valid, then the branch’s length
of the next generation is

√
k times shorter than previous one: li = √

k li+1. Moreover, the volume (mass) of all
branches of the next generation is a factor of di/di+1 smaller than previous one. We conclude that a tree as a
three-dimensional object is not a logarithmic fractal, although its projection onto a two-dimensional plane is.
Consequently, the life of a tree flows according to the laws of conservation of area in two-dimensional space, as
if the tree were a two-dimensional object.
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I. INTRODUCTION

One of the discoveries of Leonardo da Vinci is known as
the area-preserving rule that the section area below a given
branching point is equal to the sum of the section areas of
the daughter branches above this point: d2

i = k d2
i+1 with d

the diameter of the branch and k the number of branches [1].
This formulation underlies the structural properties of tree
models [2–9] and builds a playground for computer model-
ing of treelike objects [10,11]. Although Leonardo’s rule is
widely used in theoretical models, computer modeling, and
allometric studies [4–8], there is very little experimental work
confirming its validity. Moreover, the authors of the extended
and deep review [9] analyzing available experimental works
[12–14] have concluded that “the Leonardo da Vinci’s rule
does not hold in general conditions.” Indeed, the experimental
proof of this law requires great physical efforts and dexterity
from the experimenter, if he or she decides to measure each
branch of the tree without harming the tree itself.

In this paper we propose and test experimentally a way
(accessible to everyone) to convince oneself that a branching
system of a typical tree is described by a special, logarithmic
fractal structure obeying the area-preserving (Leonardo-like)
rule. We believe that we give experts a tool with which to
measure the beauty of a tree through the fractal characteris-
tics, such as the logarithmic subdimension and an applicable
scaling range. We start with the famous book of Mandelbrot
[15], where he not only gave the general definition of the
fractal objects but also described the borderline case, the so-
called logarithmic fractal. Its probing function for the fractal
measure can be written for the ruler length r as

h(r) = rD f [ln(1/r)]�, (1)

where D f = DT (DT is a topological dimension) and � is a
subdimension.

These logarithmic fractals have received minimal, if not
zero, attention for the simple reason that no one has under-
stood how many objects with the logarithmic fractal structure
surround us. The botanical tree branching structure is a prime
example of the logarithmic fractal that was first noticed in
[16]. Indekeu et al. presented the top-bottom view of the
sections of several successive levels of a branching tree con-
structed according to Leonardo’s rule (see the inset in Fig. 1).
It was shown that the top-bottom view of the tree is the log-
arithmic fractal since this image is described by the probing
function given by Eq. (1) with D f = 2 and � = −1 [16]. In
other words, the logarithmic fractal with D f = 2 and � = −1
is an adequate mathematical model for description of the
top-bottom view of the tree built on Leonardo’s principle.
The equivalence of Leonardo’s principle and the logarithmic
fractal structure is shown in Appendix A.

Logarithmic fractals have features distinguishing them
from the classical fractals. First, the area of a logarithmic
fractal, in contrast to the classical one, increases with an
additive rather than multiplicative constant, upon reducing the
ruler length by a fixed rescaling factor. This property reflects
directly the area-preserving Leonardo’s rule. Second, the log-
arithmic fractal is self-similar but not uniform. The object can
be “dated” locally since the size of its sections is indicative of
their age [16].

Leonardo’s own sketches demonstrate the side (not top-
bottom) views of the tree [1], as the primary goal of the artist
was to reflect the beauty of the tree as seen by human eyes.
A model for the side view, often referred as a Pythagoras tree
[17], is built on the Pythagorean theorem: the three sides of a
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FIG. 1. The averaged intensities vs Fourier coordinate Q for the
picture of the seventh generation of the Leonardo tree (top-bottom
view). The latter is shown as inset.

right triangle are interconnected so that the area of the square
built on the hypotenuse is equal to the sum of squares’ areas of
its legs (see an inset in Fig. 2). The principle of a Pythagoras
tree obeys the area-preserving rule, similarly to Leonardo’s
rule. The insignificant difference in the two principles is that
the Pythagoras tree splits for two branches only at each gen-
eration, while the number of branches is not limited for the
Leonardo tree. It is interesting to note that the Pythagoras tree
(inset in Fig. 2) can be disposed into three Leonardo trees
(inset in Fig. 1): one is composed of the first, third, fifth,
etc. generations, while the other two are made of the second,
fourth, sixth, etc. generations. Therefore the Pythagoras tree
can be identified as the logarithmic fractal with the fractal
measure given by Eq. (1) and the same D f = 2 and � = −1
(as well as the Leonardo tree). Using this scaling properties

FIG. 2. The averaged intensities vs Fourier coordinate Q for
the picture of the eleventh generation of the Pythagoras tree (side
view).The latter is shown as inset.

one can theoretically prove that the “forest” modeled from the
Leonardo trees is one very big tree that is described as the
logarithmic fractal. Please note that this concept supports the
theory of the forest taken as “a scaled version of the branching
network of the largest tree” [6].

There have been numerous attempts to construct tree mod-
els based on the physical properties of real botanical trees
[2,3,9,10]. Both the “pipe model” [2,9] and the elastic simi-
larity model [3] rely on the scaling properties of the branching
tree referring to their fractal nature. In an attempt to modern-
ize the elastic similarity model the author of [10] suggested
distinguishing the fractal properties of the branch’s diame-
ter obeying Leonardo’s rule and that of a branch’s length
described by the classical fractal structure, thus pointing
out the importance of accounting for the branch’s length.
However, the understanding that Leonardo’s rule is equiv-
alent to the logarithmic fractal structure was still missing.
Equally mistakenly, without any experimental evidence it was
stated that the branch length obeys the law of the classical
fractal.

In this paper, in Sec. II we introduce the numerical Fourier
analysis as an analog of the small angle scattering (SAS)
technique that has its own classification of fractal objects
and that distinguishes cases of volume fractals and surface
fractals. Moreover, SAS techniques are able to identify an
intermediate case, logarithmic fractals. In Sec. III we apply
numerical Fourier analysis as an analog of SAS to the pictures
of the Leonardo tree and Pythagoras tree and demonstrate
that these objects can be considered and called logarithmic
fractals. These numerical experiments support the theoretical
consideration given in [16]. In Sec. IV we apply the numerical
Fourier analysis to the photos of trees and find that it obeys
the same law (ν close to 2) that is identified as a signature of
the logarithmic fractal structure of the object and therefore
establish an area-preserving rule, now for the side view of
the real trees. This approach shows that it is the branching
mechanism that seems to impose solid restrictions on both
diameter and length of the tree branches resulting in the
logarithmic fractal scaling of both parameters. Further on,
the numerical experiments dealing with the side view of the
tree complement the area-preserving Leonardo’s rule with one
applying to the product of diameter d and length l of the
branches: di li = k di+1 li+1. In conclusion, in Sec. V we state
that the life of a tree flows according to the laws of conser-
vation of area in two-dimensional space, as if the tree were
a two-dimensional object. The paper is supplemented by two
Appendixes.

II. CLASSIFICATION OF FRACTALS BY SAS

Unlike mathematical and geometrical fractals, the physical
fractals require the instruments to verify their fractal proper-
ties and to directly measure its fractal dimension. One of the
direct methods to study fractals on the scales of nano- and
microworlds is small-angle scattering of neutrons or x-rays
[18–24]. The scattering intensity I (Q) is related to inhomo-
geneities of the scattering density ρ(r) and is equal to the
Fourier transform of the correlation function of the object
γ (r). The self-similarity of an unlimited in size fractal object
is converted to the power law of scattering intensity as a
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function of momentum transfer I (Q) ∼ Q−ν [23,24]. For the
objects of the finite size ξ , the scattering intensity can be given
in a more general way as

I (Q) ∼ 1

[1 + (Qξ )2]ν/2
, (2)

where ν is an exponent associated with the fractal dimension.
Moreover, the SAS method introduces the classification of
fractal objects through the value of the exponent ν [23–25]. It
identifies scattering on three-dimensional nonfractal particles
as being well described by Eq. (2) with ν = 4. The deviation
of ν from 4 indicates the fractal structure of the particle:
4 > ν > 3 for the surface fractal and 3 > ν > 2 for the mass
fractal. The intermediate case with ν = 3 between the mass
and the surface fractals is identified as a special class of the
logarithmic fractals [25].

The methodology of SAS can also be applied to fractal
objects, such as a Leonardo tree or Pythagoras tree. In this
case, first, we deal with objects in the two-dimensional space
and, second, we can treat fractal images using a numerical
Fourier transformation. The scheme of a numerical Fourier
analysis of an object in a two-dimensional space consists of
the following four steps. The object under study is a square
image, described by a binary two-dimensional matrix. The
first step is to perform a Fourier transform of the object. The
resulting Fourier image will also be a two-dimensional matrix
with each element characterized by an amplitude and a phase.
The second step is the formation of a two-dimensional map as
the square of the Fourier image, which simulates the intensity
of SAS. At this step, the phase of the Fourier image is lost.
The third step of the scheme is the azimuth averaging of the
intensity map around the center and obtaining a curve of the
averaged intensity, analog of a SAS curve, i.e., dependence
of the scattering intensity on the momentum transfer I (Q)
[Eq. (2)]. The last step is to determine of the exponent ν

as the ratio of the logarithms of the averaged intensity ln(I )
and the Fourier coordinate ln(Q). The exponent ν is directly
related to the fractal dimension D, but in different ways for
three-dimensional space (SAS case) and for two-dimensional
space (Fourier images of trees).

The loss of one spatial dimension leads to a decrease in
all numbers of the fractal classification by one. For homoge-
neously filled (nonfractal) objects with a sharp boundary (a
filled circle, for example), the scattering intensity decreases
with Q obeying Eq. (2) with ν = 3. The fractal objects in
the two-dimensional space (in analogy with ones in three-
dimensional space) are classified and split onto two classes
of the “mass” and “boundary” fractals. Thus, for the “mass”
fractals ν lays within the limits 1 < ν < 2. For the “boundary”
fractals the exponent ν lies in the range 2 < ν < 3. Again the
margin case with ν = 2 describes the logarithmic fractal struc-
ture. The classification of fractal objects in two-dimensional
space is given in [26].

III. FOURIER ANALYSIS OF THEE MODELS

To show the possibilities opened by Fourier analysis to
quantitatively characterize fractal objects in two-dimensional
space, we performed the numerical experiments [27] for the

Leonardo tree of the seventh generation (Fig. 1) and for the
Pythagoras tree of the eleventh generation (Fig. 2). The slope
of the curves presented in log-log scales appeared to be equal
to ν = 2.06 ± 0.05 for the Leonardo tree and ν = 2.01 ± 0.02
for the Pythagoras tree. The curve for the Leonardo tree
(Fig. 1) demonstrates the oscillating behavior imposed on a
Q−2 decay toward increase of momentum transfer Q. The
oscillations are caused by the regular structure of the object.
They have a quasiperiodic character on the logarithmic scale
in the left side of the curves that points to the fractal properties
of the object under study. The decaying exponent (slope of
the curves in the log-log scales) changes upon increase of mo-
mentum transfer Q. The crossover point between two regimes
(denoted as Qc in Figs. 1 and 2) characterizes the small-scale
fractal border, i.e., the linear size of the minimal element of
the fractal.

It is shown in Appendix B that the correlation function γ

of the object in the two-dimensional space whose scattering
cross section is described by Eq. (2) with ν = 2 is proportional
to ln(ξ/r) in the approximation of r/ξ < 1, i.e., inside the
fractal particle of a size ξ . Thus, the correlation function of the
logarithmic fractal is related to the probing function h [Eq. (1)]
as they characterize the very same fractal object. In accord
with the derivations given in Appendix A and Appendix B,
h(r) ∼ r2[γ (r)]−1.

The theoretical models (the Leonardo tree and Pythagorean
tree) are both shown to have the properties of the logarithmic
fractal and as such are a good starting point for the real
tree modeling. These both models have deal with the area-
preserving principles: d2

i = k d2
i+1 for the Leonardo tree and

di li = 2 di+1 li+1 for the Pythagorean tree, where di is the
thickness of a branch and li is the length of a branch of ith
generation. Note that di = li for the Pythagorean tree (see
inset of Fig. 2). For the real trees di � li, and if one elongates
one side of its each element by the same factor, say, 3, then the
area-preserving rule is still fulfilled, while the image of such
a tree becomes much closer to real tree photos. This object
again can be characterized by the probing function of the
logarithmic fractal given by Eq. (1). The Fourier analysis for
the modified Pythagoras tree of the seventh generation gives
the slope of the curve in the log-log scale close to 2. Thus,
the logarithmic fractals tested using Fourier analysis (SAS
methodology) follow a power law [Eq. (2)] with ν close or
equal to 2.

To make further steps in the real tree modeling one has
to set, first, the branching number k arbitrary, but, second, to
address the question if both area-preserving principles can be
fulfilled simultaneously. In other words, we have to combine
the pictures of the Leonardo tree and the Pythagoras tree as
two-dimensional images into one three-dimensional object.
The supposition that Leonardo’s rule is valid results in the
restriction imposed on the branch’s length: the next generation
is

√
k times shorter than the previous one: li = √

k li+1. More-
over, our rule leads to the formulation on the volume (mass) of
different branching levels: the volume of all daughter branches
is a factor of di/di+1 smaller than a mother branch. It is
important to note that as the volume of the different branching
levels changes, then the tree as a three-dimensional object
is not the logarithmic fractal, although its projections on the
two-dimensional planes are.
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FIG. 3. The photo image of a real birch used for the numerical
experiment.

IV. FOURIER ANALYSIS FOR REAL TREES

Using the above described methodology we can show
experimentally that any deciduous tree has the logarithmic
fractal structure for its branching system. For example, one
takes a photo of the tree in a winter season ensuring that
leaves do not obscure its branching structure. Furthermore,
using the same procedure as was applied to the Leonardo and
Pythagoras trees, one examines images of real trees (birch,
oak, maple, and/or any others). Photos of real birch and oak
trees are shown in Figs. 3 and Fig. 5. The available images rep-
resent a projection of a real tree onto a two-dimensional plane.

FIG. 4. Fourier intensity of the birch image as a function of the
Fourier coordinate Q. The inset shows the Kratky plot I Q2 as a
function of Q.

FIG. 5. Photo image of a real oak used for the numerical
experiment.

These images were investigated with the Fourier analysis
method.

The squared Fourier transformation of the birch’s image
with its consequent azimuthal averaging results in the Q de-
pendence of the intensity [I (Q)] and is presented in Fig. 4.
Plotted in the log-log scales, it demonstrates clearly three Q
ranges with different slopes separated by the crossovers which
are pointed to by two arrows. The Q range on the left (smallest
Q) characterizes the Fourier image of a homogeneous object
with sharp boundaries with a slope ν close to 3. This is a
computational artifact that comes from the fact that the back-
ground of the image is not 100% white, but actually gray. The
Q range in the middle (between two arrows) corresponds to
the net of branches from the smallest (of order of 10 cm) to
the largest (of order of meters). The Q dependence of intensity
I (q) demonstrates a power law (2) with ν = 1.99 ± 0.03. This
slope evidences the logarithmic fractal structure of the tree
branching system. The scaling element is a part of branch
between two branching points characterized by the width di

and length li of the ith generation.
To see better and to clearly distinguish the three different

Q ranges we give the Kratky plot as a the product [I (Q) Q2]
in dependence on Q in an inset in Fig. 4. This representation
divides out the Q−2 decay of the scattering, making other
features more evident. Particularly, product [I (Q) Q2] in the
Q range for the branching structure is now seen as constant,
which is convenient for highlighting a logarithmic fractal
structure of the tree images. In fact, the arrows pointing to the
crossover points are needless in such a Kratky plot, though we
added them for completeness. The slope between the arrows
is equal to 0 (ν − 2 = 0.01 ± 0.03).

The part of the curve on the right side shows a feature
deviating from the Q−2 decay in intensity in the range of
large Q corresponding to 1–10 cm scales in the real space.
We attribute this feature to the superposition of small different
branches appearing upon projection of the real tree to the
two-dimensional plane of the picture. This is especially true
for small branches, since there are many of them on the tree.
It is probable that the branching structure on the scale of
1–10 cm obeys the same area-preserving rule as the rest of the
branching system on the scale of 0.1–10 m. Thus we classify
this feature as another artifact of this methodology proposed to
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FIG. 6. Fourier intensity of the oak image as a function of the
Fourier coordinate Q. The inset shows the Kratky plot I Q2 as a
function of Q.

study the tree structure. Another possibility is that change of
the slope indicates the change of the structure for the young
branches demanding that we separately consider the ranges
of sizes for the old (growing for many years) branches from
the young (growing for a year) ones. This question should be
clarified by the comprehensive analysis of the tree image or by
sophisticated selection of angles and scales when photograph-
ing the investigated tree.

We note that all curves taken from different images of
various types of trees have the very same structure as shown in
Fig. 4. Thus, a similar analysis applied to the image of an oak
tree (Fig. 5) resulted in the curve shown in Fig. 6 that demon-
strates clearly the presence of a range of momentum transfers
where the function I (Q) exhibits dependence described by
Eq. (2) with ν = 2.01 ± 0.05. The spectral intensity shown in
the manner of a Kratky plot is given as the inset of Fig. 6.
It gives no dependence on Q (ν − 2 = 0.01 ± 0.05) in the
corresponding Q range. We can assure the reader that similar
analysis of the images applied to other trees, such as maple,
chestnut, and linden (many different pictures), resulted in
pictures, similar to Figs. 4 and 6, with the slope for branching
system with ν close to 2.

Thus, we observe undeniable similarity of the curves rep-
resenting the Fourier images of very different deciduous trees.
It can be concluded that the branching structure of these
trees is described by the class of logarithmic fractals. We
show experimentally that indeed the trees obey the Leonardo-
like rule upon their growth and year-by-year branching. We
call this rule Leonardo-like, since it is applied not to the
cross sections of a branch πd2/4 but to its surface area
πd l . Note that no trees were harmed during these experi-
ments. The nondestructive method proposed can be used for
an express analysis and scientific investigation of deciduous
trees.

It is experimentally shown that the branching system of
the real trees obeys in the Fourier space the scaling law
proportional to Q−2, which is equivalent to the logarithmic
fractal structure of the object under study. The logarithmic
fractal structure is equivalent to the area-preserving rule,
but for the side view of a real tree, that is, the projection
of the tree to the two-dimensional plane. In fact, we have

proven that the following area-preserving rule holds for the
tree di li = k di+1 li+1 in the range of sizes from 0.1 to 10 m.
This experimental findings should either replace or supple-
ment the Leonardo’s rule d2

i = k d2
i+1. Independent of whether

Leonardo’s rule is valid or not, the above presented experi-
mental results show that the surface area of the cylinder-like
branches equal to πdili is equal to the sum of surfaces of the
k cylinder-like branches of the next generation kπdi+1 li+1. In
the other words, it is only the surface of the branches of the
tree that matters. We can conclude that the life of a tree obeys
the area-preserving laws of two-dimensional space. This con-
clusion allows one to distinguish between the growing part of
the tree (surface) and already mature (internal) part, at least in
models obeying the area-preserving rules.

V. CONCLUSION

In conclusion, we propose a method of studying tree
structure with Fourier analysis of its image inspired by the
small-angle (x-ray or neutron) scattering technique. The ap-
plied method can be used to show the logarithmic fractal
structure of the branching system of deciduous trees. We have
proven that the logarithmic fractal structure is equivalent to
the area-preserving principle of the tree growth. Moreover, the
experiments dealing with the side view of the tree complement
Leonardo’s principle with knowledge on the length of the
branches but not exclusively on their thickness. We believe
that this knowledge can help in building a correct mathemati-
cal model of real trees.
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APPENDIX A

Let us consider the “Leonardo da Vinci” tree, which is
based on the principle of equality of areas of different gen-
erations: the total area of elements added at each step is the
same and equal to the area of the trunk, while each branch is
split to four more branches so that at each step, four times
more elements appear than at the previous generation (see
an inset in Fig. 1). Since at each step the length of the side
of the added squares is two times smaller than that at the
previous step, the size of the square of the ith generation
is equal to ri = A0/2(i−1), where A0 is the linear size of the
“trunk.”

The generation number of the fractal n can be expressed
via the size ratio of the largest and smallest elements of the
tree:

n = log2
2A0

rn
. (A1)

Further, an area of each of the n generations is equal in area
to the trunk and can be covered by exactly 22(n−1) minimal
elements (squares) with area r2

n . In total the tree is composed
of n generations, and the entire tree of the nth generation is
covered by n 22(n−1) minimal squares. Knowing the area of
the minimal square r2

n , we can find the area of the entire tree
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of the nth generation:

Sn = r2
n n 22(n−1). (A2)

We substitute the expression for n(rn) [Eq. (A1)] into
Eq. (A2):

Sn = r2
n log2

2A0

rn

A2
0

r2
n

= A2
0 log2

2A0

rn
. (A3)

Thus, when the area-preserving principle (Leonadro da Vinci
rule) is fulfilled, then the total area of the tree grows logarith-
mically with a decrease in the minimal element of the fractal,
that is, with an increase in the number of generations.

The measure of such an object as the Leonardo tree, ac-
cording to Mandelbrot’s definition [15], is

μ(r) = h(r) N (r), (A4)

where N (r) is the number of squares of size r needed to cover
the object. If r → 0, and the measure μ(r) is finite μ(r) =
const, then h(r) is a probing function that defines the object
as a fractal. The number of squares N (r) of size r that can
cover an infinite fractal is S(r)/r2. Substituting Eq. (A3) into
Eq. (A4) one finds

μ(r) = h(r) A2
0 r−2 log2

2A0

r
= const, (A5)

whence the probing function h(r) of this object is equal to

h(r) = r2

(
log2

2A0

r

)−1

. (A6)

That is, the Leonardo tree is described by the probing function
with a topological dimension of 2 and a logarithmic subdi-
mension (−1), in accord with Mandelbrot’s definition [16].
That means the Leonardo tree is a logarithmic fractal.

Let us now prove the statement in an opposite direction,
that is, if we have a logarithmic fractal described by the
Hausdorff measure of the form μ(r) = r2 (log2

2A0
r )−1N (r) =

const, then such a fractal is constructed according to the area-
preserving principle at each generation, that is, it is built in
accord with the Leonardo’s rule of the tree. Here it is called
logarithmic, since the probing function contains a logarithm,
and the fractal implies self-similarity in its move from one
generation to another; in particular, the ratio of the linear sizes
of elements of one generation to another remains constant.

Since N (r) is the number of squares of size r needed to
cover the fractal, the area of the entire fractal is equal to

S(rn) = r2 N (r) = const log2
2A0

r
. (A7)

The difference in the areas of two successive generations of
such fractal is equal to

�S(n) = S(rn+1) − S(rn) = const log2
rn

rn+1
. (A8)

In the case of a fractal, the ratio of linear sizes for elements
in two successive generations is constant and does not depend
on the generation number:

rn

rn+1
= const1, (A9)

so the area �S(n) added at each new generation will be
constant and satisfy the Leonardo’s principle of tree growth.
Note that in the case of the tree, const1 = √

k, where k is
the branching number. It can be shown that the constant in
Eq. (A7) is equal to const = 2A2

0/ log2 k, and if the number of
branches is four, then const = A2

0.

APPENDIX B

Let us derive the expression for the correlation function of
the fractal objects in the two-dimensional space. By definition,
the correlation function is a probability function describing
how density of the object varies with distance. It is conve-
niently related to the scattering cross section via a Fourier
transform.

1. Case of logarithmic fractal. The numerical experiments
has shown that the logarithmic fractals and the picture of
the Leonardo tree, as an example, give the scattering curves
which are well described by Q−2 decay. Let us consider the
logarithmic fractal with the finite size ξ ; then the scattering
intensity is given by Eq. (2) with ν = 2, i.e., by the Lorentzian.
The correlation function in this case can be calculated as

γ (r) ∼ 1

2π

∫ ∞

−∞

∫ ∞

−∞

1

1 + (Qξ )2
eiQxrx+iQyry dQx dQy

= 1

2π

∫ ∞

0

∫ 2π

0

Q

1 + (Qξ )2
eiQr cos(φ) dφ dQ

=
∫ ∞

0

Q

1 + (Qξ )2
J0(Qr) dQ = 1

ξ 2
K0(r/ξ ), (B1)

where J0(Qr) is the Bessel function and K0(r/ξ ) is the Mac-
donald function. Inside the fractal particle of a size ξ , i.e., in
the approximation r/ξ < 1, the correlation function γ (r) can
be reduced to [28]

γ (r) ∼ ln(ξ/r). (B2)

2. General case. Let us now derive the correlation function
of the fractal object in the general case of two-dimensional
space. The scattering function can be written as

I (Q) = Cν

[1 + (Qξ )]ν/2 , (B3)

where ν varies from 1 to 3 and Cν is a constant that depends on
ν and is to be found by normalization of the correlation func-
tion. The correlation function of a fractal object is calculated
via a Fourier transform of scattering intensity [Eq. (B3)]:

γ (r) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

Cν

[1 + (Qξ )]ν/2 eiQxrx+iQyry dQx dQy

= Cν

2π

∫ ∞

0

∫ 2π

0

Q

[1 + (Qξ )]ν/2 eiQr cos(φ) dφ dQ

= Cν

∫ ∞

0

Q

[1 + (Qξ )]ν/2 J0(Qr) dQ

= Cν21−ν/2

ξ 2	(ν/2)
(r/ξ )(ν/2−1)Kν/2−1(r/ξ ). (B4)
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Constant Cν is determined through the normalization of the
correlation function:

Cν21−ν/2

ξ 2	(ν/2)

∫ ∞

0
(r/ξ )(ν/2−1)Kν/2−1(r/ξ ) dr

= Cν21−ν/2

ξ 2	(ν/2)
ξ
√

π2ν−1	(ν + 1/2) = 1. (B5)

Thus one obtains

Cν = ξ	(ν/2)

2ν/2
√

π	(ν + 1/2)
(B6)

and expresses finally the normalized correlation function:

γ (r) = 21−ν

ξ
√

π	(ν + 1/2)
(r/ξ )(ν/2−1)Kν/2−1(r/ξ ). (B7)

We note that Eq. (B7) can be simplified to Eq. (B1) in the
case ν = 2 that is reduced to Eq. (B2) in the small-r approxi-
mation, i.e., r/ξ < 1.
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