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Collective gradient sensing with limited positional information
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Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells can sense
gradients more accurately than individual cells by integrating measurements of the concentration made across the
cluster. Is this gradient-sensing accuracy impeded when cells have limited knowledge of their position within the
cluster, i.e., limited positional information? We apply maximum likelihood estimation to study gradient-sensing
accuracy of a cluster of cells with finite positional information. If cells must estimate their location within the
cluster, this lowers the accuracy of collective gradient sensing. We compare our results with a tug-of-war model
where cells respond to the gradient by polarizing away from their neighbors without relying on their positional
information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war model responds
more accurately to the chemical gradient. However, for sufficiently large cell clusters or sufficiently shallow
chemical gradients, the tug-of-war model will always be suboptimal to one that integrates information from all
cells, even if positional uncertainty is high.
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I. INTRODUCTION

Eukaryotic cells may directionally migrate by sensing
external cues of many types—mechanical, electrical, topo-
graphical, or chemical [1]—and in these processes their
accuracy is often limited by basic physical principles [2].
The best known of these processes is chemotaxis, where
cells sense and follow gradients in concentrations of chemi-
cal cues—an example of gradient sensing. Gradient sensing
and directed migration are essential to many fundamental
biological processes, such as immune response [3], embry-
onic development [4,5], and cancer metastasis [6,7]. In these
processes, cells may migrate individually or collectively—in
sheets, streams, or small clusters [8–10]. Cell cluster migra-
tion may be particularly important in cancer, where small
clusters of tumor cells are associated with more harmful
metastasis [11]. There are several advantages for cells to
migrate as groups [12], one of these being gradient sensing.
In several biological systems [5,13,14], groups of cells can
chemotax where single cells fail to do so—cells work collec-
tively to improve their ability to sense a gradient [15].

How this enhanced sensing arises is not fully understood
and may not have a universal mechanism [15], but two types
of cell clusters seem to primarily sense using measurements of
the concentration at the cluster edge. In clusters of neural crest
cells responding to gradients of stromal cell-derived factor 1
(Sdf1), edge cells are polarized out from the cluster center by
contact inhibition of locomotion [5], suggesting a model of
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chemotaxis as a tug-of-war by the perimeter cells [16]. A sim-
ilar edge-driven mechanism is observed in gradient-sensing
lymphocyte clusters [13,17]. These observations suggest that
in these cell types only edge cells are involved in cluster
chemotaxis. Why use only the edge cells to sense the gradi-
ent instead of all of them? Our initial intuition is that using
only the edge cells wastes information.1 In earlier work, we
found a fundamental limit on gradient-sensing accuracy [18],
observing that collective chemotaxis was likely limited by
cell-to-cell variability. In that model, measurements from all
cells and their relative positions are used to compute the best
estimate of the gradient direction.

Why would clusters use sensing mechanisms driven by
edge cells, like the tug-of-war mechanism, instead of the
optimal use of all cells? One hypothesis is that the benefit of
the extra information is small. Another hypothesis is that there
are relevant sources of noise that are not included in Ref. [18].
A major assumption implicit in our earlier work [18] is that
cells “know” their position within a cluster—the best estima-
tor of the chemical gradient involves a sum weighted by a
cell’s position relative to the cluster center. Cells can measure
their position within an embryo or aggregate by measuring
diffusible [19] or mechanical [20] signals, but this posi-
tional information is limited [19,21–23]. Cells in Drosophila
embryos can measure their position to the order of a cell
length [19], using temporal and possibly spatial averaging
of graded signals [19,24,25]. In this paper, we explore the

1This assumes that interior cells can sense the concentration. In
three-dimensional organoids, interior cells are isolated and may not
have an equal ability to measure concentration.
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optimal strategies for collective sensing of gradients when
cells have limited information on their position in the cluster,
showing that positional uncertainty reduces gradient-sensing
accuracy. We also compare our model to an extension of the
tug-of-war model of [16], where only edge cells respond to
chemoattractant and no positional information is required.
We find that these tug-of-war strategies are optimal for small
clusters or strong gradients. However, for a sufficiently large
cluster the benefits of using all cells’ data will eventually
outweigh the error from finite positional information.

II. MODELS AND RESULTS

A. Maximum likelihood estimates of gradient with limited
positional information

We consider N circular cells of radius Rcell arranged
in 2D clusters under a linear chemoattractant gradient g =
g(cos(φ), sin(φ)); see Fig. 1(a). g and φ are the gra-
dient magnitude or steepness and direction, respectively.
The chemoattractant concentration at cell i is c(ri ) =
c0[1 + g · (ri − rcm)], where ri is the cell’s position, and rcm is
the position of the cluster center of mass, computed as rcm =
1
N

∑
ri. c0 is the chemoattractant concentration at the cluster

center of mass. Cells perform a collective measurement of
the gradient by integrating individual cells’ measurements of
local chemoattractant concentration, which we call the “mea-
sured signal” Mi. Cells sense the concentration by binding
the chemoattractant molecules to receptors at their surface,
which is subject to fluctuations due to the molecules’ dif-
fusion in reaching receptors, and intrinsic ligand-receptor
kinetics [25–28]. The reading concentration error of a cell
at position ri with nr receptors that bind ligand molecules
with dissociation constant KD can be expressed as δc2(ri ) =
c(ri )
nr KD

[c(ri ) + KD]2 [18,25]. This arises solely from the stochas-
ticity of ligand-receptor binding, propagated forward to an
estimate of the concentration (Appendix A). In addition,
even genetically identical cells do not respond in the same
way to the chemoattractant due to cell-cell variability (CCV)
resulting from fluctuations in their internal molecular machin-
ery [18]. Then the signal measured by cell i is

Mi = c(ri ) + δc(ri )ηi

c
+ σ�ξi, (1)

where ηi and ξi are independent Gaussian noises with mean
value 0 and variance 1, c is the mean concentration over
the cluster, and σ� is the CCV standard deviation. Note that
c = 1

N

∑N
i c(ri ) = c0. For typical values of σ� � 0.05 (i.e.,

5% CCV), ligand-receptor noise is less critical than CCV
noise [18].

We want to know, given the noise in the cell cluster’s mea-
surements, what is the best possible measurement it can make
of the gradient g. One approach to find this gradient-sensing
error is to apply the maximum likelihood estimation (MLE)
method [29–34]. This calculation, which we will generalize
below, determines an optimal approach for a group of cells to
estimate g given the measured signal of Eq. (1) [18]. However,
this approach implicitly assumes that the positions of the cells
are known, as each measurement Mi corresponds to a given
position ri within the gradient.

Here we extend the MLE approach of [18] by assuming
that cells have limited positional information. As a result, cells
need to estimate their positions within the cluster in addition
to the local concentration. We then define a “measured posi-
tion” for cell i, which we call r∗

i —this is the location that the
cluster believes the cell i to have. Because cells can gain posi-
tional information from a variety of complicated mechanical
and chemical processes, we simplify and start with a generic
assumption—that the error in measured position is normally
distributed, and that cells get their positional information from
a process different from the sensing concentration such that r∗

i
and Mi are independent. Thus, the measured position for the
cell i is

r∗
i = ri + Aiξri

, (2)

where Ai is a matrix such that �i = AiAT
i is the covariance

matrix of the positional errors, and ξri
is a 2D vector of uncor-

related normal distributed numbers. X T denotes the transpose
of X . The covariance matrix �i sets the error in the position
measurement process, analogous to the term σ 2

� in sensing the
concentration. We assume for now that �i could be different
from cell to cell.

We apply the MLE method to determine, given the mea-
sured cell positions r∗

i and signal values Mi, what the cluster’s
best estimate of the gradient g is, and how precise this mea-
surement can be given the inevitable stochastic fluctuations
in these measurements. We start by writing the probability
distribution for a cell i to measure a signal Mi and a position
r∗

i given the gradient g and its true position ri, p(Mi, r∗
i |g, ri ).

As Mi and r∗
i are independent, this probability function can

be broken into the product of probabilities p(Mi, r∗
i |g, ri ) =

p(Mi|g, ri )p(r∗
i |ri ). Given that Eq. (1) takes the sum of two

uncorrelated Gaussian random variables, which is also Gaus-
sian, then the probability distribution for Mi is

p(Mi|g, ri ) = 1√
2πhi

exp

[
− (Mi − μi )2

2hi

]
, (3)

where μi = 1 + g · δri, and hi = (δci/c0)2 + σ 2
�. Next, the

probability distribution that a cell i measures a position r∗
i

given the true position ri is

p(r∗
i |ri ) = 1√

(2π )2|�i|
exp

[
− (r∗

i − ri )�−1
i (r∗

i − ri )T

2

]
.

(4)
The likelihood of parameters g, {ri} given that the clus-
ters measures values {Mi} and {r∗

i } is L(g, {ri}|{Mi, r∗
i }) ≡

p({Mi, r∗
i }|g, {ri}). Assuming the measurements cell performs

are independent, this likelihood then factorizes into a product
over cells i, L(g, ri|{Mi, r∗

i }) = ∏N
i p(Mi|g, ri )p(r∗

i |ri ). Es-
timators of the gradient magnitude g and orientation φ can
be obtained by maximizing this likelihood. However, we are
more interested in the best possible accuracy for an unbiased
estimator ĝ, which is given by the Cramér-Rao bound [29],

σ 2
g ≡ 〈(g − ĝ)2〉 = (I−1)g,g, (5)

where I−1 is the inverse of the Fisher information matrix,
given by Iα,β = −〈 ∂2 lnL

∂α∂β
〉, with α and β parameters of the

likelihood function, i.e., g and {ri}.
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It is possible to analytically compute the Fisher informa-
tion I and thus the best possible accuracy for measuring the
chemical gradient in the limit of positional information in
terms of a sum over cell positions and the positional informa-
tion at each location. These results are presented in full detail
in Appendix B. However, the results are much more intuitively
understandable with a few key assumptions.

B. Simplest case: Shallow gradients and constant
positional error

Cells will likely have different positional uncertainties,
depending on the underlying process through which cells
get their positional information, such as an external or a
self-generated signal. To gain understanding, we will first
look at the simplest case by assuming all the cells have
the same positional covariance matrix, �i = �, which we
also assume is isotropic, �ls = �r2δls, where l, s are matrix
element indexes. (We study clusters with varying positional
uncertainty in Sec. II C.) Within this section, the limited po-
sitional information is characterized by only a single number,
�r—the error in measuring a cell’s position. In addition to
considering a constant isotropic error, we simplify our results
by assuming that the gradient is relatively shallow—i.e.,
that each cell has the same reading concentration errors,

δc2
i ≈ δc

2 = c0(c0+KD )2

nr KD
. Finally, we consider that our cluster

of cells is roughly circular: the isotropy of the problem
then makes

∑N
i δr2

xi
≈ ∑N

i δr2
yi

≈ 1
2

∑N
i |δri|2 and that∑N

i δrxiδryi ≈ 0. (In practice, for the calculations we present
here, we show results for hexagonally packed clusters of
layers of cells, as in [16,18].) With all this, we can simplify
the results of Appendix B to find the best possible error in
measuring the gradient magnitude g as

σ 2
g ≈ 1

χ
(h̄ + (g�r)2), (6)

where h̄ = δc
2
/c2

0 + σ 2
� and χ = 1

2

∑N
i |δri|2. χ here is

a geometric factor that depends on the shape and size of
the cluster—essentially like a moment of inertia about the
cluster’s centroid. We expect χ to scale as χ ∼ R4

cluster [18]
for roughly circular clusters. We find this by approximating
the sum over cells as an integral over the surface of a
circular cluster of radius Rcluster,

∑N
i R2

cell ≈ ∫
Rcluster

d2r, so

χ = 1
2

∑N
i |δri|2 ∼ R−2

cell

∫
Rcluster

d2rr2 ∼ R4
cluster.

The uncertainty in the gradient magnitude given in Eq. (6)
also controls the uncertainty of estimating the gradient di-
rection: the gradient direction error is equal to the gradient
magnitude relative error,

σφ = σg

g
. (7)

See Appendix B for detailed derivation of Eqs. (6) and (7).
How does the presence of positional uncertainties affect

gradient sensing? In Fig. 1(b) we show the gradient-sensing
error, σ 2

g , as a function of the positional uncertainty �r, using
both the full computation of Eq. (5) (see Appendix B) and the
shallow gradient approximation from Eq. (6). Unsurprisingly,
positional uncertainties increase gradient-sensing error—the
more uninformed cells are about their positions, the worse an
estimate the cluster makes. This added error from positional

w/o pos errors
w/ pos errors
shallow gradient

(a) (b)

(c) (d)

Positional error

Sensing 
concentration error

w/ pos errors
w/o pos errors

shallow gradient

w/ pos errors
w/o pos errors

shallow gradient

FIG. 1. (a) Cluster under a linear gradient and a representation
of the two sources of uncertainties: sensing concentration and po-
sitional errors. (b) Gradient-sensing error increases with positional
uncertainty. (c, d) Positional uncertainties becomes more dominant in
steeper gradients. (c) Gradient-sensing error normalized by its value
in the absence of positional errors, σ 2

g (�r = 0), as a function of the
gradient steepness (blue solid line). The black dashed line indicates
the limit where the gradient-sensing error is dominated by positional
errors, and it follows ∝ g2�r2. (d) Gradient-sensing relative error
σg/g as a function of the gradient steepness. Parameters: number
of cells N = 37 (corresponding to an hexagonal cluster of Q = 3
layers), Rcell = 10 μm, (b) g = 0.005 μm−1, (c, d) �r = 10 μm.

uncertainty increases as �r2 in the shallow gradient limit
[Eq. (6)]. We see in Fig. 1 that the additional uncertainty from
finite positional information is significant when �r is of order
of the cell size.

Equation (6) also tells us there are two terms controlling
the estimate error. The first, h̄, is the contribution from the
cells reading and reporting their local concentration. The
second term is the positional uncertainty contribution to the
gradient-sensing error, controlled by g�r. The relative weight
of these two terms allows to identify two regimes in which
the gradient sensing is limited in one case by the reading
concentration fluctuations, (g�r)2 
 h̄, and in the other case
by the positional uncertainties, (g�r)2 � h̄. When positional
uncertainties are smaller than reading concentration errors,
we recover the results from [18], σ 2

g ≈ 1
χ

h̄. In the other ex-

treme, (g�r)2 � h̄, gradient sensing is primarily limited by
positional information, σ 2

g ≈ 1
χ

g2�r2. Interestingly, all of the
information about the cluster’s shape and size is in the multi-
plicative factor χ . While larger clusters are significantly more
accurate at sensing the gradient, as the factor χ = 1

2

∑N
i |δri|2

is strongly dependent on cluster size and cell number, larger
clusters are not more strongly affected by the presence of
positional error.

The gradient steepness g controls the relative importance of
positional information: the steeper the gradient is, the larger
the contribution from the positional uncertainty. In Fig. 1(c)
we show the gradient-sensing error σ 2

g normalized by the
bound in absence of positional uncertainty σ 2

g (�r = 0) in-
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creases with g. In steeper gradients, small errors in measuring
a cell’s position lead to larger differences between the concen-
tration at the true position, c(ri ), and at the estimated position,
c(r∗

i ). On the other hand, this also implies that in the limit of
g → 0, where error bounds are most important (where single
cells fail to follow a gradient while clusters do), positional
information does not play a significant role.

In analogy to single-cell gradient sensing, it would be nat-
ural to assume that the relative error, σg/g, which controls the
angular uncertainty σφ , always gets better with the increasing
g—i.e., that cells can better measure the angle to the gradient
direction if the gradient is steeper. This is true for clusters
without positional error [18]: σg/g is plotted as the red line in
Fig. 1(d). However, in the presence of positional uncertainties,
the relative error is limited at large g, converging to a constant
value �r/

√
χ in the case of a shallow gradient [Fig. 1(d)].

This surprise occurs because the increasing error due to posi-
tional uncertainty σ 2

g ∼ g2 in Eq. (6) exactly balances the g2

in the denominator of σ 2
g /g2.

C. Nonuniform positional information

In the above section we assumed that all cells have the
same positional errors. However, positional uncertainty is not
necessarily uniform within the cluster. If cells get their posi-
tional information from a secreted factor or mechanical signal,
the distance from the source may influence the accuracy �r
(see, e.g., [35]). In addition, obtaining positional information
may have an associated cost, and therefore, it may be optimal
for the cell cluster to only have some cells measure their
location. We study a prototypical example of both cell spe-
cialization and positional errors varying from cell to cell by
introducing a second type of cells which have more positional
information. These “informed” cells have a positional error
�rinf that is smaller than “normal” cells, �rinf � �r. Then we
distribute a fraction f of informed cells at different positions
over the cluster to see the effect of positional uncertainty
localization. We follow three different types of distributions:
informed cells are distributed (1) at the edge, (2) at the cen-
ter, or (3) randomly over the cluster; see Fig. 2(a). We use
the general solution for the gradient-sensing error given by
Eqs. (B4)–(B6). We note that there are often many cells that
are equidistant from the cluster center or edge, so unless a
layer of the hexagonal packing is completely filled, there will
be multiple possible configurations at a particular fraction of
informed cells f [Fig. 2(a), bottom row]. To address this,
we sample 100 realizations for each distribution. Figure 2
shows an average over these realizations. Gradient sensing
has the lowest error when informed cells are closer to the
edges and the largest when they are placed closer to the center
of mass. This is illustrated in Fig. 2(b), which shows the
gradient-sensing error normalized by the case f = 0, [σ 2

g0
=

σ 2
g ( f = 0)], as a function of the fraction of informed cells.

For all three types of distributions, increasing the fraction of
informed cells reduces the error of g. Gradient-sensing error
takes the same value for the three distributions, in the extreme
cases of no informed cells ( f = 0) and all cells informed ( f =
1), but following different paths in between. Informed cells
distributed close to the edge lead to the lowest sensing errors
of the three distributions. Similarly, reducing the positional

FIG. 2. Gradient-sensing errors for a cluster with a fraction f of
informed cells. (a) Informed cells are distributed over the cluster in
three distinct manners: closer to the cluster’s center, randomly, or
closer to the cluster’s edge. Underneath each example of cluster dis-
tribution we show two of the multiple equivalent ways of distributing
the informed cells. (b, c) Gradient-sensing variance, σ 2

g , normalized
by the case of noninformed cells, σ 2

g0
= σ 2

g ( f = 0), as a function of
the fraction of informed cells (b) and the ratio of the two types of cell
positional uncertainties (c). (d) Relative difference between informed
cluster and the equivalent constant-positional-error cluster, δσg =
σg(�r)−σg(�rinf ,�r)

σg(�rinf ,�r) , as a function of the gradient steepness. δσg > 0
(δσg < 0) indicates a lower (higher) gradient-sensing error for the
cluster with the informed cells compared to the uniform positional
error cluster. The dashed black line indicates δσg = 0. For panels
(b)–(d) color codes are the same. Solid lines with symbols represent
the three different distribution patterns: center (red squares), random
(light blue crosses), and edge (dark blue circles). The dashed black
line represents the equivalent one type of cells cluster with positional
uncertainty equal to �r = f �rinf + (1 − f )�r. Parameters: cluster
size N = 91 (Q = 5 layers in the hexagonal cluster), �r = 2Rcell,
(b) �rinf = 0.5�r, (c) f = 0.25, (d) f = 0.25, �rinf = 0.2�r, and
�r = 20 μm. Curves show an average of 100 realizations.

uncertainty of the informed cells results in higher accuracy in
gradient sensing, which is again greater when informed cells
are distributed closer to the edge [Fig. 2(c)].

To compare between clusters with informed cells and
cluster with a single cell type population, we introduce the
“equivalent” constant-positional-error cluster, in which all the
cells have the average positional error �r = (1 − f )�r +
f �rinf [dashed black line in Figs. 2(b)–2(d)]. Results show
that placing informed cells closer to the edge enhances gradi-
ent sensing when compared to the equivalent cluster, while
doing it closer to the cluster’s center or randomly results
in a worse or similar performance, respectively. To further
explore the role of informed cells and their distribution
inside the cluster, in Fig. 2(d) we shows the relative dif-
ference between the gradient-sensing errors for the cluster
with informed cells and its constant-positional-error equiv-

alent, δσg = σg(�r)−σg(�rinf ,�r)
σg(�rinf ,�r) , as a function of the gradient

steepness. Results show that increasing the gradient steepness
enhances the trends described before, in which the benefit of
reduced positional error is larger for cells at the cluster edge.
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FIG. 3. (a) Schematic cell cluster with a group of four informed
cells located at a distance r from the cluster’s center and direction
θ with respect to the chemoattractant gradient. The small clusters
on the right represent different small cluster configurations. (b) Rel-
ative gradient-sensing steepness (left panel) and direction, δσφ =
σφ (�r)−σφ (�rinf ,�r)

σφ (�rinf ,�r) , (right panel) errors when the informed group of
cells is displaced in different directions: θ = 0 (red line and squares),
θ = π/4 (light blue line and crosses), and θ = π/2 (dark blue line
and circles). Same as in Fig. 2, δσg,φ > 0 (δσg,φ < 0) represents a
lower (higher) error relative to the constant-positional-error equiv-
alent cluster. The dashed black line indicates δσg,φ = 0 and also
represents the equivalent cluster without informed cells and posi-
tional uncertainty �r. Parameters: cluster size N = 91 and �rinf =
0.5�r. Curves show an average of 100 realizations.

This observation agrees with our previous results that showed
that positional errors have a higher effect over gradient sens-
ing in steeper gradients. Interestingly, in steeper gradients,
even randomly distributed informed cells perform better than
the equivalent cluster [light blue line in Fig. 2(d)]. The reason
is that by randomly distributing the informed cells, a few will
lie close to the edge of the cluster, and those are the ones that
dominate and end up having a major weight in sensing the
gradient.

Together, these results show that positional information
becomes more relevant at the edge of the cluster and is even
more significant in steeper gradients. Positional information
of edge cells plays a major contribution to gradient sensing in
that even having a few randomly located informed cells on
the edge can significantly decrease gradient-sensing errors.
If determining cell positions is costly, our results suggest
that instead of maximizing positional information uniformly
throughout the cluster, cells can improve the gradient-sensing
accuracy by prioritizing positional information of edge cells.

We argued that informed cells are generally most benefi-
cially placed at the cluster edge. How does gradient-sensing
accuracy change if we place these cells anisotropically? We
study the change in the errors for gradient magnitude g and
direction φ when a small group of four “informed cells” are
displaced from the center to the edge of the cluster in different
directions; see Fig. 3(a). We note that for this case, σφ 
= σg/g,
due to anisotropy; we use the full analytical solution of Ap-
pendix B to compute the bounds σg and σφ . As in the previous
case, there are multiple equivalent ways to place a cluster of
informed cells at a position (r, θ ); see Fig. 3(a). To account
for such variability, we averaged over 100 realization for each
condition pair (r, θ ). We find that the errors for the estimators
of the gradient magnitude and direction evolve differently
depending on the orientation of this cluster of cells [Fig. 3(b)].
Moving the small informed cluster along the axis parallel
to the gradient direction, θ = 0, leads to an improvement in

sensing the gradient steepness g. By contrast, moving along
the axis perpendicular to the gradient, θ = π/2, sensing the
orientation of the gradient is improved. Finally, there is a
compromise situation when moving along θ = π/4, where
both gradient steepness and direction sensing are improved,
but to a lesser extent. These results support again that po-
sitional information is more significant at the edge of the
cluster, but also that the orientation with respect to the gradient
matters. In chemotaxis, for instance, cells need to sense the
direction rather than the steepness of the gradient. Therefore,
a cluster might strive to locate cells at the edge of the axis
perpendicular to the gradient direction to enhance its ability to
chemotax. However, this could work only in the case that the
cluster has previous knowledge of the gradient direction. Our
findings are similar in concept to the ideas reported in [31]
for single cells, in which elongated cells sense the gradient
steepness and direction with different accuracies depending
on the orientation of the cell. Note that in comparing Fig. 3(b)
panels that δσg(0) 
= δσφ (π/2) and δσg(π/4) 
= δσφ (π/4).
This is due to hexagonal clusters not having perfect circular
symmetry, being more elongated, in our case, in the direction
parallel to the gradient.

D. Collective chemotaxis without positional information:
Tug-of-war model

In our above approach, a group of cells senses a chemical
gradient collectively by making local measurements of the
chemoattractant concentration and and their positions. Then,
by applying the maximum likelihood estimator method, we
find the best possible measurement of the gradient the group
of cells can make. However, we showed that this measurement
is constrained by the limited positional information available
to the cells. Here we introduce a different mechanism by
which cells sense and follow the gradient without needing
cells to measure their locations, based on the model in [16],
which we refer to as tug-of-war model. An interesting feature
of this model, which makes it different from the previous one,
is that it does not depend on the positions of the cells within
the cluster, but only on the direction to the nearest cells. In
the tug-of-war model, cells interact by contact inhibition of
locomotion (CIL) [36,37], in which contacting cells polarize
away from each other. This interaction dynamic leads to a
cluster where only cells at the edge are polarized [5,13,16];
see Fig. 4(a). Cells on the inside of the cluster, completely
surrounded by neighboring cells, do not polarize, whereas
cells on the edges, which see only neighboring cells on the in-
terior side, polarize away from the cluster. Another important
property of the model is that cell CIL is modulated by the local
chemoattractant concentration. In this way, those cells at the
front (up the gradient) of the cluster polarize and pull stronger
than the ones on the back (down the gradient), resulting in
a net movement toward up the gradient in a tug-of-war like
dynamic. This mechanism is illustrated in Fig. 4(a).

Our goal in studying the tug-of-war model will be to extend
the results of [16] so that they can be directly compared with
our maximum likelihood results above, which requires us to
include fluctuations in concentration due to receptor-ligand
binding as well as cell-to-cell variability. Following [16], we
start from the assumption that cells behave as stochastic,
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Cell polarity by CIL in the 
absence of a gradient 

Cells sense different 
concentrations

+

Polarity proportional to 
cell concentration

MLE preferred
Tug-of-war preferred

trade-off point

Tug-of-war mechanism

Net motionNo motion

FIG. 4. Tug-of-war model. (a) Scheme representation of the tug-of-war model. (b) Gradient sensing variance as a function of the positional
uncertainty for the tug-of-war model (red solid line) and the MLE model (blue solid line). The black dashed line marks the crossover and
the trade-off positional uncertainty between the two models. (c, d) Trade-off value as a function of (c) the cluster number of cells and (d) the
gradient steepness. (e) Phase diagram of the trade-off values for different clusters’ sizes and gradient steepness. The dashed red line indicates
a boundary given by �rt = 2Rcell. Positional errors, �r, and trade-off values, �rt , are rescaled in of cell’s radius. Parameters: (b) same as
Fig. 1(b), (c) g = 0.005 μm−1, and (d) N = 37 (Q = 3).

self-propelled particles. The motility of cell i results from the
balance between the intracellular forces, Fi j , due to cell-cell
adhesion and volume exclusion, and the cell’s polarity pi,

∂t ri = pi +
∑
i 
= j

Fi j . (8)

Here we define the polarity vector of cell i, pi, as the velocity
the cell would have if no other cells or other forces were
pushing on it—this reflects both the direction and the strength
of its self-propulsion. Computing the cluster centroid velocity
vc = 1

N

∑N
i=1 ∂t ri by summing over all cells in Eq. (8) and

noting that Fi j = −F ji, we find

vc = 1

N

N∑
i

pi. (9)

Cell polarity obeys the differential equation

∂t pi = − 1

τp
pi + σpεi(t ) + βiqi, (10)

where τp is the characteristic time it takes for the polarity
to relax to its steady-state value, and σp is the magnitude
of a fluctuating noise that can drive the polarity away from
its steady-state value. εi(t ) is a vector Gaussian Langevin
noise for cell i that fulfills 〈εi(t )〉 = 0 and 〈εiμ(t )ε jν (t ′)〉 =
δμνδi jδ(t − t ′), with i, j cell indexes, while μ, ν are indexes
for the Cartesian coordinates x, y.

The last term in Eq. (10) comes from the CIL interac-
tions, where βi is the cell’s susceptibility to CIL, and the
vector qi is the resulting direction of contact interaction of
cell i and its neighbors, qi = ∑

i∼ j (ri − r j )/|ri − r j |, where
i ∼ j represent the sum over the cell’s neighbors, defined

as those cells within a distance 2.1Rcell. Note that qi ≈ 0
for interior cells and qi 
= 0 for edge cells. The tug-of-war
model of [16] assumed that susceptibility of the cell i is
proportional to chemoattractant concentration, βi = β̄ c(ri, t ),
leading to cells with higher concentrations c becoming more
strongly polarized away from their neighbors, as sketched in
Fig. 4(a). Here, we must handle the variability in the measured
concentration due to both ligand-receptor binding and cell-
to-cell variability. We assume that cells polarize in response
to what they believe the chemoattractant concentration to be,
Mic, instead of the true concentration value at the cell posi-
tions, c(ri, t ). This will add an additional source of noise to
Eq. (10), which we will now write explicitly. If the suscep-
tibility of cell i is βi(t ) = β̄c0Mi(t ), we can write Mi(t ) =
c(ri, t )/c0 + �i(t ). Here �i(t ) = δci/c0ζ

c
i (t ) + σ�ζ�

i (t ) is
the noise in Mi. Note that, unlike Eq. (1), we must spec-
ify the time dependence of the errors due to ligand-receptor
binding and cell-to-cell variation. We explicitly introduce
ζ c

i (t ) to measure the fluctuations due to concentration sensing
and ζ�

i (t ) for the fluctuations in cell-to-cell variability. We
can characterize the time scale over which the errors due to
receptor-ligand concentration and cell-to-cell variability are
persistent by the correlation functions 〈ζ c(t )ζ c(0)〉 = Cc(t )
and 〈ζ�(t )ζ�(0)〉 = C�(t ). Then we have 〈�i(t )〉 = 0 and
〈�i(t )� j (0)〉 = [δc2

i /c2
0Cc(t ) + σ 2

�C�(t )]δi j . Next, we insert
the expression for the polarity susceptibility βi(t ) = β̄c(ri ) +
β̄c0�i(t ), into Eq. (10) to arrive at

∂t pi = − 1

τp
[pi − γ c(ri, t )qi] + σpεi(t ) + βc0qi�i(t ), (11)

where we have defined γ = τpβ̄.
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We can solve Eq. (11) by directly integrating it. If we
assume that τp is small enough for the polarity to relax to
its steady-state solution before the cluster reorganizes, so the
contact vectors qi are fixed, then pi is given by

pi(t ) = μi + σp

∫ t

0
dt ′e−(t−t ′ )/τpεi(t

′)

+ β̄c0qi

∫ t

0
dt ′e−(t−t ′ )/τp�i(t

′), (12)

where μi = γ c(ri )qi and we chose initial conditions pi(0) =
μi. From Eq. (12), it is possible to compute the mean and
variance of pi(t ). We assume that correlations decay expo-
nentially, so Cs(t ) = e−t/τs , with τs the correlation time and
the index s = {c,�}. Our final results will not be crucially
dependent on τc, τ�, so this is primarily a convenience to make
the analytical calculations simple. Then, recalling that εi(t ) is
a Gaussian uncorrelated noise with mean zero, we compute
the mean and the covariance of pi(t ) (see Appendix C),

〈pi(t )〉 = μi,

〈[pμi (t ) − 〈pμi〉][pνi (0) − 〈pνi〉]〉

= σ 2
p τp

2
δμν (1 − e−2t/τp )

+ β̄2qμi qνi

[
δc2

i T(t, τc) + c2
0σ

2
�T(t, τ�)

]
,

where

T(t, τs)

= τ 2
p

1 + υs

{
1 + 1

1 − υs

[
(1 + υs)e−2t/τp − 2e−(1+υs )t/τp

]}
,

and υs = τp

τs
. Note that typical values for the polarization re-

laxation time τp are ∼20 minutes [16]. This is much longer
than the typical correlation times for the chemoattractant-cell
receptors binding dynamics, which are on the order of the
τc ∼ 1 s [18]. However, recall that cell concentration sens-
ing is limited by CCV, which has a much slower correlation
time that can reach up to 48 h in human cells [18,38]. To
calculate the variance of pi at a reasonable steady state,
then we should think of the CCV noise as constant in time,
and wait for times t much longer than the other relaxation
times. Explicitly, this means τ� � t � τp � τc. In this limit,

T(t, τ�) ≈ τ 2
p

1+τp/τ�
≈ τ 2

p and T(t, τc) ≈ τ 2
p

1+τp/τc
. As a result,

the polarity covariance is 〈(pμi − 〈pμi〉)(pνi − 〈pνi〉)〉 = V i
μν ,

where V i
μν = (γ 2c2

0hTi qμi qνi + σ 2
p τp

2 δμν ) and hTi = δc2
i /c2

0
1+τp/τc

+
σ 2

�

1+τp/τ�
≈ σ 2

�. Essentially, the variance of the polarity has two
terms: the time-averaged noise from measuring concentration,
which is proportional to hTi —which we have named to make
clear it is effectively a time average of hi. The second arises
from the added noise σp in Eq. (10), which is a source of noise
not included in the maximum likelihood model.

Then, with the distribution of polarities in hand, from
Eq. (9) we proceed to compute the expected value and vari-
ance of the cluster velocity. In the case of the expected value,
pointing out that

∑N
i qi = 0, we arrive at the following simple

expression:

〈vc〉 = γ c0Mg, (13)

where Mμν = 1
N

∑N
i δrμi qνi . For the variance we have

�v2
cμν

= γ 2c2
0

N2

N∑
i

hTi qμi qνi + τpσ
2
p

2N
δμν. (14)

The first term in this equation reflects the variance in the
velocity arising from the fluctuations in concentration sensing
h, and the second term reflects the fluctuations in polarity σp

that affect every cell—an added noise from randomness in the
motility of the cell. As the concentration is important only
for edge cells where q 
= 0, the first term scales as Nedge/N2,
where Nedge is the number of edge cells—so we expect the
first term to scale as ∼N−3/2 for roughly circular clusters
with Nedge ∼ √

N . The second term in Eq. (14) arises from
averaging N independent random fluctuations and therefore
scales as N−1.

Now, we ask the question, What is the gradient-sensing
error for this tug-of-war model? Here we are looking for an
equation analogous to Eq. (6). We use Eq. (13) and Eq. (14)
to propagate errors and compute the gradient-sensing error for
the tug-of-war model (Appendix C),

σ 2
g ≈ 2(∑N

i=1 qi · δri
)2

(
N∑

i=1

|qi|2hTi + σ 2
p τp

γ 2c2
0

N

)
, (15)

under the assumption of isotropic clusters, as in Eq. (6).
How can we make a consistent comparison between the

tug-of-war model and the maximum likelihood estimation?
There are two key differences. First, the tug-of-war model
includes an additional source of noise—the polarity noise
σp representing fluctuations in cell polarity arising from fac-
tors outside of concentration sensing. Second, the tug-of-war
model, as a dynamical model, explicitly includes an average
over a characteristic time τp, while the maximum likelihood
estimate is based on a single snapshot of the measured con-
centration. The first issue is simple to deal with: since the
MLE method returns a lower bound for the gradient-sensing
error, it is most comparable to deal with the best possible
situation for the tug-of-war model, i.e., no polarity fluctu-
ations, σp = 0. The issue of time averaging is less clear.

Equation (15) depends on hTi = δc2
i /c2

0
1+τp/τc

+ σ 2
�

1+τp/τ�
. To compare

with the instantaneous snapshot, we would have to choose
τp 
 τc, τ�, in which case hTi ≈ hi. However, this is incon-
sistent with our estimates above where τp ∼ 20 minutes and
τc ∼ 1 second. In practice, however, this distinction is not very
important, because both hTi and hi are dominated by the CCV
noise, so hTi ≈ hi ≈ h̄ ≈ σ 2

�. We will then directly assume
that hTi = hi = h̄, so that the tug-of-war and MLE results are
directly comparable.2 With these results, we can compute the
uncertainty in the estimation of g arising from the tug-of-war

2An alternate approach would be to consider the maximum likeli-
hood estimation of measured signals Mi that have been time averaged
over a time τp, in which case hi would be replaced in the MLE results
by hT i . See Appendix D for details.
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model as

σ 2
g ≈ 1

χtow
h̄, (16)

where χtow = (
∑N

i δri·qi )2

2
∑N

i |qi|2 . Note how similar Eq. (16) is to

Eq. (6) when �r = 0. The only difference is in the geo-
metrical factors χ and χtow. As in Eq. (6), the factor χtow

contains all the information about the cluster’s shape, size,

and number of cells, while h̄ = δc
2
/c2

0 + σ 2
� ≈ σ 2

� measures
the variability of sensing and responding to chemoattractant
concentration. The prefactor χtow involves sums over the CIL
directional vectors qi, which are nonzero only on the edge
cells, supporting again that only those cells contribute to sens-
ing the gradient in the tug-of-war model.

We now want to compare the tug-of-war model and the
MLE method to see which of them, and under what con-
ditions, senses the gradient more accurately. Figure 4(b)
shows the gradient-sensing error as a function of positional
uncertainties for both models. In this case, since the tug-of-
war model does not depend on positional uncertainties, its
gradient-sensing error is constant. In the absence of positional
errors, the MLE method makes a better estimation of the
gradient than the tug-of-war model, since this last one uses
only information from the edge cells in contrast with the
MLE model that uses all the cells. However, as cells become
less informed about their positions, a trade-off occurs where,
beyond a certain positional uncertainty value, �rt , the tug-of-
war model turns out to be a better estimator of the gradient.
This crossover exists since the tug-of-war model does not
need to estimate cell positions and is therefore independent of
positional uncertainties. Under the shallow gradient approxi-
mation, from Eq. (6) and Eq. (16), we can find analytically the
crossover between both models,

�rt ≈
√

h̄
(

χ

χtow
− 1

)
g

. (17)

Using maximum likelihood estimation, increasing the clus-
ter’s size can compensate for limitations in cells positional
information; see Fig. 4(c). This result can be easily predicted
from Eq. (17) by considering the scaling of the geometri-
cal factors χ and χtow with the cluster radius, Rcluster. We
showed in Sec. II B that χ ∼ R4

cluster for a roughly circu-

lar cluster. For the tug-of-war model, χtow = (
∑N

i δri·qi )2

2
∑N

i |qi|2 . For

a roughly circular cluster, qi will be along the direction
δri for cells at the edge, and zero for cells in the inte-
rior. Edge cells will have roughly the same magnitude of
qi, |q|. Thus, δri · qi ≈ |q|Rcluster for edge cells, and χtow ≈
(Nedge|q|Rcluster )2/2Nedge|q|2 ∼ NedgeR2

cluster. As for a roughly
circular cluster, we expect the number of cells on the edge
Nedge to be proportional to 2πRcluster, we see χtow ∼ R3

cluster.
We see then that for the MLE model, the gradient-sensing
accuracy σ 2

g ∼ R−4
cluster, while for the tug-of-war model, σ 2

g ∼
R−3

cluster—because the tug-of-war model uses only the edge
cells, its accuracy grows more slowly with the cluster size.
Then χ/χtow ∝ Rcluster, and we get from Eq. (17) that the �rt

shifts to larger values with the cluster size, (�rt ∝ R1/2
cluster).

On the other hand, the gradient steepness plays an opposite
role in shifting the trade-off values. In a steeper gradient, the

MLE method becomes more sensitive to uncertainties in cell
positions. In this scenario, the tug-of-war model benefits from
this limitation in the MLE method and senses the gradient
more accurately, even in the presence of small positional
errors. As a consequence, the trade-off values shift towards
smaller positional uncertainties with the gradient steepness;
see Fig. 4(d).

Our core results showing when clusters should prefer using
tug-of-war or MLE are summarized in the phase diagram
for the trade-off values shown in Fig. 4(e). In absence of
positional error, the MLE method will always be preferred;
the color map shows the amount of positional error required
to make tug-of-war and MLE equivalent. We draw a dashed
line at what we view as a typical positional uncertainty,
�rt = 2Rcell. As we would expect from the scaling that σ 2

g ∼
R−4

cluster for MLE and σ 2
g ∼ R−3

cluster for tug-of-war, at a suf-
ficiently large cluster size (large N), MLE will always be
preferred—but the cluster size at which MLE is preferred
depends strongly on the gradient strength.

Last, it is interesting to note the case of N = 7. This cluster
size corresponds to the one-layer hexagonal cluster, where
almost all cells are edge cells, and there is only one interior
cell. The interior cell is located at the cluster’s center, so that
δr = 0, and therefore has no contribution to the gradient sens-
ing in the MLE method [recall that χ = ∑N

i |δri|2/2 in the
shallow gradient; see also for the general solution Eqs. (B4)–
(B6)]. Consequently, both models use the same cells to sense
the gradient, except that the MLE approach is affected by
positional uncertainty, whereas the tug-of-war is not. For this
reason, even small uncertainties in cell positions are sufficient
for the tug-of-war model to outperform the MLE and become
the best gradient estimator. In the case of the shallow gradient
approximation, we have that χ = χtow, and from Eq. (17) we
obtain �rt ≈ 0.

III. DISCUSSION

We have studied the role of limited positional information
in collective gradient sensing. Within the context of gradi-
ent sensing, how cells get their positional information—or if
they estimate the gradient without this information—is still
an open question. Positional information within a group of
cells has been studied in the context of developmental biol-
ogy, where an external morphogen signal determines cells’
fate [19,21,23,39]; cells may also sense their position within
a colony by sensing mechanical stresses [20]. Moving from
a sensed chemical or mechanical signal to positional knowl-
edge within a cluster is a complex multistage process [23].
Consequently, attaining precise positional information is a
time-costly process, and there are essential tradeoffs between
the rate at which a pattern can be established and its preci-
sion [40]. Establishing a reproducible gradient is likely even
more challenging for migratory cells in clusters [5,13], as cell
position and number of cells in the cluster all evolve over time.
However, there is a potential candidate for a morphogen-like
source of positional information within neural crest cell clus-
ter chemotaxis: the complement fragment C3a, which acts as
a “coattractant” [41]. Earlier simulations show that the coat-
tractant C3a can be established in a graded fashion [42]. Here
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we have suppressed the details of how positional information
is established, neglecting potential issues with establishing a
reliable gradient, and focused on the unavoidable impact of
limited positional information in collective gradient sensing.
Consequently, these results should in a sense be considered
the best case for exploiting positional information: if the
tradeoff argument of Fig. 4 predicts that maximum likelihood
sensing using limited positional information is optimal, we
should be skeptical about this. Contrarily, if the tradeoff sug-
gests MLE is inferior to the tug-of-war, we should be highly
confident that this is true. For this reason, it seems unlikely
that collective gradient sensing by small clusters, such as bor-
der cell migration [4,43,44], relies significantly on positional
information.

Our results show that whether cells should use positional
information in estimating a chemical gradient orientation de-
pends not only on the amount of positional information but
also on parameters like the cluster size and the gradient
steepness. Large clusters overcome positional uncertainties by
having numerous cells, i.e., more independent measurements,
combining their estimates of their positions and the local con-
centration of chemoattractant. This large benefit from gaining
information from all cells and weighting them according to
position can outweigh the costs of having limited positional
information. This is especially apparent in comparison with
the tug-of-war model, which uses only information from the
small fraction of the cells at the cluster’s edge.

Gradient steepness is also a key parameter. Finite posi-
tional information limits the accuracy of collective gradient
sensing by a group of cells—but this limitation becomes more
significant for steeper gradients, since differences in positions
lead to larger changes in the chemoattractant concentration.
Remarkably, for shallow gradients, (g → 0), the limit where
collective gradient sensing is most important, as single cells
can become ineffective sensors, positional information turns
out not to be relevant.

While our simplest analytical results are derived for a
cluster with a constant positional information �r, we can
generalize our results beyond this point, finding that the ef-
fect of limited positional information differs depending on
a cell’s position within the cluster. Positional uncertainties
in cells farther away from the cluster center of mass have a
greater effect on the accuracy of gradient detection—again,
suggesting that edge cells must play a large role in sensing.
Our observations suggest that a group of cells may benefit
from having specialized cells capable of sensing their posi-
tion more accurately than the rest. The idea that cells may
specialize depending on position in the cluster or chemoat-
tractant concentration has also been suggested in other
contexts [17,33,45,46].

In addition to the maximum likelihood estimation of [18],
which requires positional information, and the tug-of-war
models [13,16,17], which do not, there are many other models
of collective gradient sensing [15]. One broad category of a
collective sensing mechanism that is not affected by positional
information is collective local excitation-global inhibition
(LEGI), where a local reporter reads out local chemoattrac-
tant concentration and a global inhibitor measures the global
concentration [42,47–50]. In LEGI, cell-cell communication
imposes a maximum length scale at which gradient-sensing

information is reliably shared, leading to a saturation of
gradient-sensing accuracy with cell number [48], compatible
with experiments on mammary organoids [14] but not lym-
phocyte clusters. While we have not treated the LEGI model in
detail here, we argue that, similarly with the tug-of-war model,
it does not require the cluster to know cell positions—but
it does not gain the benefits of measuring signals over the
entire cluster. We would similarly expect LEGI sensing to be
suboptimal to the maximum likelihood estimator in the limit
of increasingly large clusters, shallower gradients, or lowering
positional uncertainty.

Can the consequences of limited positional information be
characterized experimentally? In experiments tracking cluster
migration in response to a chemoattractant gradient [5,13], the
distribution of the angle between the cluster’s motion and the
gradient is simple to measure, allowing σ 2

φ to be measured.
Earlier work on lymphocyte clusters studied cluster velocity
and velocity variability as a function of cluster size to support
a tug-of-war model in which chemotaxis was driven by forces
along the edge, and noise in motility was driven by all cells,
not just edge cells [13]; similar measurements have been made
in the border cell cluster in vivo [51]. If a group of cells were
reaching the optimal sensing limit given by Eq. (6), we would
predict that accuracy σ 2

φ would scale extremely strongly with
cluster size, σ 2

φ ∼ R−4
cluster—a stronger dependence than that

found by [13]. More characteristically, we would expect that
as gradient strength g is increased, that angular accuracy σφ

would saturate [Fig. 1(d)], in contrast with the predictions of
previous models [18,42], where increasing gradient strength
essentially always increases cluster accuracy. However, this
prediction should be interpreted cautiously: even in single
cells, increasing gradient strength does not always continue
to increase accuracy [52,53]. This may reflect that at steep
gradients, intracellular sources of noise in cell information
processing and motility may be more important than at rel-
atively shallow gradients, where the receptor-ligand noise is
most important [53]. Within the shallow-gradient approxima-
tion, Eq. (6), σφ saturates to a value �r/

√
χ at large gradient

strength. The strongest evidence that positional information
is playing a role as in Eq. (6) would be if, at large gradient
strengths, this saturation value of σφ changed as sources of
positional information were disrupted, altering �r. This could
arise from, e.g., interfering with the secretion or sensing of
C3a in neural crest cells [41]. Ideal experiments would then
extend earlier work [5] to a large range of cluster sizes with
a more precise control over the chemical gradients clusters
are exposed to. However, our earlier caveats on the model
of Eq. (6) should be kept in mind: this result is a minimal
model for positional error that is constant across the cluster,
and more detailed comparisons would require more details
about a putative source of positional information.

Our results show that a sensing mechanism that does not
rely on positional information, such as tug-of-war, is optimal
for sufficiently small clusters or sufficiently large gradients.
In Fig. 4 we have shown a phase diagram assuming that
positional information is accurate to roughly a cell diameter,
finding that tug-of-war is always optimal for clusters of seven
cells, and will become optimal at large gradients for larger
clusters. The experiments that originally suggested tug-of-war
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models where only edged cells participate in sensing and
responding to the gradient [5,13] involved tens to hundreds
of cells. If the tug-of-war behavior represents an evolutionary
optimum, it may reflect either a low ability to gain positional
information or a typical need to follow relatively steep gradi-
ents.

Codes and notebooks used in this paper are available [54].
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APPENDIX A: COMPUTING THE READING
CONCENTRATION ERROR FOR A SINGLE CELL

Cells estimate concentrations from the occupancy of re-
ceptors that binds the molecules of interest. Fluctuations
in the number of occupied receptors determine the accu-
racy of the cell to sense the concentration. To estimate the
cell’s sensing concentration error we first need to find how
receptor occupancy fluctuates. We consider a cell with nr

independent receptors distributed along its surface and simple
ligand-receptor kinetics, where molecules bind the receptors
with a rate konc(ri ) and unbind with rate koff . The proba-
bility that a receptor is bound to a ligand molecule is p =

konc(ri )
konc(ri )+koff

= c(ri )
KD+c(ri )

, where KD = koff
kon

is the reaction dissoci-
ation constant. Then the mean number of occupied receptors
is n̄ = nr

c(ri )
KD+c(ri )

. Since receptors can have only two states

(bound or unbound), they follow a binomial process with
variance δn2 = nr p(1 − p) = nr c(ri )KD

[KD+c(ri )]2 . Finally, the error in
the concentration estimate is related to the fluctuations in
the number of bound receptors through propagation of error,
δc2 = ( dc

dn̄ )2δn2 = c(ri )[KD+c(ri )]2

nr KD
.

APPENDIX B: DERIVATION OF THE FISHER
INFORMATION MATRIX AND COMPUTING OF THE

LOWER BOUND FOR THE GRADIENT-SENSING
ERROR THROUGH THE MAXIMUM LIKELIHOOD

ESTIMATION METHOD

We apply MLE to obtain the gradient-sensing error of
a group of cells that sense their local chemoattractant con-
centration and have limited positional information. Each cell
i performs two independent measurements, a measurement
of the local concentration Mi and a measurement of its
position r∗

i given by Eqs. (1) and (2) respectively. From
Sec. II A, we know we can write the likelihood function as
L(g, {ri}|{Mi, r∗

i }) = ∏N
i p(Mi|g, ri )p(r∗

i |ri ). In general, it is
easier to work with the log of the likelihood instead, since
the product between the probabilities becomes a sum. Then,
considering a gradient g = gxx̂ + gyŷ and a covariance matrix
for the positional error,

�i =
[

σ 2
xi

ρiσxiσyi

ρiσxiσyi σ 2
yi

]
, (B1)

we find the log of the likelihood to be

logL(g, {ri}|{Mi, r∗
i }) = −3

2

N∑
i

log(2π ) − 1

2

N∑
i

log hi −
N∑
i

(Mi − μi )2

2hi
− 1

2

N∑
i

log
[
σ 2

xi
σ 2

yi

(
1 − ρ2

i

)]

−
N∑
i

1

2
(
1 − ρ2

i

)
[(

r∗
xi

− rxi

)2

σ 2
xi

− 2ρi

(
r∗

xi
− rxi

)(
r∗

yi
− ryi

)
σxiσyi

+
(
r∗

yi
− ryi

)2

σ 2
yi

]
, (B2)

where μi = 1 + g · δri and hi = (δci/c0)2 + σ 2
� are the mean and variance of the local concentration measurement performed

by cell i.
From Eq. (B2), we could find the global maximum to obtain the maximum likelihood estimator. Here we are not interested

in the estimator itself but in its fluctuations. We want to compute the estimator error, which we know must converge to the
Cramér-Rao bound, given by the inverse of the Fisher information matrix, (I )−1. This bound limits the accuracy of any unbiased
measurement of the gradient g [29]. This bound puts a limit on minimal errors of any unbiased estimator of a parameter (e.g., an
estimator α̂) away from the true value of that parameter (α). The Cramér-Rao bound for parameters α and β is

〈(α − α̂)(β − β̂ )〉 = (I−1)α,β . (B3)

Recalling the Fisher information definition, Iα,β = −〈 ∂2 lnL
∂α∂β

〉, we next take partial derivatives of Eq. (B2), and compute the
expectation values, getting

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑N
i fiδr2

xi

∑N
i fiδrxiδryi gx f1δrx1 gy f1δrx1 . . . gx fNδrxN gy fNδrxN∑N

i fiδrxiδryi

∑N
i fiδr2

yi
gx f1δry1 gy f1δry1 . . . gx fNδryN gy fNδryN

gx f1δrx1 gx f1δry1 g2
x f1 + m1

σ 2
x1

gxgy f1 − m1ρ1

σx1 σy1
. . . 0 0

gy f1δrx1 gy f1δry1 gxgy f1 − m1ρ1

σx1 σy1
g2

y f1 + m1
σ 2

y1

. . . 0 0
...

...
...

...
. . .

...
...

gx fNδrxN gx fNδryN 0 0 . . . g2
x fN + mN

σ 2
xN

gxgy fN − mN ρN

σxN σyN

gy fNδrxN gy fNδryN 0 0 . . . gxgy fN − mN ρN

σxN σyN
g2

y fN + mN
σ 2

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

044410-10
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where fi = (a+μi )2[(a+3μi )2+2anrμi]+2a2n2
r σ

2
�

2[μi (μi+a)2+anrσ
2
�]2 , mi = 1

(1−ρ2
i )

,
a = KD/c0, and δri = ri − rcm. The order of the
Fisher information matrix elements correspond to
{gx, gy, rx1 , ry1 , . . . , rxN , ryN }, such that, for example,
I1,1 = −〈 ∂2 lnL

∂g2
x

〉, I1,2 = −〈 ∂2 lnL
∂gx∂gy

〉, I1,2(N+1) = −〈 ∂2 lnL
∂gx∂ryN

〉.
The derivation of the Fisher information matrix from the
likelihood function is not hard, but takes some calculation
effort. To gain some intuition about the shape it takes, we
point out some aspects. Note that g and ri are related only
by the likelihood function through the term g · δri, which
appears inside the expressions of hi and μi. From there we
can see why the fi parameters are in every element of the
Fisher information matrix. Taking second derivatives with
respect to g and ri over the different terms in Eq. (B2), by the
derivative rule of chain, results in ending up taking derivatives
over g · δri. Then all these terms factor together yielding fi.
For the same reason we can understand I having the first
two rows or columns in full. Last, note that the elements
related to the double derivatives with respect to positions
have a contribution coming from the gradient terms, plus
the contribution from the positional uncertainty terms of the
likelihood function.

We are interested in computing the gradient-sensing errors,
σ 2

gx
≡ 〈(gx − ĝx )2〉 = (I−1)gx,gx and σ 2

gy
≡ 〈(gy − ĝy)2〉 =

(I−1)gy,gy . Following a guided Gaussian elimination
procedure we can obtain the inverse of the Fisher information
matrix for the elements associated with the gradient (see
Appendix E). The maximum likelihood estimator errors for
the gradient are

σ 2
gx

= 1

S

N∑
i

γiδr2
yi
, (B4)

σ 2
gy

= 1

S

N∑
i

γiδr2
xi
, (B5)

σgx,gy = − 1

S

N∑
i

γiδrxiδryi , (B6)

where S = ∑N
i γiδr2

xi

∑N
i γiδr2

yi
− ( ∑N

i γiδrxiδryi

)2
, and

γi = fi

1+ figT �ig
.

Finally, it is easier to interpret the gradient-sensing errors
in terms of the steepness, g, and direction φ, of the gradient.
We can obtain them by reparametrizing the Fisher information
matrix as

Iθ ′ = JT Iθ (θ (θ ′))J,

where J is the Jacobian matrix, Ji j = ∂θi
∂θ ′

j
, and θ = {gx, gy} and

θ ′ = {g, φ} are the variables we want to transform. The errors
for the gradient steepness and direction then are

σ 2
g = cos2(φ)σ 2

gx
+ sin2(φ)σ 2

gy
+ 2 cos(φ) sin(φ)σgx,gy ,

(B7)

σ 2
φ =

sin2(φ)σ 2
gx

+ cos2(φ)σ 2
gy

− 2 cos(φ) sin(φ)σgx,gy

g2
.

(B8)

We presented these equations for an isotropic cluster in the
main text, where σgx,gy ≈ 0 and σgx ≈ σgy . In this case, we find
that σ 2

φ = σ 2
g /g2—but this is true only for isotropic clusters.

Note that Eq. (B8) fails for large enough σg, since φ is con-
strained between 0 and 2π , and consequently, σφ is bounded.

Shallow gradient approximation

In the limit of shallow gradient approximation it is pos-
sible to obtain simpler expression for the gradient-sensing
errors. In this limit, gRcluster 
 1, meaning that the cell’s
ligand-receptor fluctuations can be approximated as δci ≈
δc =

√
1
nr

c0(c0+KD )2

KD
. Variations of the chemoattractant concen-

tration along the cell’s cluster are small, thus we can assume
that all cells have the same reading concentration errors. Then

hi ≈ h̄ = δc
2 + σ 2

�. Moreover, since nr � KD/c0, fi can be
approximated as the inverse of the reading concentration error,
fi ≈ f̄ = 1/h̄. Note that the limit of large cell-cell variability,
σ� � δci/c0, would lead to the same approximation. As-
suming constant isotropic positional errors, such that ρi = 0
and σxi = σyi = �r, we find that γi = 1

1/ fi+gT �ig
≈ 1

h̄+g2�r2 is
independent of i and thus Eqs. (B4)–(B6) take a simplified
form,

σ 2
gx

=
∑N

i δr2
yi

S̄
(h̄ + g2�r2), σ 2

gy
=

∑N
i δr2

xi

S̄
(h̄ + g2�r2),

and in polar coordinates,

σ 2
g = �g(h̄ + g2�r2), σ 2

φ = �φ

g2
(h̄ + g2�r2),

where �g =
∑N

i [sin(φ)δrxi −cos(φ)δryi ]
2

S̄ , �φ =∑N
i [cos(φ)δrxi +sin(φ)δryi ]

2

S̄ , and S̄ = ∑N
i δr2

xi

∑N
i δr2

yi
−

(
∑N

i δrxiδryi )
2 are geometrical factors that depend on

the cluster’s shape and the gradient’s orientation. Note
that in the case the clusters have circular symmetry,
(
∑N

i δr2
xi

≈ ∑N
i δr2

yi
≈ 1

2

∑N
i |δri|2,

∑N
i δrxiδryi ≈ 0), then

�g ≈ 1
χ

, and Eq. (6) is recovered.

APPENDIX C: AUXILIARY COMPUTATIONS FOR THE
TUG-OF-WAR MODEL

1. Details on computation of the mean and covariance of pi(t )

We want to compute the mean value and variance of pi. We
start from Eq. (12). The mean value is straightforward,

〈pi〉 =
〈
μi + σp

∫ t

0
dt ′e−(t−t ′ )/τpεi(t

′)

+β̄c0qi

∫ t

0
dt ′e−(t−t ′ )/τp�i(t

′)
〉

= 〈μi〉 + σp

∫ t

0
dt ′e−(t−t ′ )/τp〈εi(t

′)〉

+ β̄c0qi

∫ t

0
dt ′e−(t−t ′ )/τp〈�i(t

′)〉

= μi.
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Recalling that 〈�i(t )� j (0)〉 = [δc2
i /c2

0Cc(t ) + σ 2
�C�(t )]δi j , and that we have assumed that correlations decay exponentially,

so Cs(t ) = e−t/τs , with τs the correlation time and the index s = {c,�}, we now compute the covariance of pi(t ),

〈[pμi (t ) − 〈pμi〉][pνi (t ) − 〈pνi〉]〉 = σ 2
∫ t

0
dt ′

∫ t

0
dt ′′〈εμi (t

′)ενi (t
′′)〉e−(t−t ′ )/τpe−(t−t ′′ )/τp

+ β̄2c2
0qμi qνi

∫ t

0
dt ′

∫ t

0
dt ′′〈�i(t

′)�i(t
′′)〉e−(t−t ′ )/τpe−(t−t ′′ )/τp

= σ 2τp

2
+ β̄2qμi qνiδc2

i T(t, τc) + β̄2c2
0qμi qνiσ

2
�T(t, τ�),

where

T(t, τs) = τ 2
p

1 + υs

{
1 + 1

1 − υs

[
(1 + υs)e−2t/τp − 2e−(1+υs )t/τp

]}
,

and υs = τp

τs
. T(t, τs)/τ 2

p represents the time-averaging func-
tion for a fluctuating process with correlation time τs up
to a time t . Given that τ� � t � τp � τc, then T(t, τc) ≈

τ 2
p

1+τp/τc
≈ τpτc and T(t, τ�) ≈ τ 2

p , so then T(t, τ�) � T(t, τc).

2. Error propagation for the tug-of-war model

To estimate the gradient-sensing error for the tug-of-war
model we use a simple error propagation method. From
Eq. (13), we can write an expression for the gradient related
to the cluster velocity, g = 1

γ c0
M−1〈vc〉, where

M−1 = N

Sv

[ ∑N
i δryi qyi − ∑N

i δryi qxi

− ∑N
i δrxi qyi

∑N
i δrxi qxi

]
(C1)

and Sv = ∑N
i δrxi qxi

∑N
i δryi qyi − ∑N

i δrxi qyi

∑N
i δryi qxi .

Recalling the symmetry of the roughly circular
hexagonal clusters, the following relations are ful-
filled:

∑N
i δr2

xi
≈ ∑N

i δr2
yi

≈ 1
2

∑N
i |δri|2,

∑N
i δrxiδryi ≈

0,
∑N

i q2
xi

≈ ∑N
i q2

yi
≈ 1

2

∑N
i |qi|2,

∑N
i qxi qyi ≈ 0,∑N

i qxiδrxi ≈ ∑N
i qyiδryi ≈ 1

2

∑N
i qi · δri, and

∑N
i qxiδryi ≈∑N

i qyiδrxi ≈ 0. In addition, note that in such a case, we can
write Sv ≈ ∑N

i δrxi qxi

∑N
i δryi qyi ≈ 1

4 (
∑N

i qi · δri )2 and

M−1 ≈ 2N∑N
i qi · δri

I, (C2)

where I is the 2 × 2 identity matrix. Then the expression for
the gradient takes the following simple form:

g = 2N

γ c0
∑N

i qi · δri

〈vc〉. (C3)

Equation (C3) shows that g and 〈vc〉 are proportional to each
other. Then we can write the variance of g as

var(g) =
(

2N

γ c0
∑N

i qi · δri

)2

var(vc). (C4)

Introducing the velocity variance expressions given by
Eq. (14) into Eq. (C4), we finally obtain the gradient-sensing
variances for the tug-of-war model,

σ 2
gx

≈ σ 2
gy

≈ 2(∑N
i qi · δri

)2

(
N∑
i

|qi|2hTi + σ 2
p τp

γ 2c2
0

N

)
, (C5)

cov(gx, gy) ≈ 0. (C6)

We note that, though our derivation of this equation does
involve a sum over cell positions, the cluster can compute

the direction of the gradient through the tug-of-war without
explicitly knowing any cell locations.

APPENDIX D: MAXIMUM LIKELIHOOD ESTIMATOR
WITH TIME AVERAGING

In the main text we apply the MLE method to compute the
gradient-sensing error from the individual cell measurements
of the chemoattractant concentration, Mi, and cell positions,
r∗

i . These measurements capture a “snapshot” or instant of
the cluster state. Later in the text, we compare the MLE
outcomes with the tug-of-war model, which relies on the
statistics of the cell polarities pi obtained for asymptotic times
larger than τp. Therefore, we are comparing instantaneous
with time-averaged measurements. We could do this since
the sensing concentration measurements are dominated by the
CCV, which has a correlation times larger than the polarity
relaxation time. Here we extend the MLE method by using
time-averaged measurements in the same way as the tug-of-
war model.

We compute the time average for the individual cell
chemoattractant concentration measurements,

MT
i (t ) =

∫
Mi(t

′)KT (t − t ′) dt ′,

= c(ri )/c0 +
∫

�i(t
′)KT (t − t ′) dt ′,

where KT (t ) = H(t ) 1
T e−t/T is a time-averaging kernel and

H(t ) the Heaviside function. We assume that cell positions
remain fixed during the averaging time T , so that c(ri, t ) =
c(ri ). Now we compute the mean and variance for MT

i ,〈
MT

i

〉 = c(ri )/c0,〈(
MT

i − 〈
MT

i

〉)2〉 = 1

T 2

∫ t

0
dt ′

∫ t

0
dt ′′〈�i(t

′)�i(t
′′)〉

× e−(t−t ′ )/T e−(t−t ′′ )/T ,

= 1

T 2

∫ t

0
dt ′

∫ t

0
dt ′′

(
δc2

i

c2
0

Cc(|t ′ − t ′′|)

+ σ 2
�C�(|t ′ − t ′′|)

)
e−(t−t ′ )/T e−(t−t ′′ )/T ,

= 1

1 + T/τc

δc2
i

c2
0

+ 1

1 + T/τ�

σ 2
�.
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If we substitute the averaging time T = τp, these are pre-
cisely the values hTi which we derived in our tug-of-war
model. This shows we can carry over all of our results from
the maximum likelihood estimation to match the results of
the tug-of-war model. However, this is not particularly impor-
tant; because T � τc and T 
 τ�, the sensing concentration
fluctuations can be approximated by 〈(MT

i − 〈MT
i 〉)2〉 ≈ σ 2

�.
When we take into account time averaging, the contributions
to the sensing concentration fluctuations are dominated by
CCV while ligand-receptor fluctuations are averaged out.

APPENDIX E: PROOF FOR THE ANALYTICAL SOLUTION
OF THE MLE ERRORS

In this Appendix we show the derivation of the expres-
sions for the MLE errors in the shallow gradient limit. The
problem we are solving is very similar to an error-in-variable
models of regression, in which the regressor variable is sub-
ject to errors [55]. However, we were not able to find an
explicit mapping between these results and our question of
interest—computing the Fisher information matrix and its
inverse specifically for the gx and gy variables. Finding the
Fisher information matrix I is relatively straightforward from

evaluating derivatives of the log-likelihood, and it is pre-
sented in Appendix B. However, to determine the Cramér-Rao
bound, we need to compute the inverse of the Fisher infor-
mation matrix—in principle needing to analytically invert a
matrix whose size scales with the number of cells. This is
nontrivial in general. However, for this problem we were able
to use Gaussian elimination to find the elements of the inverse
of the Fisher information matrix necessary for us, i.e., (I )−1

gxgx
,

(I )−1
gygy

, and (I )−1
gxgy

. Given the almost tridiagonal shape of
the Fisher matrix, we first show the procedure for how to
eliminate the elements of the rows associated with a individual
cell s and then repeat the same steps for the rest of the cells.

Recall that the Gaussian elimination method is a linear
algebra method to find the solution of a problem A × X = B.
This problem can be represented in terms of an augmented
matrix [A|B]. Row operations (i.e., linear combinations of the
rows) are performed, leading eventually to finding the solution
for X when the augmented matrix takes the form [I|C], where
I is the identity matrix, and C = (A−1)B = X . In our case,
the problem we want to solve is to find the inverse of the
Fisher information matrix, I × (I−1) = I. To start with the
Gaussian elimination process, we first write the augmented
matrix [I|I],

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sxx Sxy . . . gx fsδrxs gy fsδrxs . . .

Sxy Syy . . . gx fsδrys gy fsδrys . . .

...
... . . .

...
... . . .

gx fsδrxs gx fsδrys . . . g2
x fs + ms

σ 2
xs

gxgy fs + msρs

σxs σys
. . .

gy fsδrxs gy fsδrys . . . gxgy fs + msρs

σxs σys
g2

y fs + ms
σ 2

ys
. . .

...
... . . .

...
... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . .

0 1 . . .

...
... . . .

0 0 . . .

0 0 . . .

...
... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Sxx = ∑N
i fiδr2

xi
, Syy = ∑N

i fiδr2
yi

, and Sxy = ∑N
i fiδrxiδryi . Since we are looking only for the gradient estimation errors,

we consider solely the two first columns of the right matrix.
We next apply the operations to perform an upper diagonalization of columns associated to the cell s. Henceforth we use the

notation Ri and Im,n to identify the i row and the (m, n) element of the matrix, respectively. Note that the rows associated with
the cell s are R2s+1 and R2s+2.

(1) Set element I2s+2,2s+2 = 1: R2s+2 ← R2s+2

I2s+2,2s+2
.

(2) Set element I2s+1,2s+2 = 0: R2s+1 ← R2s+1 − I2s+1,2s+2R2s+2.

(3) Set element I2,2s+2 = 0: R2 ← R2 − I2,2s+2R2s+2.

(4) Set element I1,2s+2 = 0: R1 ← R1 − I1,2s+2R2s+2.

(5) Set element I2s+1,2s+1 = 1: R2s+1 ← R2s+1

I2s+1,2s+1
.

(6) Set element I2,2s+1 = 0: R2 ← R2 − I2,2s+1R2s+1.

(7) Set element I1,2s+1 = 0: R1 ← R1 − I1,2s+1R2s+1.

After these steps we arrive at the following matrix:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Sxx − αsδr2
xs

Sxy − αsδrxsδrys . . . 0 0 . . .

Sxy − αsδrxsδrys Syy − αsδr2
ys

. . . 0 0 . . .
...

... . . .
...

... . . .

� � . . . 1 0 . . .

� � . . . � 1 . . .
...

... . . .
...

... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . .

0 1 . . .
...

... . . .

0 0 . . .

0 0 . . .
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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αs = f 2
s

g�sgT

1+ fsg�sgT and the squares (�) represent elements with
large expressions that are not relevant for the computation.

Then, we need to repeat steps 1–7 for all s. For each
iteration we add a term −αsδrzksδrzl s to the matrix elements
{k, l} with k, l = {1, 2} and zk,l = {x, y}. Finally, after repeat-
ing the procedure for all s, we get that the elements {k, l}
results in

∑N
i fiδrzxiδrzl i − ∑

s αsδrzxsδrzl s = ∑N
i γiδrzxiδrzl i,

where γi = fi

1+ fig�igT , and the matrix reads

⎡
⎢⎣

∑N
i γiδr2

xi

∑N
i γiδrxiδryi . . .∑N

i γiδrxiδryi

∑N
i γiδr2

yi
. . .

...
... . . .

∣∣∣∣∣∣∣
1 0 . . .

0 1 . . .
...

... . . .

⎤
⎦.

Finally, since the first two rows are composed by a 2 × 2
block followed by all zeros to the right, instead of performing
row operations, we can just invert this 2 × 2 matrix block to
arrive to the final solution for the inverse of the Fisher matrix
and the MLE errors.

⎡
⎣1 0 . . .

0 1 . . .
...

... . . .

∣∣∣∣∣∣
∑N

i γiδr2
yi

S −
∑N

i γiδrxi δryi
S . . .

−
∑N

i γiδrxi δryi
S

∑N
i γiδr2

xi
S . . .

...
... . . .

⎤
⎥⎥⎦.

We can be positive that this is the final solution, since fol-
lowing with the Gaussian elimination process, no further
operations over the first two rows would be necessary, and
therefore, they will not be modified.

TABLE I. Parameter selection. Unless otherwise indicated in the
paper, these are the parameters used throughout the results.

Parameter Value Justification

Q 3 N = 8–100. From [13] area of clusters
is ∼2500 μm2 and considering that
Rcell ∼ 3–10 μm.

Rcell 10 μm Lymphocytes ∼3–5 μm, epithelial cells
∼4–10 μm.

nr 105 From [56,57].
a = Kd

c0
1 Optimal setting for reducing

ligand-receptor noise [18].
�r 2Rcell (1 cell) Error estimation in Drosophila

melanogaster embryos [19]
g0 0.005 μm−1 According to [18] and [13].
σ� 0.1 According to [58]
σp 0 No polarization error. Best estimation

that the tug-of-war model can make.

We have ensured that this result is correct both by checking
with computer algebra packages for small numbers of cells, as
well as explicitly numerically inverting the Fisher information
matrix.

APPENDIX F: DEFAULT PARAMETERS

In Table I we show the default values for parameters in
this study with a brief justification of our choices. Values
differing from these are indicated in the main text and the
figure captions.
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