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Revealing directed effective connectivity of cortical neuronal networks from measurements
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In the study of biological networks, one of the major challenges is to understand the relationships between
network structure and dynamics. In this paper, we model in vitro cortical neuronal cultures as stochastic
dynamical systems and apply a method that reconstructs directed networks from dynamics [Ching and Tam,
Phys. Rev. E 95, 010301(R) (2017)] to reveal directed effective connectivity, namely, the directed links and
synaptic weights, of the neuronal cultures from voltage measurements recorded by a multielectrode array.
The effective connectivity so obtained reproduces several features of cortical regions in rats and monkeys and
has similar network properties as the synaptic network of the nematode Caenorhabditis elegans, whose entire
nervous system has been mapped out. The distribution of the incoming degree is bimodal and the distributions of
the average incoming and outgoing synaptic strength are non-Gaussian with long tails. The effective connectivity
captures different information from the commonly studied functional connectivity, estimated using statistical
correlation between spiking activities. The average synaptic strengths of excitatory incoming and outgoing links
are found to increase with the spiking activity in the estimated effective connectivity but not in the functional
connectivity estimated using the same sets of voltage measurements. These results thus demonstrate that the
reconstructed effective connectivity can capture the general properties of synaptic connections and better reveal
relationships between network structure and dynamics.
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I. INTRODUCTION

The study of networks [1–3] has emerged in many branches
of science. Many systems of interest consist of a large number
of components that interact with each other and can be de-
scribed as complex networks with the individual components
being the nodes and the interactions among the nodes repre-
sented by links joining the nodes. Understanding how network
structure, which depicts the connectivity or linkage of nodes,
is related to dynamics and to function is a great challenge in
neuroscience [4,5] and in biology in general. In neuroscience,
three types of connectivity have been discussed: structural,
functional, and effective connectivity. Structural connectivity
is the set of physical or anatomical connections linking neural
elements and can be obtained only by direct measurements,
functional connectivity is defined by statistical dependencies
among measurements of neuronal activities, and effective
connectivity refers to the causal influences exerted by one
neural element on another (see, e.g., Refs. [6,7]). As statistical
dependency can arise from indirect interactions, functional
connectivity does not necessarily relate to effective connectiv-
ity. Effective connectivity depends on structure connectivity
in that a neural element can exert causal influences on another
neural element only if the former is linked to the latter by
anatomical connections but structural connectivity itself does
not imply effective connectivity since it is possible that some
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physical connections are not being utilized in certain neuronal
activities.

Neuronal cultures grown in vitro serve as a simple but
yet useful experimental model system for studying the rela-
tionships between network structure and the rich dynamics
observed [8–10]. One common technique used to record the
activity of neurons in a culture is the measurement of the
voltage signals generated by neurons using a multielectrode
array (MEA) [11]. Estimating connectivity of neuronal cul-
tures from MEA recordings is thus a problem of great interest.
Existing methods focus on estimating functional connectivity
of neuronal culture using statistical correlation [12–14] or
mutual information [15,16] of detected spikes in the MEA
recordings. However, one would expect effective connectiv-
ity that gives direct causal influences or interactions to be
more relevant for studying the relationships between network
structure and dynamics and between network structure and
function.

The general problem of inferring networks from dynam-
ics for networked systems whose interacting dynamics are
described by systems of coupled differential equations is a
problem of longstanding interest [17]. It has been known that
statistical correlation often fails to be a good indicator for di-
rect interactions. There are analytical results showing that the
statistical covariance of nodal dynamics alone does not carry
sufficient information to recover networks with directional
coupling [18,19]. For a certain class of undirected networked
systems with bidirectional coupling, it has been derived that
effective connectivity or the information of direct interactions
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is contained in the inverse of the covariance matrix and not
the covariance matrix itself [20–22]. This result can therefore
explain the finding that a neural population can be strongly
coupled but have weak pairwise correlation [23]. A number
of methods inferring direct interactions from dynamics have
been developed. Some methods assume the dynamics to be
linear and the network to be sparse [24,25]. Others require
additional knowledge such as the functional form of the dy-
namics [26–30] and the response dynamics of the systems to
specific external inputs or perturbations [31–33]. A model-
independent method has been developed that gives the links
or interactions but not their strength [34]. A noise-induced
relation between the time-lagged covariance and the equal-
time covariance of the dynamics has been derived for directed
networked systems with linear dynamics [35,36] as well as
directed networked systems with nonlinear dynamics around a
noise-free steady state [37,38]. Using this covariance relation
for systems with linear dynamics, it has been shown that the
links, except for their directions, can be fully reconstructed
from statistical correlation in the weak coupling limit [39].
Based on this covariance relation, a method that reconstructs
directed links as well as the relative strength of the interactions
from dynamics has been proposed [37] and validated using
numerical simulations, not only for systems having stationary
dynamics around a noise-free steady state but also for some
systems that do not [19,37,40].

In this paper, we model in vitro neuronal culture as
a stochastic dynamical system and apply this covariance-
relation based method, with suitable modifications, to esti-
mate the effective connectivity, namely, the direct interactions
and their synaptic weights, from the measured voltage signals.
We will show that the effective connectivity reproduces sev-
eral reported features of cortical regions in rats and monkeys
and shares similar network properties with the synaptic net-
work of the nematode Caenorhabditis elegans, whose entire
nervous system has been mapped out. Moreover, our results
will show that the effective connectivity captures different in-
formation than the functional connectivity based on statistical
correlation of spiking activities estimated from the same sets
of measurements and can better reveal relationships between
network structure and dynamics.

II. DATA AND METHOD

A. Experimental measurements

Tissues were dissected from three rats and digested with
0.125% trypsin for 15 min at 37◦C to form a cell suspension.
A small drop (100 μl) of the cell suspension, containing
about 6 × 104 cells, was plated on the 6 × 6 mm work-
ing area of the complementary metal-oxide-semiconductor
(CMOS)-based high density multielectrode array (HD-MEA)
(see Fig. 1). After plating on the HD-MEA chip, cultures were
filled with 1 ml of culture medium and placed in a humidified
incubator (5% CO2, 37◦C).

The HD MEA probe (HD-MEA Arena, 3Brain AG) has
4096 electrodes, which are arranged in a 64 by 64 square
grid. The size of each square electrode is 21 by 21μm and
the electrode pitch is 42 μm which gives an active electrode
area of 2.67 by 2.67 mm. Spontaneous neuronal activities

FIG. 1. Surface of high-density CMOS MEA. The line shows a
scale of 50 μm.

were recorded with the recording device (BioCAM, 3Brain
AG) and the associate software (BrainWave 2.0, 3Brain AG)
at 7.06 kHz. One electrode was used for calibration purpose
so there were 4095 electrodes that recorded 4095 time series
of voltage signals. Samples were placed into the recording
device 10 min before the recording in order to prevent the ef-
fects of vibration. Each experimental session lasted for 5 min
and was recorded in dark since the CMOS is a light active
material. Additional experimental details are presented in the
Appendix.

B. Method of reconstruction of effective connectivity

We estimate the directed effective connectivity for eight
cases using MEA voltage recordings taken at eight different
days in vitro (DIV). In each case, we treat the voltage signal
measured by each electrode after noise reduction by a mov-
ing average filter (see below) as the activity xi(t ) of node i,
i = 1, 2, . . . , 4095, of a neuronal network [12] and model the
dynamics of the network by a generic system of stochastic
differential equations,

dx
dt

= F(x) + η, (1)

where x = (x1, x2, . . . , xN ) with N = 4095, F is a general dif-
ferentiable vector function and η is a Gaussian white noise of
zero mean and ηi(t )η j (t ′) = Di jδ(t − t ′) that mimics external
influences. The overbar denotes an ensemble average over dif-
ferent realizations of the noise. Assuming small fluctuations
around the asymptotic noise-free solution x∗, we can linearize
the equations to obtain

dδxi

dt
=

∑
j

wi jδx j + ηi, (2)

where δxi(t ) = xi(t ) − x∗
i and wi j ≡ ∂Fi/∂x j (x∗) are the el-

ements of W, which is the Jacobian matrix of F. When the
activity x j affects the time evolution of the activity xi, wi j

is nonzero and this interaction is represented by a link from
node j to node i with a weight wi j ; otherwise wi j = 0 and
there does not exist a link from node j to node i. The HD
MEA has a high spatial resolution with the size of each
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electrode being comparable to the size of a neuron and the
cell density in the culture was low such that the voltage
measured by an electrode was dominated by the electrical
signal of one neuron. Thus, we assume that the activity of each
node represents contribution mainly from one neuron and the
interactions between nodes are through synapses of neurons,
and refer the weights of the interactions to as synaptic weights.
The effective connectivity is the information of these direct
interactions among the different nodes, which are given by
the off-diagonal elements of W. Our goal is to recover the
off-diagonal elements wi j with i �= j from xi(t )’s.

We define the elements of the time-lagged covariance ma-
trix K(τ ) and the equal-time covariance matrix K(0) by

Ki j (τ ) = 〈[xi(t + τ ) − 〈xi(t + τ )〉][x j (t ) − 〈x j (t )〉]〉, (3)

Ki j (0) = 〈[xi(t ) − 〈xi(t )〉][x j (t ) − 〈x j (t )〉]〉, (4)

where 〈. . .〉 denotes a time average. For systems that approach
a fixed point in the noise-free limit, W is time-independent.
Then by solving Eq. (2), one obtains [18,35–37]

K(τ ) = exp(τW)K(0), (5)

which implies

Mi j = wi j, i �= j, (6)

where

M ≡ 1

τ
log[K(τ )K(0)−1], (7)

as long as τ is not too large [37]. Here, log is the principal
matrix logarithm. Equation (5) relates the time-lagged and
equal-time covariances K(τ ) and K(0), which can be cal-
culated using solely the measurements xi(t )’s, to W, which
contains information of the direct interactions. The impor-
tance of Eq. (6), which follows from Eq. (5), is that the
off-diagonal elements Mi j , i �= j, being approximately equal
to wi j , should separate into two groups corresponding to
wi j = 0 (no links from node j to node i) and wi j �= 0 (links
from node j to node i with weights wi j). Hence for each
node j, we can infer wi j by clustering the values of Mi j for
i �= j into two groups. As demonstrated by numerical sim-
ulations [37,40], this covariance-relation based method can
recover directed and weighted connectivity not only for the
general class of systems as described above but also for some
systems that fluctuate around oscillatory dynamics modeled
by the FitzHugh-Nagumo dynamics [41], which is commonly
used to model neurons or fluctuate around the chaotic Rössler
dynamics [42]. For these latter systems that do not approach
a fixed point in the noise-free limit, the off-diagonal elements
of W are time-independent and numerical results revealed that
Eq. (6) still holds approximately [43] even though Eq. (5)
cannot be derived. Motivated by these numerical results, we
assume Eq. (6) to hold for some effective time-independent
wi j’s in our model.

The principal matrix logarithm is very sensitive to noise in
measurements and a complex matrix could be resulted when
the method is applied to reconstruct realistic systems from ex-
perimental measurements. Indeed a complex M was obtained
when the MEA voltage recordings were directly used in the
calculations. Let us denote the voltage signals recorded by the

electrodes by yi(t ), i = 1, 2, . . . , 4095. We only analyze mea-
surements taken during which all the 4095 electrodes were
recording properly. When we calculated Ky(τ ) and Ky(0) di-
rectly from yi(t ) [as defined in Eqs. (3) and (4) with xi replaced
by yi], we obtained a complex matrix log[Ky(τ )Ky(0)−1].
Similar problem has also been reported in a study of effec-
tive connectivity of a cortical network of 68 regions from
fMRI recordings and motivated the development of a Lya-
punov optimization procedure [18]. In our study, we are able
to avoid this problem by first applying a moving average
filter to the voltage signals to reduce the effect of mea-
surement noise. Specifically, we take xi(t ) = [yi(t ) + yi(t +
�)]/2, where � = 0.142 ms is the sampling time interval
and calculate K(τ ) and K(0) using xi(t ) with τ = �. The
moving average filter is a simple digital low-pass filter that
reduces random noise while retaining sharp changes, if any,
in the data [44]. The resulting matrix M is now real. We have
further studied the effect of measurement noise by adding a
Gaussian noise to data obtained in numerical simulations of
Eq. (1) with Fi = 10xi(1 − xi ) + ∑

j �=i wi j (x j − xi ) [45]. Our
results show that the matrix M calculated using the noisy data
becomes complex when the standard deviation of the added
noise exceeds a certain threshold and a real M is restored after
the above moving average filter has been applied to the noisy
data [45].

After obtaining the real M, we extend the clustering analy-
sis in Ref. [37], with suitable modifications, to estimate all the
off-diagonal elements wi j’s of the directed effective connec-
tivity matrix as described below. We assume that the outgoing
links of each node, when exist, can only be all excitatory or
all inhibitory. To infer the outgoing links of a certain node j,
we fit the distribution of the values of Mi j for all i �= j by a
Gaussian mixture model of two components:

Pfit (x) = α
1√

2πσ1

exp

[
− (x − μ1)2

2σ 2
1

]

+ (1 − α)
1√

2πσ2

exp

[
− (x − μ2)2

2σ 2
2

]
. (8)

This is done by using MATLAB “fitgmdist,” which is based
on the iterative Expectation-Maximization algorithm [46].
Two examples of these fits are shown in Fig 2. According
to Eq. (6), one expects that the unconnected component of
nonexistent links of wi j = 0 should have a mean close to 0
but as can be seen in Fig. 2, the means of the two fitted
Gaussian components both deviate from zero. The presence
of hidden nodes whose signals are missing can cause a shift
in the values of Mi j’s [47] and such hidden nodes could be
neural cells lying outside the active electrode area of the
MEA probe whose voltage signals were not detected (see
Sec. III D). Thus, to improve the performance of our method
in the presence of hidden nodes, we make use of the sparsity of
the network to identify the unconnected component whenever
possible. Specifically, when the two components are well sep-
arated with |μ1 − μ2| > σ1 + σ2, we first check whether α or
(1 − α) is greater than 0.6 and, if yes, identify the component
of the larger proportion as the unconnected component corre-
sponding to wi j = 0. If neither α nor 1 − α exceeds 0.6, we
then take the component whose mean is closer to zero as the
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FIG. 2. The probability density of Mi j for node j (circles). The
top panel shows the result for the 4th node ( j = 4) of case 1 and
the bottom panel shows the result for the 4076th node ( j = 4076) of
case 8. The solid black line is the fit Pfit [see Eq. (8)]. The component
with a larger relative proportion with α or 1 − α greater than 0.6
(blue dashed line) is identified as the unconnected component and
the other component (red dashed line) is identified as the connected
component. In the top panel, the connected component lies on the
left of the unconnected component and the node j is inferred as an
inhibitory node. In the bottom panel, the connected component lies
on the right of the unconnected component and the node j is inferred
as an excitatory node.

unconnected component. The remaining component is re-
ferred as the connected component. If the connected compo-
nent is on the right of the unconnected component as shown
in the top panel of Fig 2, then node j is an excitatory node
with all outgoing links of wi j > 0. Otherwise if the connected
component is on the left of the unconnected component as
shown in the bottom panel of Fig. 2, then node j is an in-
hibitory node with all outgoing links of wi j < 0. For each
node j, the data points Mi j for i �= j are clustered into each of
the two components according to the probability pi of each of
the Mi j values belonging to the unconnected component. We
obtain pi’s using MATLAB ‘cluster’ which performs agglom-
erative clustering [48]. If pi > 0.5, then wi j = 0 and there is
no link from node j to node i. Otherwise, if pi � 0.5, then
there is a link from node j to node i with a weight wi j =

Mi j − 〈Mk j |wk j = 0〉k where 〈Mk j |wk j = 0〉k is the average
over k of those Mk j values that are estimated to correspond
to wk j = 0. We repeat this procedure for all the nodes j to
estimate all the off-diagonal elements wi j with i �= j.

In the event that the two Gaussian components are not well
separated with |μ1 − μ2| < max(σ1, σ2), we fit the distribu-
tion of Mi j again by one single Gaussian distribution, denoted
by PG(x) of mean μ. We denote the smooth distribution of Mi j

estimated using MATLAB “ksdensity,” which is based on a
normal kernel smoothing function with an optimal bandwidth
[49], by PK (x). We identify the outliers, which are data points
whose values of PK (x) deviate significantly from PG, as the
connected component with wi j �= 0. Precisely, we define xI

and xE by

xE = min
x>μ

{PK (x) = 3PG(x)}, (9)

xI = max
x<μ

{PK (x) = 3PG(x)}, (10)

then calculate the number of data points in the two groups:
(1) Mi j > xE and (2) Mi j < xI and identify the bigger group
of these data points as the connected component with wi j =
Mi j − 〈Mk j |wk j = 0〉k . If no such outliers exist, then node
j is inferred to have no detectable outgoing links. For the
in-between cases of the two Gaussian components that are
neither well separated nor too close to each other with
max(σ1, σ2) � |μ1 − μ2| � σ1 + σ2, we choose either the
two-Gaussian fit or the single-Gaussian fit according to the
Bayesian information criterion for fitting models selection
[50,51].

III. RESULTS OF THE EFFECTIVE CONNECTIVITY

For each of the eight cases, we study the basic net-
work measures and the distributions of degree and synaptic
strength.

A. Basic network measures

We calculate several basic network measures including the
connection probability p, the ratio rB of the number of bidirec-
tionally connected pairs to the expected number for a random
network with same connection probability p, the fractions fE

and fI of excitatory and inhibitory nodes, the fraction fSCC

of nodes that form the strongly connected component, the
characteristic path length l , the average clustering coefficient
(CC), and the small-world index (SWI). The results are shown
in Table I. The connection probability p of a network of N
nodes with NL links is defined by p = NL/[N (N − 1)]. We
find that p ranges from 0.7–1.9%, which is consistent with
our assumption that the neuronal networks are sparse. This
average value of p is smaller but comparable to that of the
chemical synapse network of C. elegans [52]. Most of the
connections are unidirectional in accord with the directional
transmission of signals in neurons. One expects neuronal net-
works to be organized and thus highly nonrandom in order
to facilitate effective and efficient signal transmission. For a
random network of n nodes and connection probability p, the
expected number of bidirectionally connected pairs is given
by N (N − 1)p2/2. We denote the ratio of the number of
bidirectionally connected pairs in the network to the expected
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TABLE I. Basic network measures of the networks reconstructed. When available, the corresponding results for the chemical synapse
network of C. elegans [52] are included for comparison.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 C. elegans

DIV 11 22 25 33 45 52 59 66 –
p (%) 1.2 1.9 1.4 1.5 1.1 1.7 1.4 1.5 2.8
rB 5.9 5.5 10.7 5.7 6.5 4.21 4.0 4.4 –
fE 0.62 0.80 0.84 0.75 0.62 0.66 0.48 0.57 –
fI 0.27 0.13 0.14 0.18 0.21 0.24 0.32 0.28 –
fSCC 0.88 0.93 0.98 0.92 0.81 0.90 0.77 0.83 0.85
l 4.0 3.7 3.7 3.9 4.1 3.7 3.8 3.8 3.5
CC 0.26 0.36 0.38 0.30 0.25 0.28 0.18 0.22 0.22
SWI 13.1 11.3 17.1 12.7 14.4 10.4 7.9 8.8 2.3

number in a random network by rB. The values of rB exceed
4 for all the networks, consistent with the well-documented
over-representation of bidirectional connected pairs in rat cor-
tical circuits [53–56].

Each node is inferred as excitatory or inhibitory according
to the sign of the synaptic weights of its outgoing links as
discussed in Sec. II. There is a small fraction of nodes with
no detectable outgoing links. As can be seen in Table I, the
values of fI range from 0.13 to 0.31, which are comparable
to the measured fractions (0.15–0.30) of inhibitory neurons
in various cortical regions in monkey [57]. The balance be-
tween excitation and inhibition in the cortex is believed to
play an important role in executing proper brain functions
and disruption of such a balance may underlie the behav-
ioral deficits that are observed in conditions such as autism
and schizophrenia [58–62]. The fraction fSCC of nodes that
form the largest strongly connected component exceeds 70%
for all the cases studied. The characteristic path length l ,
which is the average shortest path length for all nodes that
can be connected by a finite path is about 4, and the aver-
age local clustering coefficient CC, which is the average of
the connection probability of the outgoing neighbors of each
node, ranges from 0.18–0.38. These network properties are
comparable to those of the chemical synapse network of C.
elegans. Furthermore, the reconstructed neuronal networks all
have small-world topology, with SWI substantially greater
than one. It has been shown that small-world networks allow
efficient transmission of information [63].

B. Distributions of incoming and outgoing degrees

The distributions of the incoming and outgoing degrees are
qualitatively the same for all eight cases and results for one
case are shown in Fig. 3. There are several notable features.
First, most of the nodes have a small kout that is less than a
few tens but a small fraction of nodes have an exceptionally
large kout exceeding a thousand. This is the case for both the
excitatory and inhibitory nodes. Second, the incoming degree
distribution is approximately bimodal, which is different from
the approximate scale-free distribution reported for functional
connectivity [14] (see also Sec. IV). The bimodal feature of
the incoming degree distribution is more clearly revealed in
the separate distributions of the excitatory and inhibitory in-
coming degrees k+

in and k−
in for incoming links of positive and

negative synaptic wi j , respectively (see Fig. 4). By studying

the distribution of k+
in (or k−

in ) separately for the two modes of
nodes of small and large k−

in (k+
in ) (see inset of Fig. 4), it can be

seen that nodes tend not to have both large k+
in and large k−

in .

C. Distributions of average synaptic strength

Both in vitro and in vivo studies have indicated that
the distribution of synaptic weights in the cortex are gen-
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FIG. 3. Distributions of the incoming degree kin (top panel) and
outgoing degree kout (bottom panel) of case 3. In the bottom panel,
we show the distribution of kout separately for excitatory (circles) and
inhibitory nodes (squares) and for all the nodes in the inset.
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in ).

erally skewed with long tails and typically lognormal
[64]. Motivated by these findings, we study the distribu-
tions of the average synaptic strength of the links. The
various averages of the synaptic weights are defined as
follows:

sin(i) ≡
∑

j �=i wi j

kin(i)
, (11)

s+
in(i) ≡

∑
j �=i,wi j>0 wi j

k+
in (i)

, (12)

s−
in(i) ≡

∑
j �=i,wi j<0 wi j

k−
in (i)

, (13)

sout (i) ≡
∑

j �=i w ji

kout (i)
. (14)

Among these quantities, s+
in � 0 is the average of the synaptic

weights of excitatory incoming links and s−
in � 0 is the av-

erage of the synaptic weights of inhibitory incoming links,
sin is the average of the synaptic weights of all incoming
links and can be positive or negative, and sout is the average
of the synaptic weights of all outgoing links and is positive
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links sout. Top panel: Distributions of the standardized values of the
average synaptic strength, (x − mean)/(standard deviation), where
x is s+

in, s−
in or sout in each case. Bottom panel: Distributions of the

standardized values of the logarithm of the average synaptic weights
with x now being log(s+

in ), log(|s−
in|), or log(|sout|). The dashed line is

the standardized Gaussian distribution.

for excitatory nodes, negative for inhibitory nodes and zero
for the nodes with no detectable outgoing links. To have
better statistics, we use the data from all the 8 networks to
calculate the distributions. We first calculate the mean and
standard deviation of these average synaptic weights in each
of the networks and then calculate the distribution of the
standardized values, which are the values subtracted by the
mean and divided by the standard deviation. The distribution
of sout for excitatory nodes is found to depend on whether sin

is positive or negative. As seen in Fig 5, all these average
synaptic strengths have a non-Gaussian distribution that is
skewed with long tails. This indicates that a small fraction of
the nodes have dominantly strong average synaptic strengths
and thus the average synaptic strength of the links of the
nodes are not well represented by the mean values. We also
calculate the distribution of the standardized values of the
logarithm of these average synaptic strengths and find that
sout for excitatory nodes with sin > 0 has an approximately
lognormal distribution (see Fig. 5).
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FIG. 6. Distributions of in- and out-degrees of the subnetwork
(circles) and partial network (triangles) for case 3.

D. Possible effects of hidden nodes

Neural cells lying in the working area outside the ac-
tive electrode area of the MEA probe could form synaptic
connections with cells within the active electrode area but
their spontaneous activities were not recorded. Thus the MEA
recordings could miss out information from those nodes that
were not detected. These nodes are thus the so-called hidden
nodes. It has been shown that in bidirectional networks the
presence of hidden nodes that are randomly missed out has
no significant adverse effects on the reconstruction of the
links among the measured nodes [47]. To investigate whether
and how undetected signals from the hidden nodes might
affect our results, we reconstruct a partial network using
only recordings of 2025 electrodes, which are the 45 by 45
electrodes in the central region of the active electrode area,
and compare it with the subnetwork of these corresponding
2025 nodes, extracted from the whole network that we recon-
structed using recordings of all the 4095 electrodes for case
3. We find that the partial network captures correctly 99.8%
of the nonexistent links and 83.0% of the links in the subnet-
work. Moreover, the partial network and the subnetwork have
similar in- and out-degree distributions as shown in Fig. 6.
These results support that the directed effective connectivity
obtained using the 4095 electrodes is not significantly affected

by the possibly missed out signals from the neural cells lying
outside the active electrode area of the MEA probe.

IV. COMPARISON OF EFFECTIVE CONNECTIVITY AND
FUNCTIONAL CONNECTIVITY

The effective connectivity studied in the present work is
proposed to capture the direct interactions among the nodes
based on the general class of model described in Eq. (1) while
functional connectivity studied in existing methods is based
mainly on the statistical dependence of the dynamics of the
nodes. It is thus expected that effective connectivity and func-
tional connectivity to contain different information about the
system. In this Section, we compare directly the two types of
connectivity estimated from the same sets of measurements.
We follow the method in Ref. [14] to estimate the functional
connectivity using the statistical correlation of the spikes de-
tected from the MEA recordings. By applying the Precise
Timing Spike Detection algorithm [65] in the BrainWave soft-
ware to the recorded time series yi(t ) of the ith electrode, we
obtain the times of the spikes t (i)

k , k = 1, 2, . . . , Ni, for the Ni

spikes detected for node i. The spike train Si(t ) is constructed
as follows: Si(t ) = 1 for t = t (i)

k , k = 1, 2, . . . , Ni and 0 other-
wise. The general idea is to estimate a functional link between
nodes i and j when the correlation between the two spike
trains exceeds a certain threshold. The cross-correlation of the
spiking activity of nodes i and j is measured by Ci j ∈ [0, 1],
which is defined by [12]

Ci j (τ ) = 1√
NiNj

Ni∑
k=1

Si
(
t (i)
k

)
S j

(
t (i)
k + τ

)
. (15)

In the earlier method [12], Ci j (τ ) is calculated in a window
of τ -values: −n� � τ � n�, where � is the sampling time
interval and if the maximum value Ci j (τ0) at τ0 within this
window exceeds a certain threshold then a link of weight
Ci j (τ0) is inferred between nodes i and j with the direction of
the link determined by the sign of τ0. To detect also inhibitory
links with negative weights, fi j (τ ) measuring the difference
of Ci j (τ ) from its average value in the window has been
introduced [14]

fi j (τ ) = Ci j (τ ) − 1

2n + 1

n∑
k=−n

Ci j (k�), (16)

which can assume both positive and negative values. In our
calculations, we use n = 100. Let | fi j (τ )| attain its maximum
at τ = τ ∗ [66]; a link is inferred for the functional connec-
tivity, from node i to node j if τ ∗ > 0 and from node j to
node i if τ ∗ < 0, with strength fi j (τ ∗) when | fi j (τ ∗)| exceeds
a certain threshold and |τ ∗| is not shorter than the time needed
for a synaptic signal with a propagation speed of 400 mm/s
[14]. Excitatory links have fi j (τ ∗) > 0 while inhibitory links
have fi j (τ ∗) < 0. The requirement that a node is either exci-
tatory or inhibitory, with outgoing links having only one sign,
cannot be enforced in this cross-correlation based method for
estimating functional connectivity. This method also has a
considerably weaker sensitivity for detecting inhibitory links
[14]. In contrast, the covariance-relation based method that
we use to estimate effective connectivity can detect excitatory
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(circles) and kout (squares) of the functional connectivity estimated
for case 3.

and inhibitory links equally well using only a recording time
of 5 min.

Comparing to effective connectivity, a large fraction (0.2
to 0.46) of nodes have zero incoming or outgoing degrees in
the estimated functional connectivity. In Fig. 7, we show the
distributions of nonzero incoming and outgoing degrees for
functional connectivity. It can be seen that the two distribu-
tions are similar and are clearly different than the incoming
and outgoing degree distributions found in effective con-
nectivity (see Fig. 3). The degree distribution in functional
connectivity estimated from measurements recorded in a
much longer duration of one hour has been found to be scale-
free [14]. We compare the strongest excitatory and inhibitory
links estimated in the two types of connectivity in Fig. 8.
We choose 200 strongest excitatory links and 50 strongest
inhibitory links in the effective connectivity. It is not possible
to choose exactly the same number of links in functional
connectivity as many links have the same coupling strength
and we choose the closest number of links for the comparison.
In the effective connectivity, most of the strongest excitatory
links are connecting nearby nodes. This feature is not found
in the functional connectivity.

To check whether the proposed effective connectivity can
indeed reveal relationships between network structure and
dynamics better than functional connectivity, we study the
relation between the spiking activity and the average synaptic
strength of the nodes. Specifically, we divide the nodes into
several groups according to their number of detected spikes
and calculate the mean values of the average synaptic strength
of excitatory and inhibitory incoming and outgoing links of
these different groups. Since nodes have both excitatory and
inhibitory outgoing links in the estimated functional connec-
tivity, we generalize the definition of sout to s+

out and s−
out:

s+
out (i) ≡

∑
j �=i,w ji>0 w ji

k+
out (i)

, (17)

s−
out (i) ≡

∑
j �=i,w ji<0 w ji

k−
out (i)

, (18)

FIG. 8. Comparison of the strongest Nexc excitatory (red) and the
strongest Ninh inhibitory links (blue) of the effective connectivity (top
panels) and of the functional connectivity (bottom panels) for case
3. Ninh = 50 for both types of connectivity, Nexc = 200 for effective
connectivity and Nexc = 151 for functional connectivity.

and s+
out (s−

out) is equal to zero for nodes without excitatory
(inhibitory) outgoing links. For the effective connectivity, s+

out
(s−

out) is equal to sout for excitatory (inhibitory) nodes. The
results for the two types of connectivity are shown in Figs. 9
and 10. The dependence of the mean values of s−

in and s−
out

on the spiking activity is weak for both types of connectivity.
Definite dependencies of the mean values of s+

in and s+
out on the

number of detected spikes are found in our estimated effective
connectivity but not in the estimated functional connectivity.
In particular, the intuition that nodes with larger s+

in would
spike more is supported by the effective connectivity but not
functional connectivity. The effective connectivity further re-
veals that nodes spike more have larger s+

out on average and
such a definite dependence is again lacking in the functional
connectivity.

V. SUMMARY AND CONCLUSIONS

Revealing connectivity of neuronal networks from mea-
surements taken by large-scale MEA is a challenging inverse
problem. Existing methods focus on functional connectivity
that is based on the statistical correlation of the detected
spiking activities. As statistical correlation arising from in-
direct influences lead to false positives, efforts have been
spent to optimize the performance of inference based on spike
cross-correlation. In a recent study [67], a method, denoted
as GLMCC, has been developed by applying a generalized
linear model to spike cross-correlations which shows how an
increase of the duration of spike recording can improve the
performance of inference. This study further gives an ana-
lytical estimate of the required duration for reliable inference
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which is inversely related to the firing rates of the neurons and
the synaptic strength of the connections. In our work, we study
effective connectivity, which measures direct interactions and
should be more relevant and useful for studying the relation-
ships between network structure and dynamics and between
network structure and functions of neuronal networks. We
have modelled in vitro neuronal cultures as stochastic dynam-
ical systems and adopted a general method that reconstructs
directed links and their relative weights of a network from
dynamics [37] to estimate effective connectivity of neuronal
cultures from voltage measurements recorded by MEA. This
general method makes use of Eq. (6), which follows from
Eq. (5), a relation between the time-lagged covariance and
the equal-time covariance of the dynamics to extract infor-
mation of the direct interactions of the nodes. Equation (5)
is derived for systems that approach a fixed point in the
noise-free limit and numerical results revealed that Eq. (6)
also holds approximately for systems that fluctuate around
oscillatory FitzHugh-Nagumo dynamics or chaotic Rossler
dynamics [19,37,40] even though Eq. (5) cannot be derived.
Motivated by these numerical results, we assume Eq. (6) to
hold for our model. For networks of stochastic binary neu-
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FIG. 10. The dependence of the mean values of s+
out and s−

out on
the number of detected spikes of the nodes in effective connectivity
(top panel) and functional connectivity (bottom panel). Same sym-
bols as in Fig. 9

rons with activity being either 0 or 1, a relation between the
time-lagged covariance and equal-time covariance similar to
Eq. (5) can be obtained [68–71] and used to reconstruct the
effective synaptic couplings of the neurons [71]. In our model,
the activity of each neuron is described by the continuous
variable xi(t ) and the time-lagged and equal-time covariances
are calculated using the whole time series of the voltage
measurements and not only the spike trains of 0’s and 1’s.
When applying this method to reconstruct real network from
experimental measurements, we have to overcome additional
difficulties. One major difficulty is that this involves a calcu-
lation of a principal matrix logarithm, which is very sensitive
to noise in the data. If the method is applied directly to the
MEA voltage recordings, then a complex matrix would be
obtained. By first applying a moving average filter to the MEA
voltage recordings to reduce the effect of noise, the problem
of complex matrix has been avoided and we have successfully
estimated the effective connectivity, namely, the directed in-
teractions with their synaptic weights, of neuronal networks
of over 4000 nodes from relatively short MEA recordings
of 5 min. In comparison, good performance of the GLMCC
method has been shown using numerical data with a much
longer duration of 90 min of spike recording [67]. Moreover,
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as our method makes use of the whole voltage time series
and not only the detected spikes, low firing rates in the MEA
recording do not pose an additional difficulty.

Our results of the effective connectivity reproduce vari-
ous reported features of cortical regions in rats and monkeys
and has similar network properties as the nematode C. ele-
gans chemical synaptic network, supporting that the estimated
effective connectivity can capture the general properties of
synaptic connections. Moreover, numerical simulations of
networks of spiking neurons using the estimated effective
connectivity reproduce the long-tailed distribution of firing
rates found in the MEA recordings [72]. The distributions
of incoming and outgoing degrees are different from the re-
ported scale-free distributions in the functional connectivity
[14]. In particular the excitatory and inhibitory incoming de-
gree distributions are found to be bimodal. There have been
studies indicating that the robustness of undirected networks
against both random failures and targeted attacks can be op-
timized by having a bimodal degree distribution [73,74] and
future studies are required to establish the significance of the
bimodal feature of incoming degree distributions. We have
found that the distributions of average synaptic strengths are
non-Gaussian and skewed with a long tail and that the dis-
tribution of the average synaptic strength of outgoing links
for excitatory nodes with positive average synaptic strength of
incoming links (sin > 0) is approximately lognormal, and our
results are consistent with reported results found in in vitro
and in vivo studies of synaptic strengths in the cortex [64].
The significance of such non-Gaussian distributions with long
tails is that a small fraction of nodes have dominantly strong
average synaptic strength suggesting the possibility that the
bulk of the information flow occurring mostly through them
[64]. It would be interesting to understand how the long-tailed
synaptic strength distribution might be related to the spiking
and bursting dynamics.

The effective connectivity and functional connectivity esti-
mated from the same sets of MEA recordings are different.
The average synaptic strengths of excitatory incoming and
outgoing links are found to increase with the spiking activity
in the estimated effective connectivity but not in the estimated
functional connectivity. These findings demonstrate that the
effective connectivity estimated in the present work can in-
deed better reveal relationships between network structure and
dynamics for neuronal cultures. Understanding the relation-
ships between network structure and dynamics will be a topic
of interest in future studies.
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APPENDIX: EXPERIMENTAL DETAILS ON THE
NEURONAL CULTURE

The complementary metal-oxide-semiconductor (CMOS)-
based high density multielectrode array (HD-MEA) was
pre-coated with 0.1% Poly-D-lysine (Sigma P6407) and 0.1%
adhesion proteins laminin (Sigma L2020). After plating on
the HD-MEA chip, cultures were filled with 1 ml of culture
medium [DMEM (Gibco 10569) + 5% FBS (Gibco 26140) +
5% HS (Gibco 16050) + 1% PS (Gibco 15140)] and placed in
a humidified incubator (5% CO2, 37◦C). Half of the medium
was replaced by Neurobasal medium supplemented with B27
[Neurobasel medium (Gibco. 21103) + 2% 50X B27 supple-
ment (Gibco. 17504) + 200 μM GlutaMAX (Gibco 35050)]
twice a week.
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[28] Z. Levnajić and A. Pikovsky, Network Reconstruction from
Random Phase Resetting, Phys. Rev. Lett. 107, 034101 (2011).

[29] S. Shahrampour and V. M. Preciado, Reconstruction of directed
networks from consensus dynamics, in in Proceedings of the
American Control Conference, Washington, DC (IEEE, Piscat-
away, NJ, 2013).
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