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Mean-field equations for neural populations with q-Gaussian heterogeneities
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Describing the collective dynamics of large neural populations using low-dimensional models for averaged
variables has long been an attractive task in theoretical neuroscience. Recently developed reduction methods
make it possible to derive such models directly from the microscopic dynamics of individual neurons. To
simplify the reduction, the Cauchy distribution is usually assumed for heterogeneous network parameters. Here
we extend the reduction method for a wider class of heterogeneities defined by the q-Gaussian distribution. The
shape of this distribution depends on the Tsallis index q and gradually changes from the Cauchy distribution
to the normal Gaussian distribution as this index changes. We derive the mean-field equations for an inhibitory
network of quadratic integrate-and-fire neurons with a q-Gaussian-distributed excitability parameter. It is shown
that the dynamic modes of the network significantly depend on the form of the distribution determined by the
Tsallis index. The results obtained from the mean-field equations are confirmed by numerical simulation of the
microscopic model.
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I. INTRODUCTION

Large systems of interacting oscillatory and/or excitable
elements have been the subject of intense research in non-
linear science over the past two decades [1,2]. An important
achievement in these studies belongs to Ott and Antonsen [3].
For a large system of globally coupled heterogeneous phase
oscillators (Kuramoto’s model), they discovered an ansatz that
allowed them to derive an exact low-dimensional system of or-
dinary differential equations (ODEs) to describe the averaged
dynamics of a system in the thermodynamic limit. Later, Luke
et al. [4] applied this approach for a network of theta neu-
rons. Montbrió et al. [5] considered a heterogeneous network
of all-to-all pulse-coupled quadratic integrate-and-fire (QIF)
neurons, which, like theta neurons, represent the canonical
form of class I neurons [6]. Using the Lorentzian ansatz (LA),
which is different from but closely related to the Ott-Antonsen
(OA) ansatz [3], they derived a reduced system of mean-field
equations for biophysically relevant macroscopic quantities,
the firing rate, and the mean membrane potential.

Models for large neural populations, called neural mass
models, have been developed over a long time [7,8]. How-
ever, they are phenomenological in nature and do not account
for the effects of synchronization between neurons. The new
approach [4,5] makes it possible to obtain accurate reduced
mean-field models directly from the microscopic dynamics
of individual neurons. Over the past five years, these next-
generation neural mass models [9] have evolved in different
directions. Reduced systems of mean-field equations were
derived for excitatory neurons interacting through fast synap-
tic pulses of a finite width [10], for an inhibitory network
that takes into account synaptic dynamics [11], in the case
of constant [12] and distributed [13] delayed interaction,
in the case of additional electrical coupling [14,15], in the

presence of noise [16–19], and for two interacting populations
[20–22]. Populations with heterogeneous synaptic weights
[5,19,23,24] and plastic synapses [25] were also considered.
Reduced mean-field models are useful not only for under-
standing collective oscillations and other dynamic modes in
large neural populations, but they can also serve as a source of
simple reference systems for developing and testing various
stimulation algorithms to control synchronization processes
in complex networks [22,26].

In most publications, the reduction method is used under
the assumption that the heterogeneous parameters are dis-
tributed in accordance with the Cauchy (Lorentzian) density
function. The choice of such a distribution is motivated by the
fact that it provides the most simple reduction. The Cauchy
function has only one relevant pole in the complex plane,
which leads to one equation for the complex order parameter.
So far, only two recent publications [27,28] have consid-
ered the reduction method for non-Cauchy distributions. In
Ref. [27] an approximate system of mean-field equations was
obtained for an excitatory QIF neural network with the nor-
mal Gaussian heterogeneity. To apply the theory of residues,
the authors approximated the Gaussian function with a ra-
tional function by expanding its reciprocal in a truncated
Taylor series. They showed that the transient dynamics and the
bistability region in the parameter space change significantly
compared to the Cauchy heterogeneity considered in Ref. [5].
In Ref. [28] we derived the mean-field equations for the
same problem in the case of a bimodal heterogeneity defined
by a linear combination of two Cauchy functions. We have
found a wide range of dynamic modes, such as multistable
equilibrium, collective oscillations, and chaos, that do not
exist with a unimodal distribution. Thus, the development of
reduction approaches for populations with various forms of
heterogeneity is an important task.
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In this paper we derive an exact system of mean-field
equations for neural populations with q-Gaussian heterogene-
ity. The q-Gaussian distribution is introduced in nonextensive
statistical mechanics [29], which generalizes classical sta-
tistical mechanics to nonequilibrium systems. The shape of
the q-Gaussian distribution depends on the Tsallis index q
and covers the Cauchy and normal Gaussian distributions
as special cases. To demonstrate the reduction method with
q-Gaussian heterogeneity, we use an inhibitory QIF neural
network model presented in Ref. [11] as a model of interneu-
ronal gamma (ING) oscillations [30–34].

The paper is organized as follows. In Sec. II we discuss
q-Gaussian and related distributions. Section III describes
the microscopic model of the network. The derivation of the
reduced mean-field equations in the thermodynamic limit is
presented in Sec. IV. Section V is devoted to the bifurcation
analysis of the mean-field equations. In Sec. VI we present the
results of numerical simulations of the microscopic model and
compare them with the results obtained from the mean-field
equations. A summary is given and conclusions are discussed
in Sec. VII.

II. THE q-GAUSSIAN AND RELATED DISTRIBUTIONS

The q-Gaussian distribution is a probability distribution
arising from the maximization of the Tsallis entropy [35]. This
entropy is the basis of nonextensive statistical mechanics [29],
which generalizes classical statistical mechanics to nonequi-
librium systems with long-range interactions and correlations.
The q-Gaussian distribution is characterized by the Tsallis in-
dex q that is a measure of correlation. For q = 1, the elements
of a system are uncorrelated and the q-Gaussian distribution
turns into normal Gaussian form. A q generalization of cen-
tral limit theorem was considered in Refs. [36,37]. Examples
of successful application of the q-Gaussian distribution to a
considerable number of various natural and artificial systems
can be found in Ref. [38].

The q-Gaussian distribution for a random variable x cen-
tered at x = 0 can be written in the form [29]

pq(x) = Cq[1 + (q − 1)βx2]−1/(q−1). (1)

Here β is a parameter that defines the width of the distribution
and Cq is an appropriate normalization constant. Obvi-
ously, for q → 1 the normal Gaussian distribution p1(x) =√

β/π exp(−βx2) is recovered. In general, q can be any real
number less than 3. However, here we are considering a re-
stricted class of q-Gaussian distributions, assuming

q = 1 + 1

n
, (2)

where n = 1, 2, . . . ,∞ are natural numbers. In what follows,
we will refer to the parameter n as the modified Tsallis index
(MTI). The assumption (2) turns the q-Gaussian distribution
into a rational function. This property enables an analytic
treatment of the problem presented below. Specifically, we
will consider the distribution of the excitability parameter η

of the QIF neural network in the following q-Gaussian form:

gn(η) = Cn

[
1 +

(η − η̄

�n

)2]−n

. (3)
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FIG. 1. The q-Gaussian distribution (3) for different values of
the modified Tsallis index n. Here η̄ is the center of the distribution
and d is the distribution HWHM (the same for all n). For n = 1,
the q-Gaussian distribution coincides with the Cauchy distribution
(blue dash-dotted curve), and for n → ∞, with the normal Gaussian
distribution (thick gray curve).

Here η̄ is the center of the distribution and

�n = d (21/n − 1)−1/2, (4)

where d is half-width at half maximum (HWHM) of the
distribution. The form of the scale parameter �n is chosen
so that HWHM does not depend on n, that is, it is the same
for all n = 1, 2, . . . ,∞. This allows comparing the behavior
of the QIF neural network for q-Gaussian distributions with
different values of the parameter n at fixed half-width d . The
normalization constant in Eq. (3) is

Cn = �(n)√
π�

(
n − 1

2

)
�n

, (5)

where �(·) is the Gamma function.
The distribution (3) is heavy tailed. For |η − η̄| → ∞, their

tails decay by a power law gn(η) ∼ |η − η̄|−2n. A remarkable
feature of this distribution is that for n = 1 it coincides with
the Cauchy distribution

g1(η) = 1

πd

[
1 +

(η − η̄

d

)2]−1

, (6)

and as the parameter n is increased to ∞, it gradually turns
into the normal Gaussian distribution

g∞(η) = 1

d

√
ln(2)

π
exp

[
−

(η − η̄

d

)2

ln(2)

]
. (7)

The evolution of the distribution with increasing n is shown in
Fig. 1. For n ∼ 10, the q-Gaussian distribution is close to the
normal Gaussian distribution.

III. MICROSCOPIC MODEL

We consider a heterogeneous network of N all-to-all
coupled inhibitory quadratic integrate-and-fire neurons. The
microscopic state of the network is given by the membrane
potentials {Vi}i=1,...,N , which obey the system of N ordinary
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differential equations of the form [39]

τmV̇i = V 2
i + ηi − JτmS(t ) + I (t ) (8)

with the auxiliary after-spike resetting

if Vi � Vp then Vi ← Vr . (9)

Here τm is the membrane time constant, the overdot denotes
the time derivative, the heterogeneous parameter of excitabil-
ity ηi is a current that specifies the behavior of each isolated
neuron, J � 0 is the strength of the synaptic coupling, S(t )
is the synaptic activation, and I (t ) is an external homoge-
neous current. The isolated neurons (J = 0 and I = 0) with
the negative value of the parameter ηi < 0 are at rest, while
the neurons with the positive value of the parameter ηi > 0
generate instantaneous spikes. Each time a potential Vi reaches
the threshold value Vp, it is reset to the value Vr and the neuron
emits an instantaneous spike which contributes to the network
mean firing rate

R = lim
τs→0

1

N

1

τs

N∑
i=1

∑
k

∫ t

t−τs

δ(t ′ − t k
i )dt ′, (10)

where t k
i is the time of the kth spike of the ith neuron and

δ(t ) is the Dirac delta function. Following [11], we take into
account synaptic dynamics by a first-order differential equa-
tion for the variable S,

τd Ṡ = −S + R, (11)

where τd is the synaptic time constant. The solution to this
equation is a superposition of exponential postsynaptic poten-
tials emitted in the past

S(t ) = 1

N

N∑
i=1

∑
k

H
(
t − t k

i

) 1

τd
exp

(
t − t k

i

τd

)
, (12)

where H (·) is the Heaviside step function.
It is interesting to note that Eq. (11) can be interpreted

in terms of another physical model that takes into account
the delays in the transmission of synaptic pulses between
neurons instead of taking into account synaptic dynamics.
This equation holds when the transmission (delay) time τ is a
heterogeneous parameter distributed according to the density
function h(τ ) = exp(−τ/τd )/τd , where τd is the mean time
delay (see Ref. [13] for details).

Because of the quadratic nonlinearity in Eq. (8), Vj reaches
infinity in a finite time, and this allows us to choose the
threshold parameters as Vp = −Vr = ∞. Then the period
of oscillations of an isolated neuron with ηi > 0 becomes
Ti = πτm/

√
ηi. With this choice, the QIF neuron can be trans-

formed into a theta neuron. This choice is also crucial for
the derivation of the reduced mean-field equations in the limit
N → ∞ [5].

The microscopic model described above was proposed in
Ref. [11] as a model of ING oscillations [30–34]. It was
analyzed in [11] for the case of Cauchy heterogeneity. Here
we assume that the heterogeneity of the excitability parameter
ηi is determined by the q-Gaussian distribution (3). This distri-
bution is characterized by three parameters: mean η̄, HWHM
d , and MTI n. Using this distribution, we will derive the exact
mean-field equations and analyze how the network dynamics

changes with an increase in the parameter n, when the form
of the q-Gaussian distribution changes from the Cauchy to the
normal Gaussian distribution.

IV. DERIVATION OF THE MEAN-FIELD EQUATIONS
IN THE LIMIT N → ∞

In the thermodynamic limit N → ∞, the infinite-
dimensional system (8) can be reduced to a low-dimensional
system of ODEs using the LA method [5]. This method is
usually applied under the assumption that the heterogeneities
satisfy the Cauchy distribution (6). In this case, the residue
method allows one to reduce the network dynamics to just
one equation for a complex order parameter. Recently, the
LA method has been applied for more complex distributions.
In Ref. [27] approximate reduced equations were derived for
the normal Gaussian distribution g∞(η) by expanding the
reciprocal 1/g∞(η) in a truncated Taylor series. The bimodal
distribution of the excitability parameter, represented by a lin-
ear combination of two Cauchy distributions, was considered
in Ref. [28].

Here we will reproduce the LA method for the case of
q-Gaussian heterogeneity (3). The peculiarity of the q-
Gaussian function gn(η) is that it has higher-order poles on
the complex plane η. As far as we know, the LA and OA
reduction methods have so far been used only for the case of
simple poles. Our analysis shows that these methods work for
higher-order poles as well.

In the thermodynamic limit, we characterize the population
state by the density function ρ(V |η, t ), which evolves accord-
ing to the continuity equation

τm∂tρ + ∂V [(V 2 + η − JτmS + I )ρ] = 0. (13)

According to the LA theory [5], solutions of Eq. (13) gener-
ically (independently of the initial conditions) converge to a
Lorentzian-shaped function

ρ(V |η, t ) = 1

π

x(η, t )

[V − y(η, t )]2 + x2(η, t )
(14)

with two time-dependent variables x(η, t ) and y(η, t ), which
define the half-width and the center of the voltage distribution
of neurons with a given η. The ansatz (14) allows us to reduce
a partial differential equation (13) to an ODE

τm∂tw(η, t ) = i[η + JτmS(t ) − w2(η, t ) + I (t )], (15)

where w(η, t ) = x(η, t ) + iy(η, t ) is a complex variable. The
variables x(η, t ) and y(η, t ) have clear physical meanings.
For a fixed η, the neuron firing rate R(η, t ) is related to the
Lorentzian half-width by R(η, t ) = x(η, t )/πτm. This rela-
tion is obtained by estimating the probability flux R(η, t ) =
ρ(Vp|η, t )V̇ (Vp|η, t ) through the threshold Vp = ∞. In the
thermodynamic limit, the mean firing rate (10) can be esti-
mated as the averaged firing rate R(η, t ) over η,

R(t ) = 1

πτm
Re[W (t )], (16)

where

W (t ) =
∫ +∞

−∞
w(η, t )gn(η)dη (17)
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is the averaged value of the variable w(η, t ). Here gn(η) is
the q-Gaussian density function (3). Averaging the variable
y(η, t ) over η, we can find the mean membrane potential

V̄ (t ) = Im[W (t )]. (18)

Equations (15)–(17) and (11) constitute a closed system of
integro-differential equations describing the dynamics of the
network in the thermodynamic limit. Further simplification
can be achieved by evaluating the integral in Eq. (17). To do
this, we will apply the theory of residues. Namely, the func-
tion w(η, t ) is analytically continued into a complex-value η

and the integration contour is closed in the lower half plane.
Writing gn(η) as a product of two functions

gn(η) = Cn�
2n
n

1

(η − ηn)n

1

(η − η∗
n )n

, (19)

where

ηn = η̄ − i�n (20)

and η∗
n is the complex conjugate of ηn, we find it has two

n order poles, one η = ηn in the lower half plane and one
η = η∗

n in the higher half plane. The value of the integral (17)
is determined by the residue at the n order pole η = ηn of
gn(η) in the lower half plane:

W (t ) = −2π i
Cn�

2n
n

(n − 1)!

[
∂n−1

∂ηn−1

w(η, t )

(η − η∗
n )n

]
η=ηn

. (21)

To compute the (n − 1)th-order derivative in Eq. (21), we
introduce n time-dependent order parameters

Wk (t ) = (i�n)k−1

(k − 1)!

[
∂k−1

∂ηk−1
w(η, t )

]
η=ηn

(22)

and n coefficients

ak =
[

∂n−k

∂ηn−k
(η − η∗

n )−n

]
η=ηn

(23)

for k = 1, . . . , n. Then Eq. (21) can be written in the form

W (t ) = −Dn

n∑
k=1

(
n − 1
k − 1

)
ak

(k − 1)!

(i�n)k−1
Wk (t ), (24)

where

Dn = 2π iCn�
2n
n

(n − 1)!
= 2i

√
π�2n−1

n

�
(
n − 1

2

) . (25)

An explicit expression for the coefficients (23) is

ak = (−1)n(2i�n)−2n+k (2n − k − 1)!

(n − 1)!
. (26)

Finally, the function W (t ) can be presented by a linear combi-
nation of the order parameters Wk (t ),

W (t ) =
n∑

k=1

bkWk (t ), (27)

with the coefficients

bk = −Dn

(
n − 1
k − 1

)
(k − 1)!

(i�n)k−1
ak . (28)

Substituting ak from Eq. (26) and Dn from Eq. (25), we find
that these coefficients are independent of �n. Simplifying this
equation with the Legendre duplication formula, we get the
following explicit expression:

bk = �
(
n − k

2

)
�

(
n − k−1

2

)
�

(
n − 1

2

)
�(n − k + 1)

, k = 1, . . . , n. (29)

In numerical modeling, it is more convenient to generate these
coefficients using the recurrent formula:

b1 = 1, (30a)

bk = n − k + 1

n − k/2
bk−1, k = 2, . . . , n. (30b)

Now we need to derive the differential equations for the order
parameters Wk (t ), k = 1, . . . , n. To do this, we differentiate
Eq. (15) k − 1 times by η at the point η = ηn and multiply
it by the factor [(i�n)k−1/(k − 1)!]. For the left-hand side of
Eq. (15) we get

τm∂t
(i�n)k−1

(k − 1)!

[
∂k−1

∂ηk−1
w(η, t )

]
η=ηn

= τmẆk (t ). (31)

On the right-hand side (RHS) of Eq. (15) there are only two
terms that depend on η: η and w2(η, t ). Applying the above
operation to the first term, we obtain

(i�n)k−1

(k − 1)!

[
∂k−1

∂ηk−1
η

]
η=ηn

=
⎧⎨
⎩

ηn if k = 1
i�n if k = 2
0 otherwise.

(32)

We define the result of applying the above operation to the
term w2(η, t ) as

Qk (t ) ≡ (i�n)k−1

(k − 1)!

[
∂k−1

∂ηk−1
w2(η, t )

]
η=ηn

. (33)

Performing differentiation on the RHS of this equation and
using Eq. (22), we can express Qk (t ) in terms of the order
parameters as

Qk (t ) =
k∑

l=1

Wk−l+1(t )Wl (t ), k = 1, . . . , n. (34)

Summing up the above results, we obtain the following closed
system of n + 1 ODEs:

τmẆ1 = i
[
η̄ − i�n − JτmS − W 2

1 + I (t )
]
, (35a)

τmẆ2 = −�n − i2W1W2, (35b)

τmẆk = −iQk (t ), k = 3, . . . , n, (35c)

τd Ṡ = −S + R. (35d)

Here the expressions Q1 = W 2
1 and Q2 = 2W1W2 are

explicitly written in Eqs. (35a) and (35b). Equations (35a)–
(35c) govern the dynamics of n order parameters
[W1(t ), . . . ,Wn(t )]. Equation (35d) for the synaptic variable
S(t ) is a copy of Eq. (11). We rewrote it here to complete the
system of mean-field equations. The mean synaptic rate R(t )
is related to the order parameters according to Eqs. (16) and
(27). Recall that n is the MTI of a q-Gaussian distribution.
For n = 1, the q-Gaussian distribution coincides with the
Cauchy distribution, and in this case, Eqs. (35) are the same
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as the equations discussed in Ref. [11]. In the general case,
the mean-field equations (35) give an exact description of
the macroscopic dynamics of an infinite-size network of
QIF neurons satisfying the q-Gaussian distribution with an
arbitrary modified Tsallis index n.

V. BIFURCATION ANALYSIS OF THE MEAN-FIELD
EQUATIONS

We perform the bifurcation analysis of Eqs. (35) in the
absence of external current I (t ) = 0. For fixed n, these equa-
tions have five parameters: τm, τd , η̄, d , and J . To reduce the
number of parameters, we rewrite these equations in dimen-
sionless form. Assuming the parameter η̄ to be positive, we
introduce the dimensionless time

ϑ = t
√

η̄/τm (36)

and change the variables

wk = Wk√
η̄
, s = Sτm√

η̄
, r = Rτm√

η̄
, qk = Qk

η̄
. (37)

Then the system (35) can be presented in the form

w′
1 = i

[
1 − iδn − js − w2

1

]
, (38a)

w′
2 = −δn − i2w1w2, (38b)

w′
k = −iqk, k = 3, . . . , n, (38c)

τ s′ = −s + r, (38d)

where the prime denotes the derivative with respect to the
dimensionless time ϑ and

δn = δ(21/n − 1)−1/2, (39a)

qk =
k∑

l=1

wk−l+1wl , (39b)

r = 1

π
Re

n∑
l=1

blwl . (39c)

The coefficients bl are determined by Eq. (29) or by the recur-
rent formula (30). In the new variables, the mean membrane
potential v = V̄ /

√
η̄ becomes

v = Im
n∑

l=1

blwl . (40)

The advantage of the system (38) over the system (35) is that
it depends on only three parameters

j = J/
√

η̄, τ = √
η̄τd/τm, δ = d/η̄. (41)

The parameter j is the new normalized coupling strength, τ

is proportional to the ratio of the synaptic time constant τd

to the most likely period T̄ = πτm/
√

η̄ of the neurons, and
δ is the ratio of the half-width d to the center η̄ of the q-
Gaussian distribution. Next we will analyze how the solutions
of Eqs. (38) depend on these parameters.

We start the analysis of the mean-field equation by de-
termining the equilibrium points and their stability. We
denote the equilibrium solution of Eqs. (38) by a tilde:
(w̃1, . . . , w̃n, s̃). It is obtained by equating the RHS of these
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FIG. 2. Linear stability of the equilibrium state of the mean-field
equations (38) of the QIF neuron network: (a) the equilibrium spiking
rate r̃ and (b) the maximum real part � of the eigenvalues of the lin-
earized system (47) as functions of the coupling strength j for fixed
parameters τ = 2 and δ = 0.2 and different values of the modified
Tsallis index n.

equations to zero. In the general case, this problem requires
solving a system of polynomial equations. However, if we are
interested in the dependence of the equilibrium points on the
coupling strength j, we do not need to solve the polynomial
equations. Defining an independent parameter as p = js̃, we
can find the dependence of the equilibrium values of w̃k on
this parameter:

w̃1(p) =
√

1 − iδn − p, (42a)

w̃2(p) = iδn/2w1(p), (42b)

w̃k (p) = −1

w̃1(p)

k−1∑
l=2

w̃k−l+1(p)w̃l (p), k = 3, . . . , n. (42c)

Taking into account that the equilibrium values of s and r co-
incide, s̃ = r̃, we can parametrically establish the dependence
of the equilibrium spiking rate on the coupling strength:

r̃(p) = 1

π
Re

n∑
l=1

blw̃l (p), (43a)

j(p) = p/r̃(p). (43b)

Figure 2(a) shows this dependence at fixed parameters τ = 2
and δ = 0.2 and different values of the MTI. The network
has a single equilibrium point for any j and n. For n � 2, the
characteristics r̃( j) are practically independent of n, while in
the case of the Cauchy distribution (n = 1) this characteristic
is significantly different. Here the spiking rate r̃ decreases
much more slowly with increasing j. This is due to the fact
that the Cauchy distribution has especially heavy tails, and
even with a large inhibitory coupling strength j, a significant
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number of neurons remain in the right heavy tail, where they
are active.

Next we analyze how the stability of the equilibrium
state depends on j. We introduce small deviations δwk =
wk − w̃k and δs = s − s̃ from the equilibrium state and lin-
earize the system (38) with respect to these deviations. To
simplify expressions, we define n-dimensional vectors δw =
(δw1, . . . , δwn)T , b = (b1, . . . , bn)T , and e = (1, 0, . . . , 0)T ,
where the superscript T denotes the transpose operation, and
write the linearized system as

δw′ = −2iWδw − i jeδs, (44a)

τδs′ = −δs + bT Re(δw)/π. (44b)

Here

W =

⎛
⎜⎜⎜⎜⎝

w̃1 0 0 · · · 0
w̃2 w̃1 0 · · · 0
w̃3 w̃2 w̃1 · · · 0
...

...
...

...
...

w̃n w̃n−1 w̃n−2 · · · w̃1

⎞
⎟⎟⎟⎟⎠ (45)

is an n × n lower triangle matrix. Having written the complex
vector w and the complex matrix W as

δw = δu + iδv, (46a)

W = U + iV, (46b)

Eqs. (44) can finally be presented as a linear system of 2n + 1
real ODEs

δu′ = 2(Vδu + Uδv), (47a)

δv′ = 2(−Uδu + Vδv) − jeδs, (47b)

δs′ = (−δs + bT δu/π )/τ. (47c)

Solving the eigenvalue problem for this system at a given
value of the parameter p, we obtain 2n + 1 eigenvalues λm(p),
m = 1, . . . , 2n + 1. Equation (43b) gives the dependence of
the coupling strength on the parameter j(p), and thus we have
a parametric dependence of λm on j. The equilibrium state is
stable if the real parts of all eigenvalues are negative.

Figure 2(b) shows the dependence of the maximum real
part

� = max
m

[Re(λm)] (48)

of the eigenvalues on the coupling strength j for the same
values of τ , δ, and n as in Fig. 2(a). For n = 1, the value of
� is negative at any j. Thus, the Cauchy distribution provides
the stable equilibrium state at any coupling strength j, and
for given τ and δ the network cannot produce macroscopic
oscillations. For n � 2, the stability properties of the equi-
librium state [characteristic �( j)] essentially depend on n,
although the characteristic r̃( j) is almost independent of n.
The values of j where �( j) = 0 represent the Hopf bifur-
cation points. In the regions where �( j) > 0, the network
exhibits macroscopic limit cycle oscillations. The interval of
j where oscillations take place enlarges with the increase of n.
The effect of improving the oscillatory properties is due to the
fact that an increase in n makes the tails of the q-Gaussian dis-
tribution less heavy so that more neurons are concentrated in

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
n=1
n=2
n=10

FIG. 3. Attractors of the mean-field equations (38) depending on
the modified Tsallis index: fixed point at n = 1, small limit cycle at
n = 2, and large limit cycle at n = 10. The variables r and v represent
the dimensionless spiking rate and the mean membrane potential,
respectively. The parameter values are τ = 2, δ = 0.2, and j = 10.

the center of the distribution and these neurons are responsible
for the appearance of collective oscillations.

Figure 3 shows asymptotic solutions of the nonlinear sys-
tem of mean-field equations (38) in the plane of the variables
r and v for different values of the MTI n. The parameters
τ = 2 and δ = 0.2 are the same as in Fig. 2 and the coupling
strength is j = 10. For n = 1, the equilibrium state is stable
(� < 0) and the solutions of the nonlinear system converge
to a fixed point indicated by a blue asterisk. For n = 2 and
10 the equilibrium state is unstable (� > 0) and the solutions
converge to limit cycles shown by black dashed and red solid
curves, respectively. The size of the limit cycle increases with
increasing n. For n → ∞ the size of the limit cycle saturates
to the size obtained from the microscopic model with a normal
Gaussian distribution (see Figs. 5 and 6 below). Note that
the effect of increasing n (making the distribution less heavy
tailed) to the occurrence of collective oscillations is somewhat
similar to the effect of noise in Refs. [16–19], where it was
shown that nonoscillating networks with Cauchy-distributed
parameters can oscillate in the presence of noise.

Relatively simple mean-field equations (38) make it pos-
sible to carry out a two-parameter bifurcation analysis of
the system even for sufficiently large values of the MTI n.
Figure 4 shows the bifurcations diagrams in the parameter
plane (τ, j). They were built using the MATCONT package
[40]. The diagrams are presented in four panels for four
different fixed values of the parameter δ: 0.05 [Fig. 4(a)],
0.1 [Fig. 4(b)], 0.2 [Fig. 4(c)], and 0.4 [Fig. 4(d)]. Lines of
different styles indicate Hopf bifurcation curves with different
values of n. They divide the (τ, j) plane into regions with
a stable equilibrium state and stable limit cycle oscillations.
For all δ, the region of the limit cycle oscillations in-
creases with increasing n and reaches a maximum at n → ∞,
when the q-Gaussian distribution goes over to the normal
distribution.

For fixed n and increasing δ, the region of the limit cycle
oscillations narrows and disappears at some threshold value
δ = δn. For example, the evolution of this region for the
Cauchy distribution (n = 1) is seen in Figs. 4(a) and 4(b)
from the change in the Hopf bifurcation curve, indicated by
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FIG. 4. Two-parameter bifurcation diagrams of the mean-field equations (38) in the plane of parameters (τ, j) for various fixed values of
the parameter δ: (a) 0.05, (b) 0.1, (c) 0.2, and (d) 0.4. Lines of different styles indicate Hopf bifurcation curves with different values of the
modified Tsallis index n. Triangles represent estimates of the bifurcations’ loci obtained by direct numerical simulations of the microscopic
model (8) with N = 5 × 104 QIF neurons distributed according to the normal Gaussian density function (see Sec. VI for details). The cross in
(c) indicates the parameter values used in numerical simulations of Figs. 3, 5, and 6.

the blue dash-dotted line. Closed bifurcation curves mean
that collective oscillations occur only in a limited range of
parameters. They cannot occur if the synapse is too slow (large
τ ) or too fast (small τ ). Oscillations of the limit cycle are also
impossible if the coupling strength j is too small or too large.
At δ = 0.2 [Fig. 4(c)], collective oscillations cannot appear
for any τ and j: At n = 1 the region of limit cycle oscillations
disappears. This result is consistent with the analytical con-
clusions of Ref. [11], where it was shown that the limit cycle
oscillations cannot exist in a system with Cauchy heterogene-
ity if δ > δ1 ≈ 0.14. However, a q-Gaussian distribution with
MTI n = 2 preserves the limit cycle oscillations beyond this
threshold. At n = 2, the oscillations disappear at higher values
of δ, when δ > δ2 ≈ 0.36. With a further increase in δ, the
evolution of bifurcation curves with a higher MTI is similar:
The oscillation regions narrow and disappear one after another
at n equal to 3, 4, etc. Surviving regions with large n move
towards higher values of the coupling strength j.

Summarizing the above bifurcation analysis, we emphasize
that the oscillatory properties of the network significantly
depend on the shape of the distribution determined by the
modified Tsallis index n. For a fixed ratio δ = d/η̄, the domain
of the limit cycle oscillations in the parameter space increases
with an increase in n. Among the family of distributions
covered by a q-Gaussian function, the Cauchy distribution
(n = 1) is less effective for generating collective synchronized
oscillations, while the normal distribution (n = ∞) is the most
efficient.

VI. COMPARISON OF SOLUTIONS OF THE MEAN-FIELD
EQUATIONS AND THE MICROSCOPIC MODEL

The reduced mean-field equations (35) are exact in the
limit of an infinite-size network. Here we verify how well
they describe the dynamics of finite-size networks described
by the microscopic model (8) and (11). Numerical simulation
of these equations is more convenient after changing the vari-
ables

Vi = tan(θi/2) (49)

that turn QIF neurons into theta neurons. Such a transforma-
tion of variables avoids the problem of resetting the membrane
potential Vi of the QIF neuron from +∞ to −∞ at the mo-
ments of firing. At these moments, the phase θi of the theta
neuron simply crosses the value of θi = π . For theta neurons,
Eqs. (8) and (11) are transformed into

τmθ̇i = 1 − cos(θi ) + [1 + cos(θi )][ηi − JτmS + I (t )], (50a)

τd Ṡ = −S + R, (50b)

where R is the mean firing rate defined by Eq. (10). For
the numerical implementation of this equation, we set
τs = 10−2τm. To obtain a smoother time series, the firing rate
plotted in Figs. 5 and 6 was computed according to Eq. (10)
with τs = 3 × 10−2τm. The parameter values {ηi}i=1,...,N

satisfying the q-Gaussian distribution gn(η) [Eq. (3)] were
deterministically generated using ηi = η̄ + G−1

n (ξi ), where
ξi=1,...,N = i/(N + 1) are the numbers uniformly distributed
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FIG. 5. Comparison of the dynamics of the spiking rate of the
microscopic model (50) (thin red curves) and mean-field equa-
tions (35) (thick gray curves) with q-Gaussian heterogeneity at
different values of the modified Tsallis index n. The parameter values
are τm = 10 ms, τd = 10 ms, η̄ = 4, d = 0.8, and J = 20.

in the unity interval ξ ∈ (0, 1) and G−1
n denotes the inverse of

the cumulative q-Gaussian-distribution function Gn(η) with
η̄ = 0, i.e., Gn(η) = Cn

∫ η

−∞[1 + (η′/�n)2]−ndη′. Equa-
tions (50) were integrated by the Euler method with a time
step of dt = 10−4τm.

In Fig. 5 we compare the solutions of the microscopic
model (50) and the mean-field equations (35) for three dif-

(a)
0 50 100 150 200 250 300 350

0

100

200

300

(b) 0 50 100 150 200 250 300 350
1
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N
eu

ro
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#

FIG. 6. Dynamics of a population of normally distributed
5 × 104 neurons and its approximation by mean-field equations. The
values of the parameters are the same as in Fig. 5. (a) Firing rate
obtained from the microscopic model (50) (thin red curve) with
the normal Gaussian distribution (7) and from the mean-field equa-
tions (35) (thick gray curve) with the q-Gaussian distribution (3) at
n = 10. (b) Raster plot of 1000 randomly selected neurons. The dots
show the spike moments for each neuron, where the vertical axis
indicates neuron numbers.

ferent MTI values: n = 1, 2, and 5. The parameter values
τm = 10 ms, τd = 10 ms, η̄ = 4, d = 0.8, and J = 20 are
chosen such that they give the same values of the dimension-
less parameters τ = 2, δ = 0.2, and j = 10, which were used
in Fig. 3. To match the initial conditions of the microscopic
model and the mean-field equations at t = 0, we proceeded
as follows. We turned on the constant inhibitory current
I (t ) = −4 at t = −200 ms and, using arbitrary initial con-
ditions, integrated both systems in the interval t ∈ [−200, 0]
ms. Due to the inhibitory current, both systems reached the
same stable equilibrium state at the end of the interval. Then,
at t = 0, we turned off the inhibitory current I (t ) = 0, and
for t > 0, we calculated the dynamics of the spiking rate
R(t ) for both systems. Our results show that the dynamics of
the spiking rate calculated using the microscopic model with
N = 5 × 104 neurons is in good agreement with the dynamics
obtained from the mean-field equations. For a given δ = 0.2,
the Cauchy distribution (n = 1) cannot provide collective os-
cillations in the network and the system relaxes to a stable
incoherent state with a constant spiking rate. For the same
parameter values, q-Gaussian distributions with higher values
of n = 2 and 5 lead to synchronized limit cycle oscillations.

In Fig. 6(a) we compare the solutions of the microscopic
model (50) and the mean-field equations (35), with the ex-
citability parameter of the microscopic model described by a
normal Gaussian distribution and the mean-field model cor-
responding to a q-Gaussian distribution with n = 10. Good
agreement between these solutions indicates that the dynam-
ics of a large-scale network of normally distributed QIF
neurons can be well approximated by a low-dimensional
system of mean-field equations represented by a q-Gaussian
distribution with MTI n ∼ 10. The raster plot shown in
Fig. 6(b) demonstrates network dynamics at the microscopic
level. Here dots denote spike moments of 103 of randomly se-
lected neurons out of 5 × 104 of the total number of neurons.

In addition, we tested the possibility of mean-field equa-
tions for predicting the onset of oscillations in a finite-size
network with a normal Gaussian distribution of the excitabil-
ity parameter. The results obtained from the microscopic
model (8) with N = 5 × 104 normally distributed neurons
are shown in Fig. 4 by triangles. They denote numerically
estimated loci of Hopf bifurcations for several values of the
parameters τ and δ. For δ � 0.1, these symbols are close to
the Hopf bifurcation curves of the mean-field equations with
the MTI n = 10 [Figs. 4(a) and 4(b)]. Thus, the mean-field
equations with only ten order parameters approximate well the
boundaries of oscillations of a large network with a normal
Gaussian heterogeneity. For δ > 0.1, more order parameters
(n = 20) may be required to approximate well the Hopf bifur-
cation loci [Figs. 4(c) and 4(d)].

VII. DISCUSSION

We derived a reduced system of mean-field equations for
an inhibitory QIF neural network with a heterogeneous
excitability parameter η distributed according to a q-
Gaussian density function. We considered a restricted class of
q-Gaussian distributions with the Tsallis index q = 1 + 1/n,
where n is any natural number, here called the modified Tsallis
index. With this restriction, the q-Gaussian distribution gn(η)
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is a rational function, which allows us to apply the theory of
residues. The peculiarity of our case is that the q-Gaussian
function gn(η) has poles of order n on the complex plane η.
Until now, the LA reduction method had only been used for
simple poles. Our analysis showed that this method also works
for higher-order poles and leads to relatively simple mean-
field equations. It is noteworthy that for n = 1 the q-Gaussian
distribution coincides with the Cauchy distribution and as
n is increased to infinity it gradually turns into the normal
Gaussian distribution. Comparing the results for a family of
q-Gaussian distributions with different MTIs n, we assume
that the center η̄ and half-width d of the distribution are the
same for all n.

The method presented here for deriving the mean-field
equations can be applied to various network models with
q-Gaussian-distributed parameters. In this paper we demon-
strated this on a specific ING oscillation model, which was
previously considered for the case of Cauchy heterogeneity
[11]. We performed the bifurcations analysis of this system
depending on the MTI n and other parameters of the model.
We found that the collective oscillation regions in the pa-
rameter space expand with increasing n, as the q-Gaussian
distribution changes from the Cauchy distribution to the nor-
mal distribution. In particular, for larger n, oscillations occur
in wider ranges of the synaptic time τd and the coupling
strength J . Previously it was found that collective oscilla-
tions cannot occur in a system with a Cauchy distribution if
the parameter δ = d/η̄ exceeds a certain threshold δ1 ≈ 0.14
[11]. Here we have shown that q-Gaussian distributions with
n > 1 provide oscillations beyond this threshold. As a gen-
eral conclusion, we note that the oscillatory properties of the
network significantly depend on the shape of the distribution
determined by the MTI n. Among the distributions covered
by the q-Gaussian family, the normal distribution is most effi-

cient for generating collective oscillations, while the Cauchy
distribution is less efficient.

The mean-field equations derived here are exact in the
thermodynamic limit N → ∞ for q-Gaussian distributions
with any modified Tsallis index n. The n index determines
the number of ODEs in the reduced mean-field model. To
verify how well the mean-field equations describe the dy-
namics of finite-size networks, we numerically simulated the
equations of the microscopic model. Modeling networks with
N = 5 × 104 inhibitory q-Gaussian-distributed QIF neurons
at various values of n yielded results that are in good agree-
ment with the results obtained from the mean-field equations.

In addition, we simulated networks with normally dis-
tributed QIF neurons and tested how well the results obtained
can be approximated by mean-field equations with finite n.
This simulation showed that the mean-field equations valid
for a q-Gaussian distribution with n ∼ 10 approximate well
the dynamics of large normally distributed neural populations.
Note that Ref. [27] considered an excitatory QIF neural net-
work with a normal distribution approximated by a rational
function having simple distinct poles. In that approximation,
the values of the poles were determined numerically and the
resulting system of mean-field equations had coefficients that
also required numerical calculation. The advantage of approx-
imating the normal Gaussian distribution by a q-Gaussian
function is that it has one explicit higher-order pole and the
system of mean-field equations obtained here has a simple
form with explicitly given coefficients.
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Entrainment of a network of interacting neurons with minimum
stimulating charge, Phys. Rev. E 102, 012221 (2020).

[27] V. Klinshov, S. Kirillov, and V. Nekorkin, Reduction of the
collective dynamics of neural populations with realistic forms
of heterogeneity, Phys. Rev. E 103, L040302 (2021).

[28] V. Pyragas and K. Pyragas, Dynamics of a network of quadratic
integrate-and-fire neurons with bimodal heterogeneity, Phys.
Lett. A 416, 127677 (2021).

[29] C. Tsallis, Introduction to Nonextensive Statistical Mechanics:
Approaching a Complex World (Springer, New York, 2009).

[30] X.-J. Wang and G. Buzsáki, Gamma oscillation by synap-
tic inhibition in a hippocampal interneuronal network model,
J. Neurosci. 16, 6402 (1996).

[31] M. A. Whittington, R. D. Traub, and J. G. R. Jefferys,
Synchronized oscillations in interneuron networks driven by
metabotropic glutamate receptor activation, Nature (London)
373, 612 (1995).

[32] M. Whittington, R. Traub, N. Kopell, B. Ermentrout, and E.
Buhl, Inhibition-based rhythms: Experimental and mathemat-
ical observations on network dynamics, Int. J. Psychophysiol.
38, 315 (2000).

[33] N. Brunel and V. Hakim, Sparsely synchronized neuronal oscil-
lations, Chaos 18, 015113 (2008).

[34] X.-J. Wang, Neurophysiological and computational principles
of cortical rhythms in cognition, Physiol. Rev. 90, 1195 (2010).

[35] C. Tsallis, Possible generalization of Boltzmann-Gibbs statis-
tics, J. Stat. Phys. 52, 479 (1988).

[36] S. Umarov, C. Tsallis, and S. Steinberg, On a q-central limit the-
orem consistent with nonextensive statistical mechanics, Milan
J. Math. 76, 307 (2008).

[37] S. Umarov and C. Tsallis, The limit distribution in the q-CLT
for q > 1 is unique and can not have a compact support, J. Phys.
A: Math. Theor. 49, 415204 (2016).

[38] C. Tsallis, Nonadditive entropy Sq and nonextensive statistical
mechanics: Applications in geophysics and elsewhere, Acta
Geophys. 60, 502 (2012).

[39] G. Bard Ermentrout and D. H. Terman, Mathematical Founda-
tions of Neuroscience (Springer, New York, 2010).

[40] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, MATCONT: A
MATLAB package for numerical bifurcation analysis of ODEs,
ACM Trans. Math. Softw. 29, 141 (2003).

044402-10

https://doi.org/10.1103/PhysRevLett.125.248101
https://doi.org/10.1103/PhysRevE.100.052211
https://doi.org/10.1103/PhysRevLett.127.038301
https://doi.org/10.1063/5.0061575
https://doi.org/10.1063/5.0075751
https://doi.org/10.1103/PhysRevE.96.042212
https://doi.org/10.3389/fncom.2020.00047
https://doi.org/10.1103/PhysRevE.104.014203
https://doi.org/10.1103/PhysRevE.96.052407
https://doi.org/10.3389/fnsys.2021.752261
https://doi.org/10.1371/journal.pcbi.1008533
https://doi.org/10.1103/PhysRevE.102.012221
https://doi.org/10.1103/PhysRevE.103.L040302
https://doi.org/10.1016/j.physleta.2021.127677
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1038/373612a0
https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1063/1.2779858
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1007/BF01016429
https://doi.org/10.1007/s00032-008-0087-y
https://doi.org/10.1088/1751-8113/49/41/415204
https://doi.org/10.2478/s11600-012-0005-0
https://doi.org/10.1145/779359.779362

