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Probabilistic message-passing algorithms are developed for routing transmissions in multiwavelength optical
communication networks, under node- and edge-disjoint routing constraints and for various objective functions.
Global routing optimization is a hard computational task on its own but is made much more difficult under the
node- and edge-disjoint constraints and in the presence of multiple wavelengths, a problem which dominates
routing efficiency in real optical communication networks that carry most of the world’s internet traffic. The
scalable principled method we have developed is exact on trees but provides good approximate solutions on
locally treelike graphs. It accommodates a variety of objective functions that correspond to low latency, load
balancing, and consolidation of routes and can be easily extended to include heterogeneous signal-to-noise values
on edges and a restriction on the available wavelengths per edge. It can be used for routing and managing
transmissions on existing topologies as well as for designing and modifying optical communication networks.
Additionally, it provides the tool for settling an open and much-debated question on the merit of wavelength-
switching nodes and the added capabilities they provide. The methods have been tested on generated networks
such as random-regular, Erdős Rényi, and power-law graphs, as well as on optical communication networks in
the United Kingdom and United States. They show excellent performance with respect to existing methodology
on small networks and have been scaled up to network sizes that are beyond the reach of most existing algorithms.
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I. INTRODUCTION

Optical communication networks underpin the global dig-
ital communications infrastructure and carry most of the
internet traffic. They comprise thousands of kilometers of
optical fibers, organized in a complex web of constituent sub-
networks including the internet backbone, Metro access and
Data Center farms. The exponential growth in internet traffic
and energy consumption threatens to overload the existing
infrastructure and a capacity crunch is looming [1]. Not only
that a matching growth in infrastructure is infeasible, it raises
fundamental questions on the ultimate capacity of optical
communication networks and the manner in which we could
optimize their use. The next-generation digital infrastructure
has to offer flexibility, low latency, high network throughput,
and resilience.

One of the key requirements is the routing and wave-
length assignment (RWA) for all traffic demands across this
complex heterogeneous network in a way that optimizes a
given objective function, be it low latency, high throughput, or
resilience [2–4]. Each optical fiber carries information using
light of one or many wavelengths. The latter uses, among
others, dense wavelength-division multiplexing (DWDM)
methods that employ as many as 80–160 channels of different
laser wavelengths [5]. The main constraint in the RWA is
that any complete individual route, from source to destination,
uses the same single wavelength and that two separate routes
using the same wavelength cannot shares the same fiber. This
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constraint makes the corresponding mathematical problem
hard to solve in general.

Route optimization in optical communication networks can
be mapped onto the hard computational problem of edge-
disjoint routing on a graph, where transceivers (transmitter-
receiver) are mapped to vertices (or nodes) and fibers to
edges (or links). Given that routes are constrained to be con-
tiguous and interaction between paths is nonlocalized, local
optimization methods are insufficient and global optimization
is required. Globally optimal routing of multiple messages or
vehicles given a general objective function is a computation-
ally hard constraint satisfaction problems on its own and has
been addressed in the physics literature using scalable and dis-
tributed message passing approximation techniques, inspired
by statistical physics methodology [6–9]. Moreover, similar
techniques have been suggested also for addressing the single-
wavelength node-disjoint paths (NDP) [10] and edge-disjoint
paths (EDP) [11] problems where multiple paths of differ-
ent origin-destination pairs cannot share nodes or edges on
a graph, respectively. Generally, both optimization tasks are
within the class of NP-hard combinatorial problems [12–15]
and the approximation offered by message passing techniques
work well. However, the existing methods developed for
single-wavelength routing become intractable in the presence
of multiple wavelengths, making them inapplicable for realis-
tic scenarios.

It is worthwhile noting that in some extreme cases these
hard computational problems become polynomial in the sin-
gle wavelength case as discussed in Ref. [11]. For instance,
when the number of origin-destination pairs is low with re-
spect to the systems size [16] and where all origin-destination
pairs are identical [17,18]. Nevertheless, the general problems
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of NDP and EDP routing on graphs are computationally hard
even in the single wavelength case and a variety of methods
have been used to address them in the context of optical com-
munication networks and more general problems. Alongside
established methods, such as integer and linear programming
and its variants [19–23] bin-packing-based approaches [24],
Monte Carlo search [25], post-optimization [26], and greedy
algorithms [27–30], a large number of heuristics have also
been used to obtain approximate solutions in both problems,
among them genetic algorithms [31–33], ant colony optimiza-
tion [34], and particle swarm optimization [35]. Specifically
in the area of optical communication networks, it is common
to use integer and linear programming and its variants for
small networks, to obtain exact results, and a variety of heuris-
tics for larger networks. In practice, current optical networks
use overprovision of capacity to compensate for suboptimal
routing, resulting in both overengineering and underutilized
capacity [36,37].

The main challenge we address here is the RWA under
heavy traffic using multiple wavelengths and a very large
number of origin-destination pairs under the NDP and EDP
constraints and for various objective functions. Globally opti-
mal routing is a nonlocalized difficult problem but adding the
NDP/EDP restrictions and having a large number of different
wavelengths increases the complexity considerably, making
the problem intractable (exponential) for existing algo-
rithms [10,11]. We map the globally optimal routing problem
in the presence of multiple wavelengths onto a multilayer
replica of the original graph and utilize probabilistic optimiza-
tion approaches. The methods developed here are based on
message passing techniques, developed independently in sev-
eral fields including statistical physics, computer science and
information theory [38–40] but are closely interlinked [41,42].
The methods we develop allow for messages, in the form of
conditional probability values to be passed between nodes and
the replicated networks representing the different wavelengths,
in a way that keeps the algorithms scalable and applicable
even for a large number of wavelengths, transmissions (cor-
responding to source-destination pairs) and nodes.

The main result of this paper is the derivation of princi-
pled scalable algorithms, capable of obtaining approximate
solutions for routing problems in large graphs, where the
number of transmissions is of similar order to that of the
number of free variables (vertices/edges) and a large number
of wavelengths, under the NDP and EDP constraints and for
various objective functions, both convex and concave. The
algorithm also accommodate cases where the number of trans-
missions is much larger than the number of vertices (quadratic
with respect to the number of vertices). The computational
complexity of the NDP/EDP algorithms for sparse graphs
is O[MQ(M + N + Q)]/O[MQ(M/N + N + Q)], with N the
number of vertices, M the number of transmissions, and Q
the number of wavelengths. The algorithm has been tested
for a variety of sparse network topologies, both synthetic
random graphs and real optical communication networks,
and for different objective functions, showing excellent re-
sults in obtaining high quality approximate solutions. Among
the generic networks examined are random regular graphs,
Erdős Rényi (ER) [43] and scale-free networks [44], while
the realistic networks considered include the British 22 nodes

(BT22) [45] and U.S. 60 node (CONUS) [46] backbone opti-
cal communication networks. When tested on small networks
against known results obtainable using unscalable methods
like variants of integer and linear programming, it was shown
to provide the optimal routing results.

The results provide the maximal number of communica-
tion pairs that could be accommodated given the network
size, topology, and number of wavelengths used; the minimal
number of wavelengths required for a given network, topol-
ogy, and communication pairs; and the resulting utilization
of edges. They identify the impact of using the suggested
algorithm on the average path length, the utilization of wave-
lengths per edge and how it can be controlled using concave
and convex objective functions.

In addition, our algorithms can be used for routing trans-
missions across networks in single instances, study the
limitations of heterogeneous networks of different degree
distributions, with variable edge signal-to-noise ratios and
wavelength availability. Moreover, our algorithms could be
employed in the design of new infrastructure, especially
through the use of concave cost functions that consolidate
routes, by determining the least important routes that could
be removed with little effect on the network throughput or re-
silience. These are of both academic and practical values since
the performance of optical communication networks is often
directly related to their capacity limits, traffic congestion, rate
of information flow and bandwidth flexibility. Moreover, we
also studied a switching model, where wavelength can be
converted (switched) at the vertices (transceivers) to settle an
open and much debated question on the merit of wavelength-
converters [47–49] for increasing throughput, resource utiliza-
tion and resilience in optical communication networks.

While we mainly focus here on the optical communication
network application and test the efficacy of the method on
networks and number of wavelengths that are relevant to this
application domain, one should point out that these problems
are highly relevant to other domains. For instance, multiwave-
length NDP/EDP are relevant to both 5G and the future 6G
wireless communication systems and wireless ad-hoc com-
munication networks in the relay setting, where each node can
act as a relay. Our algorithms can reduce path overlaps, which
represent transmissions in similar wavelength, resulting in
signal interference and low transmission quality, or to consol-
idate paths since longer paths result in signal degradation and
the need for higher transmission power [28,29,50]. Another
application is the design of very large system multilayer inte-
grated circuits (VLSI), where nonoverlapping wired paths to
connect different components are sought to avoid cross-path
interference. In all cases, higher throughput, robustness, and
lower latency can be achieved for the same resource by ob-
taining a good approximation to the globally optimal solution.
Practical algorithms for various applications often depend on
the specific network topologies considered [51] and are aimed
at maximizing the number of paths routed [52].

The reminder of the paper is organized as follows: In Sec. II
we introduce the model used followed by the message-passing
based algorithmic solutions for NDP, EDP, and wavelength
switching scenarios in Sec. III. Results obtained from
numerical studies on a range of synthetic and real networks
and a variety of objective functions are presented in Sec. IV
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followed by a discussion on their computational complexity.
Possible extensions of the framework to accommodate real-
world scenarios such as edges with different signal-to-noise
ratios or wavelength availability are presented in Sec. V. Fi-
nally, we discuss the efficacy of the methods developed and
point to future research directions in Sec. VI.

II. MODEL

We consider a dense wavelength-division multiplexing
(DWDM) optical network G(V, E ), with V ≡ {i | i ∈ G} and
|V | = N , the set of nodes representing transceivers and E ≡
{(i, j) | (i, j) ∈ G} the set of edges, such that the indices (i, j)
represent the optical fiber between node i and j. For a network
which uses Q wavelength channels to deliver M transmissions,
we introduce a Q-dimensional vector �si, j on the link from
node i to j such that its ath entry sa

i, j = s or −s if transmission
s passes from node i to j or from j to i, respectively, through
link (i, j) using wavelength a; the transmission s corresponds
to one of the origin-destination pair {1, . . . , M}, and sa

i, j = 0
denotes that no communication uses wavelength a on link
(i, j). A similar Q-dimensional vector �si is defined for node
i in the case of NDP, where the component sa

i takes the value
{0, 1, . . . , M}, representing the use of wavelength a on node
i by request s if sa

i = s �= 0, or sa
i = 0 if it is not occupied by

any transmission. Since each transmission has to occupy an
individual wavelength channel on a link, more wavelengths
are generally required for more transmissions, i.e., a larger
value of Q is required for a larger M. For specific network in-
stances with Q wavelength channels, there exists a maximum
number of transmissions denoted as Mmax which can be trans-
mitted; alternatively, one can define the minimum number of
wavelength channels, i.e., Qmin, which accommodate all M
transmissions on a specific instance. The relationship between
Mmax and Q, or between M and Qmin, would be highly relevant
for characterizing the maximum capacity of optical networks.

This framework can accommodate a variety of objective
functions; here, we consider the sum of the cost (or utility)
on each link to be the objective function for optimization,
given by

H (��s) =
∑
(i, j)

Fi, j

(
Q −

Q∑
a=1

δ0
sa

i, j

)
, (1)

where δ
y
x is the Kronecker δ such that δ

y
x = 1 if x = y and δ

y
x =

0 otherwise; the function Fi, j denotes the cost on link (i, j) as
a function of the argument in parenthesis; while it can take
an arbitrary form we will mostly focus on simple polynomial
functions. In the context of statistical physics, we introduce
the inverse temperature β, and the partition function Z of the
system is given by

Z (β ) =
∑

��s
�(��s)e−βH (��s) =

∑
��s

�(��s)
∏
(i, j)

e−βFi, j (�si, j ), (2)

where ��s ≡ {�si, j} ⊗ {�si} denotes the configurations of commu-
nication routes through all links and nodes on the network, and
�(��s) is an indicator function such that �(��s) = 1 if ��s satisfies
all the constraints of the problem or otherwise �(��s) = 0. The

double vector notation comes to emphasize dependence on
both topology and wavelength.

We now summarize the constraints of the optimization
problem. First, the route for each transmission must be con-
tiguous. A loopless path is a sequence of nonrepeating nodes
from origin to destination, for example, path s is constructed
as Os → · · · → j → i → k → · · · → Ds, where Os and Ds

are the origin and destination pair of transmission s. Sec-
ond, for an intermediate node i along the path there exist
only two used edges ( j, i) and (i, k) for that wavelength and
transmission. This constraint could be expressed as follows: If
sa

i, j = s �= 0, then∑
k∈∂i\ j

(
1 − δ0

sa
i,k

) = 1 and
∑

k∈∂i\ j

sa
i,k = −s, (3)

where ∂i ≡ { j | (i, j) ∈ E} is the set of the nearest neighbors
of node i, and ∂i \ j ≡ ∂i − { j} is the subset of ∂i except node
j. Regarding the wavelength constraints along the path, we
will consider three scenarios in the subsequent analyses:

(1) Node-disjoint paths (NDP)—where only a single
transmission is allowed to utilize a specific wavelength chan-
nel on a node [10], but there can be multiple transmissions
using different channels through the same node as shown in
Fig. 1(a); this may correspond to transceivers which can only
process a single transmission for each individual wavelength.
The expression of the node-disjoint constraint is sa

i, j = s �=
0 ⇒ ∀k ∈ ∂i \ j : sa

i,k ∈ {0,−s}.
(2) Wavelength-switching (WS) with NDP—where all in-

coming or outgoing transmissions to transceivers (nodes) use
different wavelength channels, but transmissions are allowed
to switch between wavelength channels at the transceivers as
shown in Fig. 1(b), leading to a larger routing flexibility.

(3) Edge-disjoint paths (EDP)—where multiple transmis-
sions using the same wavelength channel, are allowed to be
routed through any given node [11] but cannot share an edge,
as shown in Fig. 1(c). This is the typical scenario in optical
communication networks.

III. MESSAGE-PASSING ALGORITHMS

To derive optimization algorithms to allocate simultane-
ously the optimal route and wavelength for a large number
of transmissions, we solve the problem on multilayer graphs
where each layer represents a different wavelength, and
messages are passed within each layer for assignment of
routes and between layers for allocation of wavelength. By
applying the cavity approach from the study of spin glass sys-
tems [38,41,53], we can derive distributed message-passing
algorithms for optimizing transmission routes in optical net-
works for NDP, WS and EDP scenarios.

It should be noted that there is interaction between layers
at each edge/vertex through the objective function that de-
pends on the local wavelength allocation per communication
request. This is manifested through the dynamically passed
messages prior to the inference decisions made with respect
to wavelength and route allocation. Additionally, the factor
graphs that correspond to the different routing scenarios are
loopy and the derived algorithms exploit the differences in
strength between the different interaction types, within and
across layers. A more detailed explanation of the respective
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FIG. 1. An exemplar graph with N = 5 nodes and 4 edges, where M = 2 transmissions with origins and destinations j and k (solid), and
m and n (dashed), respectively, are transmitted by Q = 2 wavelength channels represented by the red and blue layers. (a) The node-disjoint
(NDP) case, where the whole transmission path uses the same wavelength. For instance, the red wavelength channel of node i is used by the
transmission from m → n, so the red node i cannot be a part of the other transmission from j → k, which instead uses the blue wavelength
channel. (b) The wavelength-switching scenario of NDP (WS), where the two transmission switch their wavelength channels at node i; panels
(a) and (b) are valid under this switching scenario. (c) The edge-disjoint (EDP) case, where the red layer is sufficient for accommodating the
two transmissions, and the blue layer is idle.

factor graphs and the assumptions made is provided in the
Appendix.

A. Node-disjoint routing

First, we consider the NDP routing scenario [10] shown in
Fig. 1(a). The network is represented by a factor graph with
two types of variables, namely sa

i defined on nodes and sa
i, j

defined on links. According to the Bethe-Peierls approxima-
tion [54,55], we assume only large loops exist in the network
such that all neighboring nodes and edges of a node i are
nearly independent in the absence of i.

To derive the multiwavelength routing algorithm, we first
define pi→ j to be the message from node i to edge (i, j) and
qi→ j to be the message from edge (i, j) to node j. Both mes-
sages are conditional probabilities: pi→ j (s) is the probability
of edge (i, j) to be in state s due to the state of node i and
qi→ j (s) the probability of edge (i, j) to be in state s without
the interaction from node i. We then write a closed set of
recursion relations to express the message pi→ j in terms of
qk→i, as well as another set of relations representing qi→ j in
terms of pi→ j and p j→i:

pa
i→ j (0) ∝

∏
k∈∂i\ j

qa
k→i(0)

+
∑

m,n∈∂i\ j
s �=0

qa
m→i(s)qa

n→i(−s)
∏

k∈∂i\ j,m,n

qa
k→i(0),

pa
i→ j (s) ∝

∑
k∈∂i\ j

qa
k→i(s)

∏
l∈∂i\ j,k

qa
l→i(0);

qa
i→ j (0) ∝ pa

i→ j (0)
∑

n

e−βFi, j (n)
∑
b�=a:

sb=0,1

δn∑
b�=a

sb

∏
b�=a

q̃b
i, j (s

b),

qa
i→ j (s) ∝ pa

i→ j (s)
∑

n

e−βFi, j (n+1)
∑
b�=a:

sb=0,1

δn∑
b�=a

sb

∏
b�=a

q̃b
i, j (s

b),

(4)

where we have further defined the auxiliary quantities q̃b
i, j

given by

q̃a
i, j (0) = q̂a

i, j (0), q̃a
i, j (1) =

∑
s �=0

q̂a
i, j (s);

q̂a
i, j (s) = pa

i→ j (s) pa
j→i(−s). (5)

For brevity we omit the normalization term and use the
notation “∝” instead of the equality symbol. For a brief
explanation of how these equations are construed: The first
equation of Eq. (4), looks at the probability for no transmis-
sion on the edge i → j, as a summation of the probability
of no transmission entering i (first term) and the probabil-
ity of transmissions arriving at i from node m but leaving

i

j

k

l

μ

i

j

k
l

i

j

k

i

j

k
l

jii

j

k

i

j

k
l

(a)

(b)

FIG. 2. (a) Mapping the original network (left) onto multilayer
replica networks that use different wavelengths (right). In this exam-
ple, node i is the origin/destination of transmission |μ|. Introducing
an auxiliary node μ, denoted by a square and connected to nodes i at
each of the layers, facilitates message passing between the new node
and the different layers to determine the allocation of transmissions
to wavelengths. These auxiliary nodes also facilitate the interaction
among different wavelengths. (b) An example of routing paths on a
simple network with N = 7 nodes and M = 4 transmissions, which
shows the complete algorithmic framework with wavelengths as
colored layers, origins and destinations as auxiliary nodes denoted
by framed and un-framed noncircular symbols, respectively, trans-
mission paths as colored solid lines with arrows and un-occupied
wavelength channels as colored dotted lines.
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through some other node n (second term); the second equa-
tion looks at the message s arriving at node i but not
leaving through any other edge but i → j; the third and
fourth equations describe the probability of edge i → j to
be in a given state 0 or s, given the related cost on the
edge, in conjunction with all other wavelengths. In Eq. (4),
node messages using wavelength a depend only on the mes-
sages from their neighbors using the same wavelength and
the network is effectively mapped onto a system with Q

separate layers, each of which employs a different wave-
length channel, as shown in Fig. 1(a); the interdependence
between wavelengths is considered at the origin and desti-
nation of individual transmissions [Fig. 2(a)], as discussed
below. An example of the complete routing is described in
Fig. 2(b).

With the messages pi→ j and qi→ j having converged to
stable values, one can express the marginal probability of node
i being in state s using wavelength a as

pa
i (0) ∝

∏
j∈∂i

qa
j→i(0), pa

i (s) ∝
∑

m,n∈∂i

qa
m→i(s)qa

n→i(−s)
∏

j∈∂i\m,n

qa
j→i(0). (6)

The marginal probability of edge (i, j) being in state s with wavelength a is given by

qa
i, j (0) ∝ q̂a

i, j (0) ·
∑

n

e−βFi, j (n)
∑
b�=a:

sb=0,1

δn∑
b�=a

sb

∏
b�=a

q̃b
i, j (s

b), qa
i, j (s) ∝ q̂a

i, j (s) ·
∑

n

e−βFi, j (n+1)
∑
b�=a:

sb=0,1

δn∑
b�=a

sb

∏
b�=a

q̃b
i, j (s

b), (7)

where the factors after the dot symbols correspond to contributions from all neighboring links of (i, j) to the partition function,
which takes into account all possible variable configurations in the trees terminated at the neighboring edges.

To simplify the algorithms, we introduce the variables φ ≡ − 1
β

log q and ψ ≡ − 1
β

log p, and take the zero-temperature limit
for optimization β → ∞. The components of φ and ψ are real numbers, and can take any value in R. The recursion relations of
messages in Eq. (4) thus become equivalent to the min-sum belief propagation relations [41], given by

ψa
i→ j (0) = min

⎧⎨
⎩

∑
k∈∂i\ j

φa
k→i(0), min

m,n∈∂i\ j
s �=0

⎡
⎣φa

m→i(s) + φa
n→i(−s) +

∑
k∈∂i\ j,m,n

φa
k→i(0)

⎤
⎦

⎫⎬
⎭,

ψa
i→ j (s) = min

k∈∂i\ j

⎡
⎣φa

k→i(s) +
∑

l∈∂i\ j,k

φa
l→i(0)

⎤
⎦; φa

i→ j (0) = ψa
i→ j (0) + min

n

⎡
⎢⎢⎣Fi, j (n) + min∑

b�=a
sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎥⎥⎦,

φa
i→ j (s) = ψa

i→ j (s) + min
n

⎡
⎢⎢⎣Fi, j (n + 1) + min∑

b�=a
sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎥⎥⎦, (8)

where

φ̃a
i, j (0) = ψa

i→ j (0) + ψa
j→i(0), φ̃a

i, j (1) = min
s �=0

[ψa
i→ j (s) + ψa

j→i(−s)]. (9)

For each individual transmission |μ| ∈ {1, . . . , M}, we then introduce auxiliary nodes labeled as μ = ±|μ| ∈ {±1, · · · ,±M},
where nodes with positive and negative μ connect to origin and destination nodes, respectively, in each of the Q wavelength
network layers, respectively [see in Fig. 2(a)]. These auxiliary origin-destination pairs of each transmission communicate with
all wavelength replica networks to determine the path and wavelength channel allocated to each transmission, using the message
passing algorithm, given by

φμ→a(0) = min
b�=a

[
φb→μ(−μ) +

∑
c �=a,b

φc→μ(0)

]
, φμ→a(μ) = 1 +

∑
b�=a

φb→μ(0), φμ→a(s) = ∞, s �= 0, μ, (10)

such that the transmission routes are determined independently on each wavelength channel. The first equation in Eq. (10) relates
to transmission |μ| not occupying wavelength a but another wavelength b �= a; the second equation shows the if wavelength a is
selected by message |μ|, then other wavelength b �= a cannot be occupied; the third equation expresses that states s �= 0, μ are
not admissible. After introducing the auxiliary nodes, we treat the messages to and from them as to other network nodes. For
example, the neighboring nodes set of node i in Fig. 2(a) is ∂i = { j, k, l, μ}, and the calculation of messages i → j and i → μ
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both follow Eq. (8). The marginal probability of edge (i, j) being in state s using wavelength a is then given by

φa
i, j (0) = ψa

i→ j (0) + ψa
j→i(0) + min

n

⎡
⎢⎢⎣Fi, j (n) + min∑

b�=a
sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎥⎥⎦,

φa
i, j (s) = ψa

i→ j (s) + ψa
j→i(−s) + min

n

⎡
⎢⎢⎣Fi, j (n + 1) + min∑

b�=a
sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎥⎥⎦, (11)

and the state sa
i, j of wavelength a of edge (i, j) is determined by

sa
i, j = arg min

s
φa

i, j (s), (12)

which ultimately leads to the optimized configuration of routes for all M transmissions through the optical network with Q
wavelength channels.

1. Linear cost

While the objective function can take many different forms we use a simple power as the cost function Fi, j (x) on edges
xγ [6,56], as it provides a good example of both concave and convex costs. When γ = 1, the cost function is linear and equivalent
to the total length of all transmissions L ≡ ∑

(i, j);a (1 − δ0
sa

i, j
), and optimizing it is equivalent to finding the shortest average path.

In this case (γ = 1), the message-passing equations Eq. (8) can be simplified to

φa
i→ j (0) = min

⎧⎨
⎩

∑
k∈∂i\ j

φa
k→ j (0), min

m,n∈∂i\ j
s �=0

⎡
⎣φa

m→i(s) + φa
n→i(−s) +

∑
k∈∂i\ j,m,n

φa
k→i(0)

⎤
⎦

⎫⎬
⎭,

φa
i→ j (s) = 1 + min

k∈∂i\ j

⎡
⎣φa

k→i(s) +
∑

l∈∂i\ j,k

φa
l→i(0)

⎤
⎦, (13)

where the variable ψ in Eq. (8) can be omitted. The marginal quantities are then given by

φa
i, j (s) = φa

i→ j (s) + φa
j→i(−s) + (

δ0
s − 1

)
, (14)

and the messages to the auxiliary nodes at the origins and destinations are the same as Eq. (10).

2. Switching wavelength channels at nodes

A generalization of the NDP scenario is to allow for transmissions to change wavelengths at nodes (WS) as shown in
Fig. 1(b), which is equivalent to a single-wavelength network routing with both node and edge capacity being Q, and utilize
other multiplexing techniques than wavelength division (e.g., code or time division multiplexing). A variable τ is introduced to
enforce this capacity constraint on nodes. In this case, the message-passing equations are given by

φ
μ
i→ j (0) = min

⎧⎨
⎩τ

μ
i (0) +

∑
k∈∂i\ j

φ
μ

k→i(0), τ
μ
i (1) + min

m,n∈∂i\ j

⎡
⎣φ

μ
m→i(1) + φ

μ
n→i(−1) +

∑
k∈∂i\ j,m,n

φ
μ

k→i(0)

⎤
⎦

⎫⎬
⎭,

φ
μ
i→ j (±1) = τ

μ
i (1)+ 1 + min

k∈∂i\ j

⎡
⎣φ

μ

k→i(±1) +
∑

l∈∂i\ j,k

φ
μ

l→i(0)

⎤
⎦, (15)

where τ
μ
i denotes the summation over ψ̃i from a total of at most Q transmissions, excluding μ, that pass through node i, given

by

τ
μ
i (0) = min∑

ν �=μ σν�Qi
ν �=μ:σν=0,1

∑
ν �=μ

ψ̃ν
i (σ ν ), τ

μ
i (1) = min

1+∑
ν �=μ σν�Qi

ν �=μ:σν=0,1

∑
ν �=μ

ψ̃ν
i (σ ν ). (16)

Specifically, τ
μ
i (1) could be understood as indicating that there are free wavelength channels on i that μ could take, and τ

μ
i (0)

indicates that transmission μ does not pass through node i. The quantity ψ̃
μ
i is an auxiliary variable related to the probability

that node i would be a part of the path of transmission μ, which leads to

ψ̃
μ
i (0) =

∑
j∈∂i

φ
μ
j→i(0), ψ̃

μ
i (1) = min

j,k∈∂i

[
φ

μ
j→i(1) + φ

μ

k→i(−1) +
∑

l∈∂i\ j,k

φ
μ

l→i(0)

]
. (17)
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The messages from the origin and the destination of transmission μ to the neighboring edges are slightly different from the
previous case of NDP without switching. In Eq. (16) Qi = Q, and ψ̃i(1) = 0 and ψ̃ (0) = ∞ for the transmissions using node
i as their origin or destination. Alternatively, one can set Qi = Q − Mi, where Mi is the number of transmissions using node i
as their origin or destination, and then exclude these transmissions when one calculates τi. Here, we first introduce a variable
μi = ±1 to denote node i as the origin or destination of transmission μ, respectively, given by

φ
μ
i→ j (0) = min

k∈∂i\ j

⎡
⎣φ

μ

k→i(−μi ) +
∑

l∈∂i\ j,k

φ
μ

l→i(0)

⎤
⎦, φ

μ
i→ j (μi ) = 1 +

∑
k∈∂i\ j

φ
μ

k→i(0), φ
μ
i→ j (−μi ) = ∞. (18)

The variable φ
μ
i, j determines the state of edge (i, j), i.e., whether it is a part of the path of transmission μ or not, and its

expression is given by

φ
μ
i, j (σ ) = φ

μ
i→ j (σ ) + φ

μ
j→i(−σ ) + (

δ0
σ − 1

)
, (19)

such that the optimized state is σ
μ
i, j = arg minσ φ

μ
i, j (σ ).

B. Edge-disjoint routing

Edge-disjoint path routing (EDP) is similar to NDP routing but is less restrictive, since nodes can accommodate any number
of paths with the same wavelength but edges do not [11] [Fig. 1(c)]. In other words, for node i, if there exists an edge (i, j)
with sa

i, j = s0 �= 0, then there exists one and only one edge (i, k) with sa
i,k = −s0 continuity of transmission path, while other

neighboring edges using the same wavelength channel a could be either in state 0 or take up other transmissions such that
sa

i,m1
= −sa

i,n1
= s1 �= 0, sa

i,m2
= −sa

i,n2
= s2 �= 0 etc. In comparison, for NDP at most two variables sa

i, j for neighboring nodes
j ∈ ∂i can assume a nonzero value. In other words, single-wavelength EDP is equivalent to a generalized version of WS, where
the capacity of each node is nonuniform and determined by its degree and the number of it being chosen as origins or destinations
of transmissions. Consequently, the message passing equations for EDP scenarios are more complicated and their computational
complexity is higher. The corresponding message passing equations are given by

ψa
i→ j (0) = min

matched
pairs:�s∂i\ j

∑
k∈∂i\ j

φa
k→i(sk ), ψa

i→ j (s) = min
k∈∂i\ j

⎡
⎣φa

k→i(s) + min
matched

pairs:�s∂i\ j,k

∑
l∈∂i\ j,k

φa
l→i(sl )

⎤
⎦;

φa
i→ j (0) = ψa

i→ j (0) + min
n

⎡
⎣Fi, j (n) + min∑

b�=a sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎦, φa

i→ j (s) = ψa
i→ j (s) + min

n

⎡
⎣Fi, j (n + 1) + min∑

b�=a sb=n:

sb=0,1

∑
b�=a

φ̃b
i, j (s

b)

⎤
⎦,

(20)

where the message from node i to edge (i, j) (first two equations) are different from those of NDP in Eq. (8), while Eqs. (9)–(12)
in the NDP scenario apply also here.

It is numerically difficult to compute the message passing relations in Eq. (20), since all feasible configurations satisfying the
constraints have to be considered by the first two equations, which results in a computational complexity of

min{�K/2,M}∑
n=0

MCn
K P2n, (21)

where K = |∂i| − 1 is the number of neighboring edges of node i, M is the total number of transmissions, �x is the floor
function that is equal to the greatest integer less than or equal to x, nPk = n!

(n−k)! is the number of ordered permutations of k

out of n elements and nCk = n!
k!(n−k)! the number of unordered combinations. To simplify the computation we map the task on

to the maximum weight matching problem [11,57]. As in Ref. [11], we consider all the possible pairs of considered edges
{(i, k) | k ∈ ∂i \ j} and obtain the weight of each pair,

wk,l = − M
min

s=−M
[φk→i(s) + φl→i(−s)]. (22)

Then, we construct a weighted graph with |∂i| − 1 nodes where the weight of each edge is given by Eq. (22). After that, ψa
i→ j in

Eq. (20) could be obtained by the maximum weight matching algorithm [11,58].
In Fig. 3, we show the transformation employed for calculating the messages i → j. Links between all pairs, including

auxiliary origin-destination and graph edges, are shown on the left. The right figure shows all valid links between nodes, while
distinguishing between auxiliary and graph nodes: Any of the ordinary graph nodes could be paired but the auxiliary nodes could
only be paired with ordinary graph nodes. The maximum matching algorithm finds edge sets with the maximum sum of weights,
where matched edges have no common nodes; the inverse value of the weights sum is approximately the value of minimum
matched configurations in Eq. (20).
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1. Linear cost

Similar to Sec. III A 1, if the cost function on edges is linear Fi, j (x) = x, then the message-passing equations could be
simplified as follows:

φa
i→ j (0) = min

matched
pairs:�s∂i\ j

∑
k∈∂i\ j

φa
k→i(sk ), φa

i→ j (s) = 1 + min
k∈∂i\ j

⎡
⎣φa

k→i(s) + min
matched

pairs:�s∂i\ j,k

∑
l∈∂i\ j,k

φa
l→i(sl )

⎤
⎦. (23)

The marginal states of nodes and edges, and messages to the auxiliary nodes at transmission origins and destinations, are the
same as in the NDP case of Eqs. (10) and (14).

C. Algorithmic framework

The same algorithmic procedure governs both NDP and
EDP routing algorithms based on the message passing
equations. The min-sum algorithm, i.e., zero-temperature op-
timization algorithm, follows the process outlined below:

(1) initialize the messages {ψa
i→ j, φ

a
i→ j, φμ→a} ran-

domly (e.g., uniform distribution U (−1, 1)) or identically
(e.g., all 1);

(2) update the messages by Eqs. (8)–(10) in the node-
disjoint scenarios, and Eqs. (20) and (10) in the edge-disjoint
scenarios until convergence or when a maximum number of
iteration steps is reached;

(3) calculate the marginal state of edges by Eq. (11) and
the state of each wavelength channel by Eq. (12).

After obtaining the marginal states of edges and wave-
lengths, the allocation of transmissions to specific wavelength
and path would follow. Wavelength-edges |sa

i, j | = |μ| con-
struct the transmission-path |μ| with wavelength choices
included.

However, there are some cases when the algorithms need
many iterations to provide a valid configuration, for example
if the cost function Fi, j (x) in Eq. (1) is concave, e.g., F (x) =√

x in these cases, a decimation procedure can be introduced
to speed up convergence. As an example, here we show the
NDP algorithm with decimation (fixing states at intermediate
steps) incorporated as part of the process:

i j

k
m

n

μ

ν

k

m

n

μ ν

FIG. 3. Mapping from EDP to a maximum weighted match-
ing graph. To calculate the message ψi→ j by Eq. (20), we have
to consider all valid paired configurations of neighboring nodes
{k, m, n, μ, ν}. Transmissions could pass through m → i → n, so
there is an edge (m, n) representing the pair interaction, and the
contribution to φi→ j is approximately mins[φm→i(s) + φn→i(−s)],
whose inverse value is the weight of edge (m, n). Auxiliary (square)
nodes μ and ν represent virtual origins or destinations of different
transmissions so there are no paths of the form μ → i → ν, and
consequently no edges between them exist.

(1) initialize the messages {ψa
i→ j, φ

a
i→ j, φμ→a} and the

state of all wavelength channels per available (undecimated)
edge;

(2) update the messages of the available wavelength chan-
nels and edges by Eq. (8)–(10) for a specific number of
iteration steps;

(3) compute the marginal states of the available wave-
length channels and edges by Eq. (11); calculate the quantity
φ̂a

i, j = mins �=0 φa
i, j (s) − φa

i, j (0), and fix the state of the wave-

length channel a of edge (i, j) with the largest value of φ̂a
i, j to

be sa
i, j = 0.

(4) iterate steps 2 and 3 and determine the state of the
available wavelength channels and edges by Eq. (12) until a
valid solution is obtained or a maximum number of iteration
steps is reached.

The algorithms with or without the decimation procedures
have a similar performance in terms of the optimized cost,
but for harder problem (e.g., F (x) = √

x) the decimation pro-
cedures can reduce the number of iteration steps needed for
generating a valid routing solution.

As the problem becomes more challenging, e.g., larger
M, Q or N , the number of iteration required for the iterative
process to converge grows as demonstrated in the inset of
Fig. 14(a). To mitigate the increase in computation we employ
a commonly used heuristic, a reinforcement term [11], shown
to reduce the number of iterations required. We first generalize
the marginal Eq. (14) to

φa
i, j (s) = φa

i→ j (s) + φa
j→i(−s) − w̃a

i, j (s), (24)

and update the local fields at each iteration by

w̃a
i, j (s) ← w̃a

i, j (s) + εφa
i, j (s), (25)

where ε is the reinforcement factor, which can take a positive
small constant (e.g., 10−4), or a slowly increasing value.

Due to the hard computational nature of the problem, it
is expected that the algorithm will fail in specific instances,
which is exacerbated as the problem becomes more diffi-
cult, beyond some critical ratio between constraints and free
variables or form of objective function. Moreover, while dec-
imation and reinforcement tend to speed up convergence they
typically increase the failure rate, driving the dynamics to-
wards suboptimal and invalid solutions. To study the impact
of decimation and reinforcement on the quality of the re-
sults obtained and the failure to obtain solutions, we carried
out a set of experiments below the experimental capacity as
reported in Table I. It shows that below the capacity limit
almost all instances converge to valid solutions, with the ex-
ception of the concave objective F (x) = √

x, where a low
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TABLE I. The number of iterations and success rates of three versions of the message-passing algorithm: Original algorithm with no
heuristics (MP), with decimation (MPD), and with reinforcement procedures (MPR). The experiments were carried out for EDP routing and
objective functions of the form F (x) = xγ : Concave (γ = 0.5), linear (γ = 1), and convex (γ = 2) costs. Results are obtained by 36 testing
samples on network CONUS below the critical capacity with Q = 4 wavelengths, M = 18 communication requests, and up to 105 iterations.
It is clear that the concave case is the most difficult, and that in the selected example decimation and reinforcement terms are useful.

γ 0.5 1 2

Methods MP MPD MPR MP MPD MPR MP MPD MPR
Avg (iteration) 20806 1959.4 79.4 350.7 557.3 62.6 114.6 117.6 84.1
Std (iteration) 22667 639.5 20.3 1002.8 947.9 21.7 33.3 58.7 26.9
Success rate 36.11% 100% 100% 100% 100% 100% 100% 100% 100%

percentage of instances converge for the original algorithm;
message-passing with decimation or reinforcement helps in
increasing performance and convergence rates. All three ver-
sions of message passing have higher failing probabilities as
the task becomes more difficult, for instance, increasing the
number of requests M or lowering the number of wavelengths
Q, requiring additional iterations or more trials from different
initial conditions to obtain valid solutions.

IV. SIMULATION RESULTS

A. Linear cost

We first examine the NDP, WS, and EDP scenarios with
linear cost F (x) = x to explore the behavior and performance
of communication networks, such as capacity and average
length, with impact on latency and number of wavelength
channels required.

1. Dependence on the number of wavelength channels

We performed numerical experiments using the three algo-
rithms on three different types of generated random networks,
each of which has a single connected component, including
random regular graphs, Erdős-Rényi and scale-free networks
with 100 nodes and an average node degree of 3, as well
as on two real optical communication networks—CONUS60,
which has 60 nodes and 79 edges [46] and BT-Core, 22
nodes, and 35 edges [45] as shown in Fig. 4. Specifically,
for the scale-free networks studied, the degree distribution is
p(d ) ∝ d−1.24.

We define the capacity to be the maximum number of
transmissions, which we denote as Mmax, that can be transmit-
ted by an optical communication network with Q wavelength

(a) CONUS (b) BT-Core

FIG. 4. Real optical communication networks studied, namely,
(a) CONUS60 in the United States, and (b) BT-core in the United
Kingdom.

channels. We remark that capacity depends on network
topologies and the set of origin-destination pairs, so in Fig. 5
we report the dependence of the average value of Mmax with
standard deviation as error-bars on Q, showing the average
behavior of capacities for different Q values.

Figure 5 shows the simulation results for the five types of
networks—in the three different routing scenarios. For the
three types of random networks and BT-Core, the average
capacity per wavelength channel Mmax/Q keeps increasing at
the beginning and become saturated as the number of wave-
length channels Q increases. As for the networks CONUS and
BT-Core in Fig. 5, we see that the average capacities also
increase with Q but the increases are not as fast as that in the
generated networks. Random regular networks are the most
homogeneous among the three types of generated networks
and scale-free the most heterogeneous, which explains why
random regular networks have higher capacity than Erdős-
Rényi networks and scale-free networks are more likely to be
blocked [59].

The average path length of the corresponding networks
are shown in Figs. 6 and 7. In Fig. 6, we see that as more
wavelengths are available the shorter the average path length
L/M decreases; for instance, in NDP scenarios shown in
Figs. 6(a)–6(c), the average path length with Q = 1 is higher
than that with Q = 4, which is higher than that of Q = 9 as
the average load per wavelength channel (M/Q) increases.
Moreover, with the same values of Q and M, it is clear that the
wavelength-switching model would provide us with shorter
paths and a higher capacity on Erdős-Rényi and scale-free
networks as shown in Fig. 6.

In comparison with NDP, the advantages of EDP with
multiple transmissions using the same wavelength availability
is clearer on random regular graphs as shown in Fig. 7(a), and
less so on other graph types, presumably due to the graph het-
erogeneity and finite size effects. We observe that EDP routing
increases the network capacity, i.e., average transmission load
per wavelength channel, and provides shorter valid paths.

2. Dependence on the number of transmissions

In practice, one may wish to minimize the total number
of active wavelength channels for given demand. We define
the smallest number of wavelength channels which accom-
modate a set of transmission to be Qmin; to find Qmin for
a specific instance, we gradually increase Q from 1 until a
valid solution is found by the algorithms. Here we compare
the results of Qmin obtained by our proposed multiwavelength
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(a) Node-disjoint (b) Node-disjoint wavelength-switching (c) Edge-disjoint

FIG. 5. The capacity per wavelength channel, i.e., Mmax/Q, as a function of Q, in the NDP, wavelength-switching and EDP scenarios with
linear cost, on random regular (RR), Erdős-Rényi (ER), and scale-free (SF) networks, as well as a real optical communication networks known
as CONUS and BT [45,46]. All three types of generated networks have 100 nodes and an average degree of 3, while the CONUS network has
60 node and 79 edges, and BT 22 nodes and 35 edges. All the results are obtained by averaging 36 realizations.

routing (MWR) algorithms to those obtained by a multitrial
greedy assignment (MGA) algorithm in the node-disjoint or
edge-disjoint scenarios following the process outlined below:

(1) initialize the values of M, M, Q, and M∗, where
M to M∗ represent the range of transmission number values
we want to explore and M the step size increase in the
experiment;

(2) read the first M elements of the random origin-
destination pair list, set Q = max(1, Q − 4) to increase the
probability of finding a solution in the case of small Q;

(3) randomly assign the M transmissions into Q wave-
length channels, and solve the routing problem for each

(a) Random regular (b) Erdős-Rényi

(c) Scale-free (d) CONUS

FIG. 6. The dependence of the path length L/M on the number
of transmissions per wavelength M/Q for different Q values, in the
NDP and wavelength-switching (WS) scenarios with a linear cost,
and for the four types of graphs studied. The results are obtained by
averaging no less than 20 samples. The WS scenario does not show
a significant advantage over the original node-disjoint scenario for
Erdős-Rényi networks based on the limited simulation results.

transmission on the individually assigned wavelength channel
separately;

(4) repeat step 3 up to a maximum number of trials (e.g.,
10) until a valid configuration is found;

(5) if step 4 fails, set Q := Q + 1 and repeat until a valid
configuration is obtained, then the value of Q is the smallest
number of wavelengths Qmin that accommodates the M trans-
missions;

(6) increase M := M + M and repeat steps 2–5 until
M � M∗.

We compare the values of Qmin/M obtained by our
algorithms and by the MGA algorithm on random regular
networks, the CONUS and BT-Core networks, in both NDP
and EDP scenarios. The numerical results on random regular

(a) Random regular (b) Erdős-Rényi

(c) Scale-free (d) CONUS

FIG. 7. The dependence of the path length L/M on the number of
transmissions per wavelength M/Q for different values of Q, in EDP
scenarios with a linear cost, and for the four types of graphs studied.
The results are obtained by averaging no less than 20 samples per
point.
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(a) (b)

(c) (d)

FIG. 8. The average smallest number of wavelength channels
Qmin/M with (a) NDP and (c) EDP routing, and the average path
length with (b) NDP and (d) EDP routing, as a function of the number
of transmissions M, on random regular networks with 100 nodes and
degree 3, obtained by our multiwavelength routing algorithm with
NDP/EDP (MWR, orange) and WS (green), in comparison with the
multitrial greedy assignment algorithm (MGA, blue). The results are
obtained by averaging 36 samples.

networks presented in Figs. 8(a) and 8(c) show that our algo-
rithms offer significant advantages over the MGA algorithm
in reducing the number of wavelength channels required for
specific random transmission pairs in. The improved perfor-
mance is also observed on the CONUS and BT-Core networks
in Figs. 9 and 10, respectively. The underlying reason for the
improvement is the low success rate of random greedy as-
signments. The numerical results demonstrate that our MWR
algorithms lead to a better use of resource. The additional flex-
ibility provided by the wavelength-switching on transceivers
leads to an even smaller value of Qmin as M increases in
Figs. 8(a) and 9(a), whereas the experiments on the BT-Core
network do not show a significant improvement of WS over
the ordinary NDP in Fig. 10(a), which may depend on the
topology of the graph or our range of values tested.

Comparing the average path length found for both NDP
and EDP routing on random regular graphs, we see in Fig. 8(b)
that the average path lengths obtained by the MGA and MWR
for NDP routing are similar but that shorter paths are found by
MWR in the EDP scenario [Fig. 8(d)]. A significant reduction
in average route length is not expected since typical route
lengths on random graphss is O(log N ) with little variability.
However, a significant reduction in the number of wavelength
channels used Qmin, is shown in Fig. 8(d) and a similar trend
is shown for EDP scenarios in Figs. 9(a), 9(c) and 10(a), 10(c)
for the two real networks.

3. Network capacity

The results of Mmax(Q) or Qmin(M ) shown in the previous
two subsections point to the existence of a maximum capacity

(a) (b)

(c) (d)

FIG. 9. The average smallest number of wavelength channels
Qmin/M with (a) NDP and (c) EDP routing, and the total path length
with (b) NDP and (d) EDP routing, as a function of the number of
transmissions M, on the CONUS network, obtained by our MWR
algorithm with NDP/EDP (orange) and WS (green), in comparison
with MGA algorithm (blue). The results are obtained by averaging
36 samples.

for individual optical communication networks, i.e., the max-
imum number of transmissions accommodated by a specific
number of wavelength channels and topology. Nevertheless,
these estimates of maximum capacity can be inaccurate if
our MWR algorithm fails to identify existing path solutions,
especially since it can be difficult to find these solutions when
the networks are working close to their maximum capacity. To
show that our algorithm is effective even in this algorithmic-
hard regime, we cross-validate the results of Mmax(Q) and
Qmin(M ) by showing both dependencies on the same graph,
i.e., Mmax(Q) and the inverse Q−1

min(M ) in Fig. 11. As we can
see, Mmax(Q) and Q−1

min(M ) found by our algorithm are in good
agreement for random regular graphs, the CONUS and the
BT-core network in all three studied scenarios NDP, WS, and
EDP. These results show the efficacy of our MWR algorithm
in identifying solutions when the networks are close to their
maximum capacity, as well as its efficacy in identifying the
intrinsic capacities of optical communication networks such
as the CONUS and BT-core networks.

B. Computational complexity

Next, we discuss the computational complexity of our
multiwavelength routing algorithms with a linear cost func-
tion Fi, j (x) = x. In this case, if we use the normalization
φa

i→ j (s) := φa
i→ j (s) − φa

i→ j (0) in the min-sum Eqs. (13), (15),
and (20), the computational complexities would decrease.

Under NDP routing, the complexity in computing Eq. (13)
is approximately O(〈k〉2M ), where 〈k〉 is the average node
degree, and there are 〈k〉NQ such messages. The complexity
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(a) (b)

(c) (d)

FIG. 10. The average smallest number of wavelength channels
Qmin/M with (a) NDP and (c) EDP routing, and the total path length
with (b) NDP and (d) EDP routing, as a function of the number of
transmissions M, on the BT-core network, obtained by our MWR
algorithm with NDP/EDP (orange) and WS (green), in comparison
with MGA algorithm (blue). The results are obtained by averaging
36 samples.

in computing the messages from origin and destination nodes
in Eq. (10) is O(Q), and there are 2MQ such messages.
Therefore, the total complexity of one round of update for
all messages is O(〈k〉3MNQ + MQ2); if the graph is sparse,
i.e., 〈k〉 � N , the complexity becomes O(MNQ + MQ2). For
large graphs and relatively small Q � N , the complexity is
roughly O(MNQ), which linearly scales with Q as shown in
Fig. 12(a).

For EDP routing, the complexity of matching a pair of
incoming and outgoing transmissions with the same wave-
length in Eq. (23) is O(〈k〉3 log〈k〉) [11]. Therefore, the
total complexity of one round of update for all messages
is O(2M〈k〉4 log〈k〉 × 〈k〉NQ + MQ2), and if the graph is
sparse the complexity becomes O(MNQ + MQ2). For rela-
tively small Q, the complexity scales with Q as in NDP routing
as shown in Fig. 12(b).

However, when M/N �� N , the effective degree becomes
quite different from the average degree 〈k〉 ⇒ 〈k〉 + 2M

N [see
in Fig. 2(a), the degree of node i increases from 3 to 4 after
introducing the auxiliary node μ]. When M is very large, for
instance M ∼ O(N2) as is used in many optical communica-
tion network applications, the effect of effective degree cannot
be omitted. To make the algorithm scale better we divide the
messages into three types:

(1) messages from auxiliary nodes to ordinary nodes, e.g.,
μ → i in Fig. 2(a)—there are 2MQ such messages;

(2) messages from ordinary nodes to ordinary nodes, e.g.,
i → j in Fig. 2(a)—there are 〈k〉NQ messages of this type;

(3) messages from ordinary nodes to auxiliary nodes, e.g.,
i → μ in Fig. 2(a)—there are also 2MQ such entities.

The messages of type 1 obeys Eq. (10) and the resulting
total complexity is O(MQ2).

Noticing that the messages from auxiliary nodes are sparse,
only φμ→a(0) and φμ→a(μ) are nontrivial in Eq. (10), and
only φb→μ(−μ) is needed to generate new messages, which
simplifies the calculations of Eq. (13). Under NDP routing,
by separating messages of type 1 and 2, the computa-
tional complexity of generating one message of type 2 or
3 by Eq. (13) is O(〈k〉2M ). Then, the total complexity of
the three types of messages is O[MQ2 + 〈k〉2M(〈k〉NQ +
MQ)] = O[MQ(M + N + Q)]. Considering all possible pairs
M = N (N − 1)/2 and set Q ∼ O(N ), the overall complexity
becomes O(N5). In Fig. 12(c), we present the one-iteration
computing time on random regular graphs with degree k = 3
and N nodes, the one-iteration computing timescales approx-
imately as N5.14, which fits our analysis of N5. If M/N � N ,
then the complexity reduces to O[MQ(N + Q)], which is
equivalent to the previous estimate of O(MNQ + MQ2).

Under EDP routing, the computational complexity of type
2 and 3 messages depends on the complexity of the maximum
weighted matching algorithm (approximately O[(〈k〉 + 2M

N )α]
with α being a coefficient to be determined. Using the sparse
properties of type 1 and 3 messages, the total complexity of
the three types is O{MQ[N + Q + (M/N )α]}. Recalling the
mapping to matching problems—the matching network has
approximately 〈k〉 + 2M

N nodes and 〈k〉( 〈k〉−1
2 + 2M

N ) edges,
and the average node degree is approximately 〈k〉 when 2M

N �
〈k〉, therefore it is a sparse network. By using the algo-
rithm in Ref. [11], the complexity should be approximately
O[(〈k〉 + 2M

N )2]. However, due to resulting topology and the
special network structure our tests result in complexity scaling
close to O(〈k〉 + 2M

N ). In other words, α = 1 and therefore
the resulting total complexity is O[MQ(N + Q + M/N )]. Ex-
periments on random regular graphs presented in Fig. 12(c),
when M = N (N − 1)/2 and Q = N show that the complexity
is approximately O(N3.92) which agrees well with the analysis
of O(N4) = O(MNQ).

C. Nonlinear cost

In this section, we show the simulation results where a
more general form of the cost function Fi, j (xi, j ) = xγ

i, j , where
the argument is the wavelength occupancy qi, j on edge (i, j),
given by

xi, j =
Q∑

a=1

(
1 − δ0

sa
i, j

)
. (26)

When γ > 1, the utility increases faster on heavily loaded
edges, biasing solutions towards edges with more even loads.
As a result, load variability on edges is reduced by having
a smaller fraction of idle edges and by suppressing the tail
of highly loaded edges, thus increasing intermediate-valued
loads (e.g., convex cost—γ = 2). However, when 0 < γ < 1,
the cost on edges increases slower with the load, leading
to configurations which consolidate transmissions on used
edges, leaving more edges and wavelength channels idle.
A concave cost reduces the number of active edges while
increasing the load of nonidle edges (e.g., concave cost—
γ = 0.5) and thus reducing the fraction of intermediate-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11. Network capacity by cross-validating the results of Mmax(Q) and the inverse Q−1
min(M ) obtained by our MWR algorithm for random

regular graphs (a), (d), (g), the CONUS (b), (e), (h) and the BT-core (c), (f), (i) network in the three studied scenarios (a), (b), (c) NDP, (d), (e),
(f) WS, and (g), (h), (i) EDP.

valued loads. It is relevant for identifying less important
transceiver nodes which can be switched off in hours of low
usage.

In Fig. 13 we show the distribution p(x) of wavelength
occupancy on edges of random regular graphs and the two
real network CONUS and BT-Core for different values of γ .
For all three networks and both NDP and EDP scenarios, we
observe that when γ = 0.5 more edges were unused, i.e., a
higher value at p(x = 0) in Fig. 13, and as γ increases the
distribution become more evenly distributed and peaked at
some values of x, which corresponds to the balancing of edge
loads. We show in the insets the relative difference between
p(x) obtained by γ = 1 and those obtained by γ = 0.5 or
2, i.e., δ(x; γ ) ≡ p(x;γ )−p(x;γ=1)

p(x;γ=1) , where the evidence for load

consolidation or balancing, for γ = 0.5 or 2, respectively,
become obvious.

D. Comparison with linear programming

Many variants of the RWA problem exist, addressing both
static and dynamics scenarios, with the latter focusing on a
greedy optimization of the most recently introduced request.
We concentrate here on the static problem where all requests
are optimized simultaneously, which can be easily converted
into a version that optimizes only a set of new requests.
In spite of its computational cost and mainly due to be-
ing a principled algorithm, integer linear programming (ILP)
is regarded as the gold standard algorithm for throughput
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(a) Node-disjoint (b) Edge-disjoint (c) Large M complexity

FIG. 12. The dependence of one round of computational time costs from our multiwavelength routing algorithms on the number of
wavelengths Q. For relatively small Q � N and M � N2, data obtained on random regular networks with 1000 nodes and degree 3 in (a) NDP
and (b) EDP scenarios. With the same number of transmissions M, the time costs scale roughly linearly with Q for both scenarios. For large
M, when allocate all the M = N (N − 1)/2 transmissions on Q = N wavelengths, the log-log plots of one round computation time and node
size N are presented in panel (c). It is easy to draw straight lines to fit the data points and the fitting slops are around 3.92 and 5.14 for EDP
and NDP scenarios, respectively. The simulations are implemented on random regular networks of degree 3 and node size N .

optimization in optical networks [2–4,60,61] and the one to
compare against, not necessarily due to its speed but due to
its ability to provide accurate results. Many (meta)heuristic
algorithms have been proposed for solving the static RWA
problem, for instance [62–65], and are all compared against
integer linear programming (ILP) methods on small networks.
Hence, we compare the results of our proposed algorithm
with those obtained by linear programming with a linear cost
function γ = 1.

To solve the routing problem using linear programming,
we find n shortest paths for each of the M transmissions,
denoted by the variables {�sμ

k } with superscript μ = 1, . . . , M
representing transmissions and subscript k = 1, . . . , n repre-
senting the kth candidate path for transmission μ. By carrying
either a subscript for nodes or edges, the variables �sμ

k can
represent a configuration of node states or edge states, and
the NDP or EDP constraints can both be expressed in terms
of �sμ

k . In this case, we introduce a variable σ
a,μ

k = 1 to denote
that transmission μ chooses its kth path with wavelength a,
σ

a,μ

k = 0 otherwise. The disjoint constraint can be expressed
as follows:

∀a, j : va
j � 1, where �va =

∑
k,μ

σ
a,μ

k �sμ

k . (27)

In Eq. (27), if the path �sμ

k represents a configuration of node
states, then each element of �va represents the load of ath

wavelength channel on that node, and node-disjoint constraint
restricts the value of the load to be no more than 1; if the path
�sμ

k represents a configuration of edges, then the edge-disjoint
constraints can be defined in a similar manner.

For each transmission, we choose one wavelength to ac-
commodate one candidate path, which is given by∑

a,k

σ
a,μ

k = 1, ∀μ = 1, . . . , M. (28)

The objective function for the problem with linear cost is
given by

Minimize
∑
a, j

va
j . (29)

The problem can be solved by linear programming with the
objective function of Eq. (29) subject to the constraints in
Eq. (27) and (28) where all the expressions are linear.

For the WS scenario, the variables σ
μ

k are introduced in-
stead of the previous σ

a,μ

k , and the capacity constraint for each
node is given by

∀ j : v j � Q, where �v =
∑

μ

σ
μ

k �sμ

k , (30)

where �sμ

k is a configuration of node states. The constraint for
all the transmissions is given by∑

k

σ
μ

k = 1, ∀μ = 1, . . . , M. (31)

The objective function to be minimized is
∑

j v j .
We conducted numerical experiments on four real-world

networks [45,66–68] and compared the results obtained by our
algorithms and linear programming in the NDP, wavelength-
switching and EDP scenarios. A commonly used and well
studied ILP solver, “intlinprog”—MATLAB mixed-integer
linear programming solver—was used in these experiments.
We show the smallest number of wavelength channels needed
to route successfully all possible transmissions, Qmin, and the
corresponding total path length L in Table II. Our message-
passing algorithms and linear programming yield almost
identical performance in finding optimized path solutions.
For relatively small network, linear programming is efficient,
but it quickly becomes impractical as the size of networks
increases, whereas we show in Sec. IV B that our message-
passing algorithms have more practical scaling properties,
both in terms of the operations per iteration and overall run-
ning time (Fig. 14).

E. Comparison with routing heuristics

There is a difficulty in comparing our results with state-of-
the-art heuristics since most of the heuristics used in practice
are highly suboptimal and are based on greedy shortest-path
optimization, tailored to address the practical considerations
of routing, such as the dynamical addition and deletion

044316-14



SCALABLE NODE-DISJOINT AND EDGE-DISJOINT … PHYSICAL REVIEW E 105, 044316 (2022)

(a) (b)

(c) (d)

(e) (f)

FIG. 13. The distribution p(x) of wavelength occupancy on
edges for power γ = 0.5, 1, 2 in the objective function; panels (a),
(c), (e) represent NDP scenarios and panels (b), (d), (f) represent EDP
scenarios for different graphs: (a), (b) random regular networks with
100 nodes, degree 3, M = 60 and Q = 8; (c), (d) the real network
CONUS with M = 14 and Q = 4, and (e), (f) the BT-Core network
with M = 12 and Q = 4. Insets: The relative difference δ(x; γ ) be-
tween γ = 0.5 and 1, as well as between γ = 2 and 1. The results
are obtained by averaging 22–36 realizations.

of requests, reducing lightpath changes, etc. Nevertheless,
we compare the results obtained by our algorithm against
those achieved by three commonly used RWA heuristics: The
k-shortest-path first fit (kSP-FF), first fit k-shortest-path (FF-
kSP) and adaptive shortest-path (ASP) algorithms [2–4,69].
Unlike our proposed message-passing method and ILP, the
first two heuristics carry out the optimization using two sep-
arate steps: Routing and wavelength assignment. The kSP-FF
algorithm aims to assign the shortest path from the k can-
didates followed by the wavelength assignment from the
available ones (shorter path length precedes the wavelength
assignment), whereas FF-kSP allocates the first available
wavelength prior to routing optimization, based on shortest
weighted path length among the k candidates; the ASP algo-
rithm aims at finding the shortest path according to the current
network state (similar to kSP-FF, where k corresponds to all
paths). The numerical results presented in Fig. 15 show that
message-passing outperforms these three heuristics: It offers
higher success rates in allocating EDP paths to communica-

TABLE II. The smallest number of wavelength channels Qmin

required to transmit all M = |V |(|V | − 1)/2(= N (N − 1)/2) trans-
missions on four small real optical communication networks includ-
ing NSF-Net, B4, DTAG/T-systems, and BT-Core, obtained by our
multiwavelength message-passing routing algorithm (MP) compared
to that obtained by linear programming (LP), in edge-disjoint (ED),
node-disjoint (ND), and node-disjoint wavelength-switching (WS)
scenarios. The corresponding total path lengths are also shown.

Network NSF-Net B4 DTAG/T-systems BT-Core

|V | 14 12 14 22
|E | 21 19 23 35
M 91 66 91 231

MP-ED Qmin 13 16 14 39
L 195 153 218 697

LP-ED Qmin 13 16 14 39
L 195 153 218 697

MP-ND Qmin 25 23 29 52
L 202 154 221 707

LP-ND Qmin 25 23 29 52
L 201 154 221 709

MP-WS Qmin 25 23 29 51
L 201 154 221 715

LP-WS Qmin 25 23 29 51
L 201 154 221 715

tion requests (higher throughput, lower blocking by invalid
paths) and shorter average path lengths. Average path lengths
are calculated with respect to communication requests for
which a solution has been found, they are not expected to
be significantly different since in unweighted networks they
are dominated by the typical path length, which is O(log N ).
The figure is also slightly misleading, showing the kSP-FF
algorithm to provide the shortest path length; this is an artifact
of the low number of valid solutions found (about 30%–60%
less than the other methods, failing on most of the more
challenging and longer lightpaths).

V. GENERALIZATION TO HETEROGENEOUS EDGE
WEIGHT AND WAVELENGTH AVAILABILITY

The presentation has so far focused on benchmark topolo-
gies, including some realistic networks, and generic traffic
patterns. This has been done to provide a clear and control-
lable setup such that the scaling properties and performance
of our algorithms could be demonstrated. In the absence
of principled scalable competing algorithms, we compared
the results obtained against the commonly used linear pro-
gramming techniques that are applicable to small networks.
However, routing in realistic networks is much more in-
volved; methods and results vary between the different types
of networks (e.g., data centers, backbone, and metropolitan
networks) and include many practical parameters, considera-
tions and implementation protocols that make the results and
comparison less transparent.

Utilizing any new routing algorithm in a realistic network
with dynamic traffic patterns includes a variety of practical
considerations, such as variable availability of wavelengths
per edge, routing only new requests that are raised within a

044316-15



XU, PO, YEUNG, AND SAAD PHYSICAL REVIEW E 105, 044316 (2022)

(a) NDP (b) EDP

FIG. 14. Real time routing costs on the network CONUS un-
der NDP and EDP constraints using ILP and two versions of the
message-passing algorithm. (a) NDP scenario, where the number
of wavelengths Q grows linearly with the number of requests M
according to Q = 0.4M + 1, to make sure solutions can be found.
Solutions were obtained using the mixed-integer linear programming
solver “intlinprog” from MATLAB R2019 (ILP), original message-
passing algorithm (MP) and message-passing with reinforcement
(MPR). The dotted curves are the corresponding fitting functions:
ILP points are fitted well by the exponential function 9.27e0.0319M

(blue dotted curve), whereas the message-passing results are fitted
by power functions, with approximate powers of M3.27 and M2.73 for
MP and MPR, respectively. Inset: The number of iterations needed to
generate solutions grows linearly as M increases for basic MP (fitting
the orange dotted curve), whereas the reinforcement reduces iteration
numbers significantly making it more computationally efficient, e.g.,
40–130 in this example. (b) EDP scenario, under the same M range
and the smallest Q which allows for the routing and wavelength
assignment; the problem is more difficult than (a) and the time
required is significantly longer. It is clear that even for relatively
small M values the average running time for ILP to find solution
grows quickly as M increases, way beyond what is needed in panel
(a). However, the two versions of the message passing algorithm MP
and MPR increase according to a power law as in panel (a). The
results were obtained by averaging 10 samples. All the experiments,
ILP by MATLAB and MPs by C++, were carried out on single CPU
cores of the same platform, and the type of processor is Intel Xeon
CPU E5-4620 0 @ 2.20 GHz.

fraction of a second, variable signal to noise ratio per edge
and many more. All of these can be accommodated within our
framework; some of these extensions are detailed below.

In real optical networks, the number of wavelength chan-
nels in different optical fibers may vary; their lengths,
signal-to-noise ratios, or type of fibers used may influence the
quality of communication. To make our model more general
and realistic, we consider the case of optical networks with
weight wi, j and number of wavelengths Qi, j defined for any
individual link (i, j) (or Qi defined for node i in node-disjoint
wavelength-switching scenarios). With simple modifications,
our proposed algorithm can be generalized to accommodate
wi, j , Qi, j , or Qi.

In cases with heterogeneous Qi, j on edges, we denote the
largest number of wavelength channels among all edges to be
Q∗, i.e., Q∗ = max(i, j) Qi, j , then for an edge (i, j), one can
introduce Q∗ − Qi, j additional wavelength channels with state
0, such that all edges on the network would have virtually Q∗
wavelengths.

As for heterogeneous weights on edges with linear cost, the
objective function becomes L = ∑

(i, j) wi, j
∑Q

a=1(1 − δ0
sa

i, j
)

(a) success rate (b) average path length

FIG. 15. Numerical solutions on network CONUS60 under the
EDP constraint for Q = 10 by our algorithm (MP) and three com-
monly used heuristics: k-shortest-path first fit (kSP-FF, k = 10 in the
experiments), first fit k-shortest-path (FF-kSP) and adaptive shortest-
path routing (ASP). (a) Presents the success rate, the fraction of
communicated requests for which a valid route can be found. (b) Av-
erage path length, for the communicated requests with valid routes
only. The results were obtained by averaging over 36 randomly
samples communication requests per point.

and the partition function in Eq. (2) becomes

Z (β ) =
∑

��s
�(��s)

∏
(i, j)

e−βwi, j Fi, j (�si, j ). (32)

A. Heterogeneous wavelength availability on edges

In the message-passing Eqs. (13) describing NDP scenario,
the first equation φa

i→ j (0) considers the condition for wave-
length a of edge (i, j) to be in state 0 in the absence of
node j, and the contribution to the objective function L is 0;
this equation is the same in cases with heterogeneous edge
weights. Nevertheless, weights wi, j should be introduced in
the second equation as

φa
i→ j (s) = wi, j + min

k∈∂i\ j

⎡
⎣φa

k→i(s) +
∑

l∈∂i\ j,k

φa
l→i(0)

⎤
⎦. (33)

The same applies for the EDP scenarios and the second
message-passing equation in Eq. (23) should be modified as
follows:

φa
i→ j (s) = wi, j + min

k∈∂i\ j

⎡
⎣φa

k→i(s)

+ min
matched

pairs:�s∂i\ j,k

∑
l∈∂i\ j,k

φa
l→i(sl )

⎤
⎦. (34)

The marginal messages on edges, Eq. (14), should be mod-
ified as

φa
i, j (s) = φa

i→ j (s) + φa
j→i(−s) + wi, j

(
δ0

s − 1
)
. (35)

The same algorithmic procedure described in Sec. III C can be
applied in the present cases with heterogeneous edge weights.

For an even more general scenarios, our model can be
modified to accommodate heterogeneous weights for different
wavelength channels on the same edge, i.e., wa

i, j �= wb
i, j for

a �= b, asymmetric directed weights such as wi, j �= w j,i on
directed graphs. In these cases, one only needs to replace wi, j

in the above modified equations by wa
i, j or directed weights.
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B. Heterogeneous wavelength availability on nodes
with wavelength-switching

For the NDP scenarios with heterogeneous wavelength
availability on nodes, we do not have to introduce additional
wavelengths and keep unavailable channels in state 0 if Qi

are nonuniform; this is because the equation of node capacity
constraint Eq. (16) has already considered the case of different
Qi values. Only the second equation of Eq. (15) needs to be
modified, which reads

φ
μ
i→ j (±1) = wi, j + τ

μ
i (1)

+ min
k∈∂i\ j

⎡
⎣φ

μ

k→i(±1) +
∑

l∈∂i\ j,k

φ
μ

l→i(0)

⎤
⎦. (36)

VI. CONCLUSION

Multiwavelength NDP/EDP routing lies at the heart of
the efficient running and design of optical communication
networks, that act as the backbone of the internet. One of
the key questions in running optical communication networks
more efficiently is in the ability to carry out these routing
tasks effectively for large systems. This serves for both day-
to-day running of the network as well as for the design of
new networks and the modification of existing infrastructure.
While principled single wavelength NDP and EDP routing
algorithms based on message passing have been developed al-
ready, they could not be employed in real optical networks due
to the difficulty in extending the algorithms from the single
wavelength to the multiwavelength case. A straightforward
extension of existing single-wavelength EDP/NDP routing
algorithms would result in a prohibitive computational cost
that grows exponentially with the system size.

To accommodate a large number of wavelengths and trans-
missions in large systems, we have developed algorithmic
solutions that include multilayer graphs, where each layer
represents a different wavelength, and messages are passed
within layer (routing assignment) and between layers (wave-
length allocation). The scalable algorithm we have devised
shows very good performance in manageable timescales.

We expect the algorithm to be implemented in realistic
scenarios, where specific aspects of real network routing, such
as heterogeneous wavelength availability and signal-to-noise
ratios will have to be added in the manner outlined in Sec. V.
While these extensions and many others can be straightfor-
wardly accommodated within our framework, they should be
carefully integrated and tested to comply with existing rout-
ing methods, traffic conditions and existing protocols. This
would require dedicated work on specific applications. We
also expect the algorithm to be utilized for network design and
see several possible extensions for both localized and global
message passing-based implementation. Utilization of the al-
gorithms developed here in ad-hoc network communication,
multilayer VLSI design and multilayer networks will require
further study of the specific requirements for the different
applications.
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APPENDIX: FACTOR GRAPH

Due to the interaction between wavelength allocation per
request (layers) and the routing in the physical network per
layer, the resulting factor graphs are loopy, even when the
original graph is a tree. Message passing techniques have been
shown to provide good solutions in loopy graphs below a crit-
ical ratio between constraints and free variables [41], so that
it is not surprising that they are successful also in this case.
Additionally, routing in optical communication networks op-
erates well below this critical ratio, for obvious reasons, and it
is also unclear what this critical ratio is for routing problems
in general and multiwavelength NDP, EDP and WS routing
in particular. Nevertheless, to clarify the factor graph in the
various scenarios we provide Figs. 16 and 17.

A natural question is the reason behind the demonstrated
success of the algorithm given the loopy structure of the factor
graphs. In the case of linear cost with either NDP or EDP

ij k(j, i) (i, k)

ij k(j, i) (i, k)

Fi,j

ij k(j, i) (i, k)

Fi,k{μ}i {μ}kwavelength a

wavelength b

wavelength c

FIG. 16. Factor graph for the NDP/EDP routing model, where
the state of nodes, edges in the original graph and cost function are
represented by circles (i, j . . .), rectangles (variable pairs (i, j)) and
ellipse factors (Fi,k), respectively. The allocation of request pairs to
nodes in wavelength layers and the interaction between them are
represented by the light-purple square factor ({μ}i). The cost of an
edge Fi,k depends on the state of the edge (i, k) for all wavelengths;
the state of an edge (i, k) for a given wavelength is restricted by the
state of the neighboring nodes i and k using the same wavelength per
request and the cross-wavelength cost Fi,k . If the cost function Fi,k is
linear, then the model can be simplified and the ellipse factors can be
omitted.
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ij k(j, i) (i, k)

ij k(j, i) (i, k)

ij k(j, i) (i, k)

τi τkτjpath μ

path ν

path ω

FIG. 17. Factor graph for the WS routing model, where the state
of nodes, edges and cost functions are represented by circle (i),
rectangle (i, j . . .) and wavelength-constraint square (τi) factors, re-
spectively. The latter merely validates that the number of lightpaths
going through a node does not exceed the total number of lightpaths.

constraints, different wavelength layers interact only through
the origins and destinations ({μ}i), and if the original graph is
acyclic, then we expect only loops of larger size to exist.

In cases with nonlinear costs on edges, interactions be-
tween layers are found on every edge (Fi,k), and hence the

resulting graphs are loopy for both NDP and EDP scenarios.
Nevertheless, the loopy cross-wavelength interaction is rela-
tively weak with respect to the interaction along the entire
lightpath and the contiguity constraint. More specifically, in
the EDP/NDP cases the cross-layer interaction is independent
of the specific wavelength assignment as it only depends
on the number of wavelengths used per edge, while mes-
sages within layers are a results of a complete trajectory of
interaction between nodes and edges, verifying contiguity,
wavelength availability and edge load.

For the WS scenario, since interlayer links are present at
every node, we expect that the factor graph to be very loopy.
However, cross-layer interactions in the WS scenario are ex-
tremely weak the only requirement enforced by the factor τi

for node i is that there are enough available wavelengths to
accommodate the number of lightpaths; in a way, WS can
be viewed as an extended version of single wavelength NDP
where a number of lightpaths through a node is being limited
to Q. We believe these are the reasons for the demonstrated
success of the method, even for small loopy graphs as demon-
strated in Table II.
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