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Degree correlations in graphs with clique clustering
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Correlations among the degrees of vertices in random graphs often occur when clustering is present. In this
paper we define a joint-degree correlation function for vertices in the giant component of clustered configuration
model networks which are composed of clique subgraphs. We use this model to investigate, in detail, the
organization among nearest-neighbor subgraphs for random graphs as a function of subgraph topology as well
as clustering. We find an expression for the average joint degree of a neighbor in the giant component at the
critical point for these networks. Finally, we introduce a novel edge-disjoint clique decomposition algorithm and
investigate the correlations between the subgraphs of empirical networks.
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I. INTRODUCTION

A network is a collection of vertices and edges [1]. The
nature of the local connectivity among the vertices of a
graph has a profound influence on the structural character-
istics of the entire network. Common structural properties
include the clustering [2], which is the tendency for triples
of vertices to be organized into triangles; subgraph com-
position [3], which considers the organization of the edges
into recognized motifs; nearest-neighbor degree correlation
(NNDC) [4], which is the tendency for similar degree ver-
tices to connect to one another or not; long-range degree
correlations [5], which are nonlocal degree correlations be-
yond the nearest-neighborhood; and the component structure
[6], the core-periphery structure, path lengths, communities,
fractality, and various scale phenomena. In turn, the struc-
tural characteristics determine the stability and the governing
dynamics of processes occurring over the graph as well as
its response to random or targeted attack. Understanding the
connective microstructure of complex systems is therefore of
crucial importance to a wide range of disciplines, including bi-
ology, social science, and physics, as well as to a broad range
of applications including network formation, modeling the
properties of empirical networks, and the observed response
to processes such as epidemic spreading, synchronization,
percolation, or information propagation over networks. It is
well known [7–9] that the structural characteristics of the
giant component (GCC) of a random uncorrelated graph can
be vastly different from the properties of the whole network.
In particular, the GCC exhibits a negative NNDC unless the
network is singly connected.

The configuration model is a method that allows the con-
struction of uncorrelated random graphs with a prescribed
distribution of degrees. Recent work has drawn attention to
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the generalized configuration model (GCM) which allows the
construction of networks that are composed of independent
subgraphs. The central object of the GCM is a joint-degree
distribution that describes the number of roles that a vertex
plays within each subgraph on average [10–12]. The gener-
ating function formulation is an analytical technique that can
be used to describe the expectation values for the properties
of the ensemble of graphs that can be constructed using the
GCM from a given joint-degree sequence.

The GCM incorporates networks with higher-order clus-
tering, typical of the mixing patterns in many human contact
networks, as well as multilayer, modular, and multiplex sys-
tems. In such empirical networks, clustering that follows
a heavy tail degree distribution leads to highly clustered
networks whereby the vertices can be members of several
triangles among the nearest-neighbor contacts. In such cases,
it is common that the triangles share one or more edges and,
thus, higher-order subgraphs, such as cliques, are more accu-
rate representations of the local environment of the vertices.
Organization among cliques of different sizes plays a signif-
icant and nontrivial role in spreading processes, particularly
of epidemics, over the network. Since many diseases spread
through vertex-vertex interactions, effective control of an epi-
demic must take advantage of the understanding of the local
environment of high-degree vertices in tight-knit cliques.

Clustering in complex networks has been studied previ-
ously using generating functions [10–24]. Newman found that
the presence of clustering in Poisson networks led to a reduc-
tion in the critical mean degree required for the formation of
a GCC as well as its size. Miller showed that this effect is due
to the assortative correlations within the Poisson model and
that for networks with the same degree correlations, cluster-
ing increases the critical point. Hasegawa and Mizutaka [22]
considered the NNDC among the GCC of clustered networks
composed of ordinary edges and triangles. It was found that
the GCC can be assortative or dissasortative depending on the
details of the clustering; however, dissasortative correlations
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reappeared on a characteristic renormalisation of the triangles
into single supervertices. Thus, the GCC of random uncorre-
lated networks displays dissasortative NNDC by nature.

In this paper, we address how two vertices of given joint de-
grees are expected to connect to one another. More formally,
we study NNDC in the GCC of random clustered graphs that
have been constructed according to the GCM prescription to
include higher-order subgraphs. We examine the tendency for
organisation among the subgraphs and investigate whether
vertices with high subgraph degree connect preferentially to
other high-subgraph-degree vertices. We then examine the
properties of empirical networks by introducing a novel clique
cover and compare our cover to other recent advances in the
literature [25].

II. BACKGROUND

In this section, we review the generating function formula-
tion for higher-order subgraphs [10–12,14,26] and the method
of construction of GCM networks. We reserve bold characters
for vector quantities.

The degree distribution pk is the probability that a ran-
domly chosen vertex in the network has degree k. A common
assumption is that the edges are locally treelike; short range
cycles and connections among the nearest neighbors are pro-
hibited. The treelike assumption has proven very successful
at describing many network properties [27]; however, the
properties of random clustered networks require a general-
ization to the degree of a vertex, beyond simple tree edges,
to incorporate the effects of triangles and other higher-order
motifs. The resulting model was developed independently by
Newman [26] and Miller [14] for networks with triangles and
later extended to all network motifs by Karrer and Newman
[10]. The models assume that overall degree of a vertex can
be partitioned into subdegrees that correspond to the involve-
ment of a vertex in predefined subgraphs. For instance, the
generalized degree, kτ = (k⊥, k�, k�, . . . ), of a vertex that
has six treelike edges and is also a member of one triangle,
two squares, and three pentagons would be kτ = (6, 1, 2, 3).
The probability that a randomly chosen vertex has a particular
generalized degree is given by a joint-degree distribution pkτ

.
The ordinary degree distribution is recovered from

pk =
∞∑

k⊥=0

· · ·
∞∑

kγ =0

pk⊥,...,kγ
δk,

∑
λτ kτ∈τ

, (1)

where τ is a vector of subgraph topologies
{⊥,�,�,�, · · · , γ }, up to some terminating motif topology
represented by γ , kτ is the degree of shape τ ∈ τ, λτ is the
number of edges a vertex has in shape τ , pkτ

= pk⊥,...,kγ
is

the dim(τ) joint probability distribution of degrees and δi, j

is the Kronecker delta. For instance, a vertex that is part
of a two treelike edges, a triangle and a square will have
the following joint-degree sequence (k⊥, k�, k�) = (2, 1, 1),
while its overall degree is k = 6. A network is described
by its joint probability distribution of each vertex playing a
certain role in a given subgraph a particular number of times
[10] for all permissible combinations of joint degrees. The

joint-degree distribution can be generated using

G0(z) =
∞∑

k⊥=0

· · ·
∞∑

kγ =0

pk⊥,...,kγ
zk⊥
⊥ · · · z

kγ

γ , (2)

where z = {z⊥, z�, z�, . . . , zγ }. In the ordinary generating
function model, the excess degree distribution qk defines the
probability that a randomly chosen edge leads to a vertex
of degree k + 1. In the generalized model we must define
an excess degree distribution for each topology in τ; since
traversing an edge of a particular topology does not, in gen-
eral, lead to vertices with equivalent joint degrees. The joint
excess degree distribution for an edge of topology τ is

qτ (kτ ) = (kτ + 1)pkτ\{τ },kτ +1/〈kτ 〉, (3)

where the notation s\{s} excludes element s from set s. Each
joint excess degree distribution is generated as

G1,τ (z) =
∞∑
k⊥

· · ·
∞∑
kγ

qkτ
zkτ −1
τ

∏
ν �=τ

zkν

ν (4)

and is also seen to be the partial derivative of Eq. (2) with
respect to zτ divided by the expected number of τ motifs,

G1,τ (z) = 1

〈kτ 〉
∂G0

∂zτ

, (5)

which can also be written as

G1,τ (z) = G′τ
0 (z)

G′τ
0 (1)

, (6)

where G′τ
0 is the first derivative of G0(z) with respect to zτ

and 〈kτ 〉 = G′τ
0 (1) is the average τ degree for a vertex in the

network.
The global clustering coefficient C of a network with V

vertices is defined as

C = 3N�

N3
, (7)

where N� is the number of triangles in the network and N3

is the number of connected triples. The number of triangles
involving vertices with a given joint degree kτ is

N�,kτ
= V pk⊥,...,kγ

(k� + · · · + μγ kγ ), (8)

where μτ is the number of triangles that a vertex belongs to as
a member of a τ motif. For instance, μ� = 1 while a vertex
in 4-clique has belongs to three triangles. The total number of
triangles in the network is found by summing over the joint
degree,

N� =
∞∑

k⊥=0

· · ·
∞∑

kγ =0

N�,kτ
. (9)

The number of connected triples is given by [26]

N3 = V
∑

k

(
k

2

)
pk . (10)

We can use the generating function formulation to determine
the probability that a vertex selected at random belongs to
the GCC. Let uτ be the probability that a vertex reached by
the traversal of an edge of topology τ does not lead to the
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GCC. Similarly, the probability that the entire subgraph does
not connect the vertex to the GCC is umτ

τ where mτ is the
number of edges a vertex has in each independent subgraph of
topology τ . For instance, a vertex has three edges in a given
4-clique. The probability that the neighbor fails to attach to the
GCC is given by a self-consistent expression uτ = G1,τ (umτ

τ ),
where umτ

τ = {u⊥, u2
�, . . . , u

mγ

γ }. The size of the largest perco-
lating cluster S can then be calculated as

S = 1 − G0
(
umτ

τ

)
. (11)

Introducing H (x) as the generating function for the GCC as

H (x) = G0(x) − G0
(
x · umτ

τ

)
1 − G0

(
umτ

τ

) , (12)

where v · w is the scalar product viwi. The overall degree
distribution of the GCC is given by

pGCC
k = 1

k!

∂k

∂xk
H (xmτ )|x=1, (13)

where x = (x, x2, . . . , xmγ ). The networks that we use in this
paper are constructed according to the GCM which we now
detail [28–31]. For each vertex in a collection of vertices, a
joint degree is chosen from a distribution of joint degrees to
create a joint-degree sequence. Not all joint-degree sequences
are valid or graphic [23]. There is a constraint on the permis-
sible sequence of joint degrees generated such that the sum of
the number of motifs of each kind is divisible by the number
of vertices in each basis motif. For instance, the number of
triangles in the joint-degree sequence must be divisible by
3 and so on. This ensures that when the vertices are cho-
sen at random and connected, there are precisely the correct
number of edges to construct each motif. This constraint
does not impact the number of each motif in the network,
however.

Once the vertices have been assigned their stub degrees,
they are connected at random to form the appropriate sub-
graphs according to their joint-degree sequence through a
stub-matching process. The probability of accidental forma-
tion of short range loops or motifs that share edges (nonedge
disjoint motifs) becomes vanishingly small in the limit that
the networks are large. On renormalizing each motif to its
characteristic scale based on neighboring vertex count, we
recover the treelike property of the original configuration
model.

III. THEORETICAL

Consider an arbitrary set of edge topologies, including
ordinary edges, triangles, squares, 4-cliques, pentagons, and
so on, denoted by 
τ = {⊥,�,�, . . . , γ }, where γ is the
topology of the final element. In the following, we reserve
τ and ν as indices over elements of τ. We define the number
of subgraphs that a vertex plays a role in for each topology
τ ∈ τ by vector kτ,l = {k⊥, k�, . . . , kγ } with l = 0, 1 repre-
senting the focal vertex and nearest-neighbor joint sequences,
respectively. We reserve kν,l ∈ kτ,l as an index for the number
of subgraphs of topology ν around a given vertex in layer
l; we drop the l label where obvious. The joint probability
distribution for choosing this vertex at random is then denoted

FIG. 1. A focal vertex in a 2- and 3-clique random graph
with n⊥,⊥,1 = n⊥,�,0 = n�,⊥,0 = n�,⊥,2 = 1 and n⊥,⊥,2 = n⊥,�,1 =
n�,�,1 = 2.

as pkτ,l . The number of edges that a given vertex has within
each motif is defined by mτ ; for instance, a vertex contributes
two edges to each triangle it connects to and hence m� = 2.

We define nτ,ν,kν
to be the number of vertices with kν

subgraphs of topology ν that we reach by following an edge of
topology τ from the focal vertex to a nearest neighbor. There
are dim (τ2) of these expressions. Let a particular configura-
tion of type ν following τ edges be nτ,ν such that

nτ,ν = {nτ,ν,1, nτ,ν,2, . . . }. (14)

For instance, for a focal vertex that belongs to a GCM graph
comprising vertices with both 2- and 3-cliques such that τ =
{⊥,�}, the configuration of 3-cliques obtained by following
2-cliques to a neighbor is

n⊥,� = {n⊥,�,1, n⊥,�,2, . . . , n⊥,�,k�,max}, (15)

where k�,max is the maximum number of triangles a single
vertex belongs to, see Fig. 1.

Then, we define the set of all configurations of the neigh-
bors following τ edges to be nτ = {nτ,⊥, nτ,�, . . . }. For
instance, returning to the mixed 2- and 3-clique example,
we can also count the number of 2-cliques the neighbor has
instead of enumerating the 3-cliques. Therefore, for this ex-
ample we have

n⊥ = {n⊥,⊥, n⊥,�}. (16)

Finally, the set of all configurations of neighbor motif mem-
bership is denoted by n = {n⊥, n�, . . . }, which accounts for
each edge-type we could have followed to reach the neighbor
vertices.

The number of vertices reached by following all of the τ

edges is

Nτ =
∑
kτ =1

nτ,τ,kτ
=

∑
ν=0

nτ,ν,kν
τ �= ν. (17)

For instance, for the focal vertex in Fig. 1, we have∑
k⊥=1

n⊥,⊥,k⊥ =
∑
k�=0

n⊥,�,k�
= 3 (18)

and ∑
k�=1

n�,�,k�
=

∑
k⊥=0

n�,⊥,k⊥ = 2. (19)
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The total number of vertices 1-layer out from the focal vertex
is the sum of all vertices reached by traversing each edge
topology,

N =
∑
τ∈τ

Nτ , (20)

and, hence, for the focal vertex in Fig. 1, the total number of
direct neighbors is given by N = 5.

Let P(n | N ) be the probability that the nearest-
neighbor configuration is given by set n and that the
total number of vertices in the first layer is N . This is

given by

P(n | N ) =
∏
τ

( ∏
ν �=τ

∏
kν=0

Nτ

nτ,ν,kν
!
qnτ,ν,kν

τ,ν,kν

) ∏
kτ =1

Nτ

nτ,τ,kτ
!
qnτ,τ,kτ

τ,τ,kτ
,

(21)
where qτ,ν,k is the probability of traversing an edge of topol-
ogy τ to a vertex with kν independent subgraphs of topology ν.
We also have the understanding that each term of the product
over ν �= τ has its own index kν starting from zero; we have
pulled out τ from this expression since, by definition, there
must be at least one τ -edge present to follow it to a nearest-
neighbor vertex and so the index starts at 1. The probability
P(GCC | n) that the component is the GCC for a particular
configuration n is given by

P(GCC | n, N ) = 1 −
∏
τ

( ∏
ν �=τ

∏
kν=0

(
umνkν

ν

)nτ,ν,kν

) ∏
kτ =1

(
umτ (kτ −1)

τ

)nτ,τ,kτ , (22)

where we have introduced uτ as the probability that a vertex at the end of a randomly chosen edge of topology τ fails to connect
to the GCC. The probability that the configuration is n, that the component is the GCC given that there are N nearest-neighbors
is found from Bayes’ theorem as

P(n, GCC | N ) = P(GCC | n, N )P(n | N ). (23)

Let P(N | kτ,0) be the probability of there being N vertices in the first layer given that the joint degree of the focal vertex is
kτ,0 and that the component is the GCC. We can use this to find the probability P(n, GCC | kτ,0) that the nearest-neighbor
configuration is n given the joint degree of a vertex in the GCC is kτ,0 as

P(n, GCC | kτ,0) =
∑

N

P(N | kτ,0)P(n, GCC | N ), (24)

where the summation is over all combinations of Nτ such that∑
N

=
∑
N⊥

∑
N�

· · · . (25)

We find

P(n, GCC | kτ,0) =
∑

N

P(N | kτ,0)
∏
τ

(∏
ν �=τ

∏
kν=0

Nτ

nτ,ν,kν
!
qnτ,ν,kν

τ,ν,kν

) ∏
kτ =1

Nτ

nτ,τ,kτ
!
qnτ,τ,kτ

τ,τ,kτ

×
[

1 −
∏
η

(∏
ϕ �=η

∏
kν=0

(
umϕkν

ϕ

)nη,ϕ,kν

) ∏
kτ =1

(
umη (kτ −1)

η

)nη,η,kτ

]
τ, ν, η, ϕ ∈ τ. (26)

We now generate this probability by summing over all permissible configurations of the nearest-neighbor joint degrees to obtain

F̃GCC(X | kτ,0) =
∑

n

P(n, GCC | kτ,0)
∏
τ

(∏
ν �=τ

∏
kν=0

X nτ,ν,kν
τ,ν,kν

) ∏
kτ =1

X nτ,τ,kτ
τ,τ,kτ

, (27)

where ∑
n

=
∑
n⊥,⊥

∑
n⊥,�

· · ·
∑
n�,⊥

∑
n�,�

· · · . (28)

We simplify the expression by substituting Eq. (26), swapping the order of the summations and collecting terms in like powers
to obtain

F̃GCC(X | kτ,0) =
∑

n

∑
N

P(N | kτ,0)
∏
τ

(∏
ν �=τ

∏
kν=0

Nτ

nτ,ν,kν
!
qnτ,ν,kν

τ,ν,kν

) ∏
kτ =1

Nτ

nτ,τ,kτ
!
qnτ,τ,kτ

τ,τ,kτ

×
[

1 −
∏
η

(∏
ϕ �=η

∏
kν=0

(
umϕkν

ϕ

)nη,ϕ,kν

) ∏
kτ =1

(
umη (kτ −1)

η

)nη,η,kτ

] ∏
τ

(∏
ν �=τ

∏
kν=0

X nτ,ν,kν
τ,ν,kν

) ∏
kτ =1

X nτ,τ,kτ
τ,τ,kτ

(29)
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to find

F̃GCC(X | kτ,0) =
∑

n

∑
N

P(N | kτ,0)
∏
τ

(∏
ν �=τ

∏
kν=0

Nτ

nτ,ν,kν
!
(qτ,ν,kν

Xτ,ν,kν
)nτ,ν,kν

) ∏
kτ =1

Nτ

nτ,τ,kτ
!
(qτ,τ,kτ

Xτ,τ,kτ
)nτ,τ,kτ

×
[

1 −
∏
η

(∏
ϕ �=η

∏
kν=0

(
umϕkν

ϕ

)nη,ϕ,kν

) ∏
kτ =1

(
umη (kτ −1)

η

)nη,η,kτ

]
. (30)

The multinomial theorem can now be applied to each of the terms in the product to obtain

F̃GCC(X | kτ,0) =
∑

N

P(N | kτ,0)
∏
τ

[(∏
ν �=τ

∑
kν=0

qτ,ν,kν
Xτ,ν,kν

) ∑
kτ =1

qτ,τ,kτ
Xτ,τ,kτ

]Nτ

−
∑

N

P(N | kτ,0)
∏
τ

[(∏
ν �=τ

∑
kν=0

qτ,ν,kν
umνkν

ν Xτ,ν,kν

) ∑
kτ =1

qτ,τ,kτ
umτ (kτ −1)

τ Xτ,τ,kτ

]Nτ

. (31)

The probability that an edge of topology τ can be followed to reach a vertex with kν subgraphs of topology ν is given by qτ,ν,kν
.

The probability that an edge of topology τ can be traversed to reach a vertex with kν motifs of topology ν for all ν ∈ τ is the
joint excess degree distribution, qτ,kτ,l . This can be constructed from the separable distributions such that

qτ,kτ,l =
∏
ν

qτ,ν,kν,l . (32)

With this we can write

F̃GCC(X | kτ,0) =
∑

N

P(N | kτ,0)
∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ ,1Xτ,ν,kν
Xτ,τ,kτ

)Nτ

−
∑

N

P(N | kτ,0)
∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ ,1umνkν

ν umτ (kτ −1)
τ Xτ,ν,kν

Xτ,τ,kτ

)Nτ

. (33)

The probability that there are N nearest-neighbor vertices given the joint degree of the focal vertex is kτ,0 is simply a particular
term from the G0(Z) generating function. Inserting this definition into our expression we arrive at the generating function that
describes the distribution of nearest-neighbors given a particular joint degree of the focal vertex as

F̂GCC(X | kτ,0) = pkτ,0

∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ,1 Xτ,ν,kν
Xτ,τ,kτ

)mτ kτ,0

− pkτ,0

∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ ,1umνkν

ν umτ (kτ −1)
τ Xτ,ν,kν

Xτ,τ,kτ

)mτ kτ,0

. (34)

The expectation number of nearest-neighbors with a given joint degree is found from the expectation value of F̂GCC(X = Z |
kτ,0). We then find

F̂ ′
GCC =

∑
τ∈τ

mτ pkτ,0 kτ,0qτ,kτ,1

(
1 − umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ

umν (kν,0+kν,1 )
ν

)
, (35)

where the derivative is evaluated at Zkτ,1 = 1 (see Appendix for a complete derivation using the tree-triangle model). The bracket
is one minus the probability that the none of the edges to the second layer lead to the GCC; while the prefactor describes the
probability of following kτ,0 τ motifs, each of which has mτ edges to follow to reach a vertex whose joint degree is given by
qτ,kτ,1 . The exponent of uτ is the number of neighboring vertices that can be reached by following edges belonging to τ subgraphs
incident to two vertices at the end of an edge in a τ motif. This is the total number of τ edges minus the mτ that belong to the
focal edge’s motif minus the focal edge itself,

mτ (kτ,0 + kτ,1 − 2) + mτ − 1 = mτ (kτ,0 + kτ,1 − 1) − 1. (36)

In a similar way, we can find the generating function FGCC(X ) for the probability distribution that a randomly chosen vertex has
a nearest neighbor configuration given by n and belongs to the GCC as

FGCC(X ) =
∑
kτ,0

F̂GCC(X | kτ,0) (37)
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=
∑
kτ,0

pkτ,0

∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ,1 Xτ,ν,kν
Xτ,τ,kτ

)mτ kτ,0

−
∑
kτ,0

pkτ,0

∏
τ

(∏
ν �=τ

∑
kτ =1

∑
kν=0

qτ,kτ ,1umνkν

ν umτ (kτ −1)
τ Xτ,ν,kν

Xτ,τ,kτ

)mτ kτ,0

, (38)

which is simply G0(Z). The expectation number for the of nearest-neighbors from a random focal vertex in the GCC is given by

F ′
GCC =

∑
τ∈τ

mτ 〈kτ 〉
(
1 − umτ ωτ

τ

)
, (39)

where ωτ represents the number of vertices in the motif. We can use the quotient of these expectation values to define a symmetric
joint-probability distribution PGCC(kτ,0, kτ,1) = F̂ ′

GCC/F ′
GCC that two nearest-neighbors in the GCC have joint degrees kτ,0 and

kτ,1 as

PGCC(kτ,0, kτ,1) =
∑
τ∈τ

mτ pkτ,0 kτ,0qτ,kτ,1

(
1 − umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ

umν (kν,0+kν,1 )
ν

)/ ∑
τ∈τ

mτ 〈kτ 〉
(
1 − umτ ωτ

τ

)
, (40)

where PGCC(kτ,0, kτ,1) = PGCC(k⊥,0, . . . , kγ ,0, k⊥,1, . . . , kγ ,1). This equation is a central result and can be used to compute
many interesting properties of the correlation structure within configuration model networks. At any time, we can compress
the information contained within PGCC(kτ,0, kτ,1) to find PGCC(k0, k1) which is the probability that a focal vertex with overall
degree k0 attaches to a neighbor whose overall degree is k1,

Poverall
GCC (k0, k1) =

∑
τ

∑
kτ

PGCC(kτ,0, kτ,1)δk0,koverall
0

δk1,koverall
1

, (41)

where koverall
0 = ∑

τ

∑
kτ,0

mτ kτ,0 and koverall
1 = ∑

τ

∑
kτ,1

mτ kτ,1 are the overall degrees of the focal and neighbor vertices.
However, this degree lumping procedure overlooks the fine structure among the correlations as many joint degrees can contribute
to a given overall degree. Indeed it is precisely this structure which acts as a fingerprint of a network ensemble.

Let us introduce the conditional probability PGCC(kτ,1 | kτ,0) that the nearest neighbor has joint degree kτ,1 given that the
focal vertex has joint degree kτ,0 in the GCC. Applying Bayes’s theorem to our discrete multivariate joint probability we have

PGCC(k⊥,1, . . . , kγ ,1 | k⊥,0, . . . , kγ ,0) = PGCC(k⊥,0, . . . , kγ ,0 | k⊥,1, . . . , kγ ,1)PGCC(k⊥,1, . . . , kγ ,1)∑
k⊥,1,...,kγ ,1

PGCC(k⊥,0, . . . , kγ ,0 | k⊥,1, . . . , kγ ,1)PGCC(k⊥,1, . . . , kγ ,1)
, (42)

which simplifies to

PGCC(kτ,1 | kτ,0) = PGCC(kτ,0, kτ,1)∑
kτ,1

PGCC(kτ,0, kτ,1)
. (43)

Inserting Eq. (40) we find

PGCC(kτ,1 | kτ,0) =
∑

τ∈τ mτ pkτ,0 kτ,0qτ,kτ,1

(
1 − umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ umν (kν,0+kν,1 )

ν

)
∑

τ∈τ

∑
kτ,1

mτ pkτ,0 kτ,0qτ,kτ,1

(
1 − umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ umν (kν,0+kν,1 )

ν

) . (44)

We can use PGCC(kτ,1 | kτ,0) to find multivariate condi-
tional expectation values for a given focal vertex joint degree,
generalizing [32] for the GCM. The expectation value for
vector X given vector Y is a vector E[X | Y ] = (E[X1 |
Y ], . . . , E[Xn | Y ])T whose elements are the expected values
of each of the variables defined as

E[Xi | Y = y] =
∑

x1,...,xn

xiPGCC(x1, . . . , xn | Y = y). (45)

For instance, the average joint degree of a neighbor to a
focal vertex whose joint degree is kτ,0 is the vector (E[k⊥,1 |
kτ,0], . . . , E[kγ ,1 | kτ,0])T whose elements are

E[kτ,1 | kτ,0] =
∑
kτ,1

kτ,1P(kτ,1 | kτ,0). (46)

We examine this expression in Appendix for the tree-triangle
model.

IV. DISCUSSION

In this paper we have introduced a theoretical model,
based on generating functions, to investigate the NNDC in
the GCC of random clustered graphs, constructed according
to the GCM, comprising higher-order clique clusters. We now
examine a series of pertinent examples of this model.

A. Single topology

In the special case that the network consists of a single ho-
mogeneous subgraph (a homogeneous subgraph is one where
all vertices are degree-equivalent), then PGCC(kτ,0, kτ,1) from
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(a) (b) (c)

FIG. 2. The probability P(kτ,0, kτ,1) for Poisson random graphs comprising a single motif topology, 2-cliques (a), 3-cliques (b), and 4-
cliques (c), respectively, as a function of kτ,0 for several kτ,1. The overall mean degree is fixed at 〈k〉 = 2.5 for networks with N = 60 000
vertices. Scatter points are the average of 100 repetitions of Monte Carlo simulation while the lines are the theoretical predictions from
Eq. (47). The legend is the same for each plot.

Eq. (40) is given by

PGCC =
(
1 − umτ (kτ,0+kτ,1−1)−1

τ

)
1 − umτ ωτ

τ

qτ,kτ,0 qτ,kτ,1 (47)

and similarly from Eq. (44) we have the related conditional
probability

PGCC(kτ,1 | kτ,0) =
(
1 − umτ (kτ,0+kτ,1−1)−1

τ

)
1 − umτ kτ,0

τ

qτ,kτ,1 , (48)

which reproduces the results of Refs. [7,8] for the nearest-
neighbor distributions on the GCC of treelike networks when
τ = ⊥. We examine the NNDCs for single-topology networks
with Poisson distribution participation in motifs with fixed
overall mean degree 〈k〉 = 2.5 in Fig. 2. The networks are
composed of discrete clique topologies; specifically 2-, 3-, and
4-cliques in Figs 2(a), 2(b) and 2(c), respectively. The markers
are the averaged results of Monte Carlo simulation while the
lines are the theoretical predictions of Eq. (47); both are in ex-
cellent agreement. In each case, PGCC(kτ,0, kτ,1) is plotted as a
function of increasing kτ,0 for several kτ,1 values. We note that
for each clique size PGCC(1, 1) = 0; since, this combination
cannot exist in the GCC. For networks comprising a single
topology, the average degree of a neighbor can be found from
Eq. (46) as

E[kτ,1 | kτ,0] =
∑

kτ,1
kτ,1qτ,kτ,1

(
1 − umτ (kτ,0+kτ,1−1)−1

τ

)
1 − umτ kτ,0

τ

(49)

which is in agreement with Ref. [33] for treelike topologies.

B. Tree-triangle model

We now examine how clustering influences the degree
correlations in the GCC of the mixed topology tree-triangle
model. The theoretical details of this model are derived in
Appendix. Fixing the first moment of the model to 〈k〉 =
2.5 the limiting cases of 〈k⊥〉 = 0 and 〈k�〉 = 0 are pre-
sented in Fig. 2 and we now examine (i) an even neighbor
distribution by setting 〈k⊥〉 = 1.25 and 〈k�〉 = 0.625; (ii) a
weakly clustered regime with 〈k⊥〉 = 1.5 and 〈k�〉 = 0.5;

and, finally, (iii) a strong clustering regime with 〈k⊥〉 = 0.5
and 〈k�〉 = 1.0 in Fig. 3. The joint degree of the horizon-
tal axis is ordered by increasing overall degree. When a
given overall degree can be formed in multiple ways, such
as k = 2 from (2,0) or (0,1), the degenerate cases are or-
dered by increasing local clustering coefficient. Each tile in
Figs. 3(a)–3(h) plots a given neighbor joint degree (as a func-
tion of the focal vertex joint degree) for the three clustering
regimes. We observe some encouraging results from these
plots: First, as with the results of experiments with single-
topology networks (Fig. 2), the probabilities PGCC(1, 0, 1, 0)
and PGCC(0, 1, 0, 1) are both zero for the vertices in the GCC
[see Fig. 3(a)]. We also notice that PGCC(s0, t0, s1, t1) takes
zero values for impossible combinations, such as neighbors
whose edges are of a single, yet opposite, topology to one
another. Further, the probabilities are symmetric such that
PGCC(kτ,0, kτ,1) = PGCC(kτ,1, kτ,0) which is an expected result
for undirected random graphs. Among the nonzero combina-
tions we observe that some peaks, particularly among focal
vertices with nonzero degrees in both topologies, are aligned
across all series; for example, PGCC(1, 1, 1, 1) in E. Con-
versely, other peaks such as PGCC(2, 0, 2, 1) in G peak in the
weak and even regimes, yet trough in the strong clustered
regime.

We also observe, across all tiles in Fig. 3 that the cor-
relations among the weak (blue squares) and even-neighbor
(orange circles) regimes are generally of higher magnitude
across all focal vertices than the strongly clustered regime
(green triangles). In other words, the networks with strong
clustering exhibit NNDC that have smaller magnitudes with
the exception of tiles C and H, which consider neighboring
vertices that only have triangle motifs.

In tile F we notice that vertices with a high treelike degree
do not tend to connect with neighbors with triangles, espe-
cially in the strong clustering regime.

Collectively, these results give insight into how the network
is held together at the microscopic level and how the presence
of clustering alters this structure. This could prove useful for
creating synthetic networks or for a better understanding of
network resilience under targeted attack.
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(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 3. The probability PGCC(s0, t0, s1, t1) for Poisson random graphs comprising mixed 2-clique and 3-clique topologies for three different
clustering regimes. In each plot, the joint degrees of the focal vertex up to overall degree k = 4 are plotted on the horizontal axis for a given
(s1, t1) neighbor. Scatter points are the average of 250 repetitions of Monte Carlo simulation on networks with 2 × 105 vertices; while lines are
the analytical results of Eq. (40). The legend is the same as tile (a) for all plots.

C. The effect of clique size on NNDC

In this section, we examine the effect of increasing
the clique size on the NNDC of mixed topology GCM
networks. To achieve this, we extend the calculations per-
formed in Appendix from the 2- and 3-clique models to

a binary model composed of 2- and m-cliques, whose
topology we denote by σ . For this model, the NNDC
for a focal vertex with s0 ordinary edges and c0 edge-
disjoint m-cliques in the GCC of a GCM network can be
obtained from

PGCC(s0, c0, s′, c′) = ps0c0 s0q⊥,(s′,c′ )
(
1 − us0+s′−2

⊥ umσ (c0+c′ )
σ

) + mσ c0 ps0c0 qσ,(s′,c′ )
(
1 − us0+s′

⊥ umσ (c0+c′−1)−1
σ

)
〈s〉(1 − u2

⊥) + mσ 〈c〉(1 − uωσ
σ

) (50)

The results of this expression are shown in Fig. 4, where the
overall neighbor degree is plotted against the overall degree of
the focal vertex for several increasing clique sizes. The scatter
points are the results of Monte Carlo simulation of networks
with 100 000 vertices, while the plotted lines are the theo-
retical results of the model; both show excellent agreement
with one another. The networks are constructed according
to the GCM algorithm before the GCC is selected from the
possibly disconnected graph. The motifs counts at each vertex
are drawn from Poisson distributions with averages chosen
such that the first moment of the distribution of overall degrees
is fixed at 〈k〉 = 6 across all experiments while the average
2-clique count is held fixed at 〈k⊥〉 = 1.25 and the average
clique count 〈kσ 〉 is the solution of 〈k〉 = 〈k⊥〉 + mσ 〈kσ 〉.
From Fig. 4 we observe that the average neighbor degree
of networks with larger cliques increases. For cliques larger
than 2-cliques, oscillations in the average neighbor degree
appear at low focal vertex degree. The amplitude of the oscil-
lations increases with clique size. In each case, the oscillations
dampen to a fixed value in the limit of large focal vertex
degree.

D. Emergence of correlations

At criticality, as the GCC emerges, we have that uτ → 1;
the probability of not belonging to the GCC is near unity.
In this case, the multivariate limit of Eq. (40) does not exist.
However, in the case that the network is composed of cliques
of various sizes which are each independently Poisson dis-
tributed at each vertex such that

pkτ,l = qτ,kτ,l =
∏
τ∈τ

e−〈kτ 〉 〈kτ 〉kτ,l

kτ,l !
∀τ ∈ τ, (51)

we have that uτ = umτ ,∀τ [10]. In this instance Eq. (40) is
a univariate distribution and we can use L’Hôpital’s rule to
determine the expected limit to be

lim
u→1

PGCC(kτ,0, kτ,1) =
∑

τ mτ pkτ,0 kτ,0τ qτ,kτ,1∑
τ m2

τωτ 〈kτ 〉 , (52)

where

τ = mτ (kτ,0 + kτ,1 − 1) − 1 +
∑
ν �=τ

mν (kν,0 + kν,1). (53)
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FIG. 4. The average overall degree of a neighbor for increas-
ing focal vertex degree for binary-topology networks comprising
2-cliques and higher-order cliques. Scatter points are the average
of 1000 repetitions of Monte Carlo simulation while the plotted
lines are the result Eq. (50), collected by overall degree according
to Eq. (41). The networks are created from the GCM algorithm
with Poisson marginal distributions of each motif topology and
overall average degree fixed at 〈k〉 = 6 with 〈k⊥〉 = 1.25 across all
experiments.

The critical point can be found by linearizing uτ = G1,τ (umτ
τ )

in a small perturbation ε around uτ = 1 − ετ [11]. To lead-
ing order in the small parameter ετ we have ε = Aε with
ε = [ε⊥, ε�, . . . ]T . The GCC forms at the point when the
determinant det |A − I| vanishes, where A = [∂G/∂uτ ], G =
[G1,τ , G1,�, . . . , G1,γ ], and the identity matrix is I . With
mixed topology networks a GCC can form in many differ-
ent ways. For instance, the GCC of a random graph model
with two topologies can form by three distinct mechanisms:
A GCC can emerge solely in either of the topologies or
global connectivity can occur through a mixture of the binary
topologies.

As we approach the critical point from below, we introduce
a characteristic scale κτ [34] associated to the joint degrees of
the focal vertex and a neighbor given by uτ = e−1/κτ . Inserting
this expression into Eq. (40) for finite κτ in each topology, the
correlations fall exponentially with increasing κτ and hence
PGCC(kτ,0, kτ,1) tends to the uncorrelated value of

∑
τ∈τ

mτ pkτ,0 kτ,0qτ,kτ,1

/ ∑
τ∈τ

mτ 〈kτ 〉. (54)

Therefore, when the joint degree exceeds the characteristic
scale, the GCC is uncorrelated. It is clear that as uτ approaches
unity the scale diverges κτ → ∞ and, hence, the GCC al-
ways exhibits degree correlations. In addition, approaching
the critical point, the average joint degree [Eq. (49)] falls
exponentially with increasing degree along each topology for

fixed κτ ,

E[kτ,1 | kτ,0] =
∑

kτ,1
kτ,1qτ,kτ,1 (1 − e−φ )

1 − e−mτ kτ,0/κτ
, (55)

where φ = mτ (kτ,0 + kτ,1 − 1) − 1/κτ . Thus, the correlations
which are present at the critical point are negative in nature.
It might happen, however, given the number of ways that the
GCC of a mixed motif random graph model can emerge, that
the characteristic scales of all topologies do not diverge at
the critical point. For instance, consider a doubly Poisson dis-
tributed tree-triangle model with a critical average tree degree
but a subcritical average triangle degree. A GCC will form
among the tree edges, but the probability of those vertices
involved only in triangles, (0, t ) for t = 1, 2, 3, . . . , connect-
ing to this GCC is small, since their connection requires them
to connect to mixed-topology vertices, which in turn connect
to the GCC. Thus, we might find that the negative degree
correlation structure among the triangles has not yet formed
despite there being a nonzero density of triangles in the GCC.

E. Empirical networks

We now examine the correlation properties of the GCC of
the ensemble representation of empirical networks using our
joint-degree model. Random graphs are elements of an ensem-
ble G of graphs with V vertices and E edges; each member
occurring with probability P(G) [7]. The average value of a
property of graph G, Z (G), (such as its degree distribution or
average degree) can be averaged over the entire ensemble

〈Z〉 =
∑
G∈G

Z (G)P(G). (56)

The generating function formulation describes the properties
of the ensemble. Empirical networks g are particular real-
izations of members of G. The properties of a particular
realisation are given by

P(Z ) =
∑
G∈G

δ[Z − Z (G)]P(G). (57)

If P(Z ) is well represented by the ensemble average, then the
generating function formulation can be used to describe the
properties of g. To study the NNDC in the GCC of g using
generating functions, we must represent the largest compo-
nent of an empirical network by a joint-degree sequence of
subgraphs. While the choice of subgraphs is arbitrary [12], we
only include cliques in the topology representation due to the
vast literature on clique finding algorithms and the simplicity
of calculating their properties. The clique decomposition of
the GCC of g whose cliques have order less than or equal to
ω can be performed in many different ways; and the result-
ing joint-degree sequence can exhibit significantly different
properties in terms of the number of subgraphs present their
clustering, and other properties. Given that the method to
create the joint-degree distribution is not unique, and that
the ensemble properties of each particular decomposition are
often dissimilar, we now examine three clique decompositions
and compare their properties.

The trivial decomposition is to simply cover g with 2-
cliques; we refer to this as the single-edge-decomposition
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FIG. 5. The clique decomposition of a substrate network (left)
can be performed in multiple ways. Two examples are shown (right).
The shaded faces are higher-order cliques while the green edges
are 2-cliques. The clustering of the resulting joint-degree distribu-
tions (and their random graph ensembles) are significantly altered
depending on how the decomposition is performed. The maximal
representation has six cliques in total while the nonmaximal repre-
sentation has eight cliques. When only maximal representations are
extracted the decomposition is a EECC.

(SED). The degree sequence can then be used to create re-
alizations using the ordinary configuration model. Another
simple cover is the minimal cover of maximal cliques. How-
ever, it is very likely that the edges of the cliques will not be
disjoint, i.e., a single edge will be a member of more than
one clique. While this could be an accurate representation
of a vertex’s local environment, the construction process for
random graphs using the GCM will not work. Thus, we must
impose that the cover is edge-disjoint.

One proposed method of clique decomposition is defined
heuristically as follows [25]: We obtain the set C of all maxi-
mal cliques from the network; each maximal n-clique ci ∈ C,
n ∈ {1, . . . , ω} is scored according to the fraction of edges it
shares with other members of C. The largest clique within the
set of lowest score cliques are included in the representation
and C is recalculated. The process is repeated until the edges
of the substrate network are expended. Such a covering is
known as a edge-disjoint edge clique cover (EECC); see Fig. 5
for details.

We propose a novel alternative clique cover as follows:
The set C of all cliques present in the network (including
those induced from subgraphs of larger cliques) is obtained
from the empirical network. The set is ordered such that the
largest cliques have the highest precedence. The subset of
cliques within C that have equal size ∀n ∈ {1, . . . , ω} are then
scored in a similar fashion to the EECC algorithm and the
cliques with the lowest score (and therefore the least number
of overlapping edges with other motifs) are given highest
precedence. The order of cliques with equivalent size and
score is then randomized, and thus the cover is stochastic. The
largest cliques are drawn from C and placed on the network if
their edges do not overlap other with cliques that have already
been placed in the network. The list is iterated until all edges
belong to an independent clique. This method draws nonmaxi-
mal joint-degree sequences; however, higher-order cliques are

FIG. 6. The results of the to clique decomposition algorithms
(MPCC) and (EECC) for a particular substrate graph. The MPCC
favors the formation of large subgraphs, leading to nine cliques (a
single 4-clique and eight 2-cliques) while the EECC leads to six
cliques (four 3-cliques and two 2-cliques). The joint-degree sequence
obtained from the MPCC network creates a nonmaximal random
ensemble of GCM networks.

preferentially preserved, we describe it as an edge disjoint
motif preserving edge clique cover (MPCC), see Fig. 6. In
the particular case that the set of maximal cliques are edge
disjoint, the distribution obtained from both the EECC and
MPCC motif decomposition algorithms are in agreement with
one another. It should be mentioned that both covers are not
unique when two cliques of a given size and score can be
chosen. Within the MPCC, we resolve these degeneracies by
retaining the cliques associated with higher-degree vertices.
In our implementation of the EECC, we choose cliques from
the set of degenerate cliques at random. Once a suitable
cover has been formed for the network, its joint-degree se-
quence can be extracted. This sequence is then used to create
an ensemble of GCM networks. As a concrete example of
this method we extract the joint-degree sequences, using the
SED, EECC, and the MPCC, of the GCC of the network
science authorship network [35] and use the GCM algorithm
to construct random graph ensembles, Fig. 7. Plotted in Fig. 8
are the experimental results from the original network (red
crosses), the SED (green squares), the EECC (pink triangles)
and the results from the MPCC algorithm (light blue circles)
as well as their average (dark blue circles). The average neigh-
bor degree, k1 obtained from the SED shows poor accuracy
when compared to the experimental results. Instead of the
detailed NNDC structure over the range of focal vertex de-
grees, the neighbor degrees tend to fluctuate around k1 = 8.
In contrast, the MPCC exhibits a rich correlation structure
whose average follows the trends of the experimental data.
Additionally, the average neighbor degree for the high-degree
vertices is well represented; however, this is at the expense of
the lower-degree information, where the representation is less
accurate. The EECC shows fair agreement across the range of
focal vertex degrees, outperforming the MPCC at low degrees;
however, the MPCC represents the empirical network correla-
tions for the high-degree vertices with greater accuracy than
the EECC. The EECC representation of the high-degree sites
is in agreement with the SED, indicating that these cliques
are destroyed during the covering process. We notice from
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FIG. 7. A member of the MPCC random graph ensemble of the
GCC of the network science authorship network with higher-order
cliques (larger than 3-cliques) colored for clarity. Specifically, the
4-cliques are magenta, 5-cliques are light green, 6-cliques are orange,
7-cliques are blue, 8-cliques are yellow, and the 9-clique is cyan.
Unlike random graphs constructed using the EECC method, larger
cliques are preferentially retained in the ensemble.

FIG. 8. The ensemble expectation value of the overall degree of
a neighbor as a function of focal vertex degree for clique covers of
the network science authorship network. Plotted are the experimental
results (red crosses), the average EECC (pink triangles), and the
average MPCC (dark blue circles) and its variance (light blue circles)
for each realization. Each simulation was performed 1000 times. The
SED (green squares) does not capture the correlation structure for
this network. The MPCC accurately captures the correlation struc-
ture of the high-degree vertices due to retaining the larger motifs
that a vertex belongs to; however, the low- (mid-) degree sites are
generally under (over-) predicted. Conversely, the EECC performs
well for the low- and mid-degree vertices but tends to the SED for
the high-degree sites.

the variance of the MPCC that the NNDC of the empirical
network is dense within the set of ensemble representations.

V. CONCLUSION

In this paper we have introduced a robust analytical frame-
work to study the NNDC between vertices in the GCC of
random graphs constructed according to the GCM. We have
used our method to investigate the correlation properties of
synthetic clustered GCM graphs in detail and found they
exhibit organization among their subgraphs. We studied the
behavior of the NNDC as the size of the substrate motif
increases, along with the clustering for a fixed first moment of
the overall average degree. We found that the NNDC among
networks composed of larger cliques tend to be larger in
magnitude for low-degree vertices due to the constraint on the
first moment of the overall degree.

Investigating the tree-triangle model in detail, we found
that the joint degrees are negatively correlated along each
topology as found for treelike topologies in other studies
[4,7,8].

The magnitude and the patterns of NNDC were found to
vary significantly with the clustering coefficient of the net-
work ensemble. The correlations among neighbors of mixed
topology focal vertices in tree-triangle networks with larger
clustering coefficients were smaller in magnitude, in general,
with respect to the single-topology vertices.

We then investigated the role of clique size for GCM
graphs and observed oscillations in the average overall neigh-
bor degrees as a function of focal vertex degree. We found
that the average neighbor degree in the GCC increases for
networks composed of larger cliques.

Last, we studied the correlation structure of the random
graph ensemble of an empirical network. To do this, we
introduced a novel clique decomposition algorithm and com-
pared it to other heuristics in the literature. We found that
the manner in which the network is decomposed into motifs
greatly effects the correlation substructure of the ensemble
representation.

This work increases our understanding of the NNDC of
clustered networks composed of higher-order clique motifs;
however, we have not addressed the long-range correlation
structure or defined an assortativity coefficient for these
graphs, which we leave for future work.
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APPENDIX: RESULTS WITHIN THE
TREE-TRIANGLE MODEL

In this section we derive the expectation values for the
tree-triangle model, see Fig. 9. For this model the generating
function for the number of nearest-neighbors given the joint
degree of the focal vertex is kτ,0 = (s0, t0) is given by unpack-
ing Eq. (34) for τ = {⊥,�}. We obtain

F̂GCC(x, y, s0, t0) = ps0,t0 f s0
⊥ f 2t0

� − ps0,t0 gs0
⊥g2t0

� , (A1)
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FIG. 9. An example of the degree correlation model in the tree-
triangle model; 3-cliques are shaded orange while 2-cliques are
colored green. The joint degree of the focal vertex in layer l = 0
is kτ,0 = (2, 2). We can follow edges of topology ⊥ or � to the first
neighbors. The distribution of the joint degrees of vertices in layer
l = 2 depends on the topology of the path that we choose to reach it.
Note, we do not traverse edges between triangles that lead to vertices
in the same layer.

where fτ = ∑
s

∑
t qτ,(s,t )zst , g⊥ = ∑

s

∑
t q⊥,(s,t )u

s−1
⊥ u2t

�xsyt ,
and

∑
s

∑
t q�,(s,t )us

⊥u2(t−1)
� xsyt . The evaluation of the expec-

tation values for the nearest neighbors to a vertex of joint
degree (s0, t0) in the tree-triangle model is given by the fol-
lowing derivative:

F̂ ′
GCC = dF̂GCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

. (A2)

We evaluate this as follows:

dF̂GCC

dzs′t ′

∣∣∣∣
zs′t ′=1

= d

dzs′t ′

∣∣∣∣
zs′t ′=1

ps0t0 f s0
⊥ f 2t0

� − d

dzs′t ′

∣∣∣∣
zs′t ′=1

ps0t0 gs0
⊥g2t0

� (A3)

= ps0t0

(
s0 f s0−1

⊥
df⊥
dzs′t ′

f 2t0
� + 2t0 f s0

⊥ f 2(t0−1)
� f�

df�
dzs′t ′

)

− ps0t0

(
s0gs0−1

⊥
dg⊥
dzs′t ′

g2t0
� + 2t0gs0

⊥g2(t0−1)
� g�

dg�

dzs′t ′

)
.

(A4)

At zs′t ′ = 1 we have fτ (1) = 1, gτ (1) = G1,τ (u⊥, u2
�) and also

dfτ
dzs′t ′

∣∣∣∣
zs′t ′=1

= d

dzs′t ′

∑
s

∑
t

qτ,(s,t )zst , (A5)

= qτ,(s′,t ′ ), (A6)

and

dg⊥
dzs′t ′

∣∣∣∣
zs′t ′=1

= d

dzs′t ′

∑
s

∑
t

q⊥,(s,t )u
s−1
⊥ u2t

�zst , (A7)

= q⊥,(s′,t ′ )u
s′−1
⊥ u2t ′

� , (A8)

dg�

dzs′t ′

∣∣∣∣
zs′t ′ =1

= d

dzs′t ′

∑
s

∑
t

q�,(s,t )u
s
⊥u2(t−1)

� zst , (A9)

= q�,(s′,t ′ )u
s′
⊥u2(t ′−1)

� . (A10)

Thus, we find

dF̂GCC

dzs′t ′

∣∣∣∣
zs′t ′=1

= ps0t0 (s0q⊥,(s′,t ′ ) + 2t0q�,(s′,t ′ ) ) − ps0t0

(
s0us0−1

⊥ q⊥,(s′,t ′ )u
s′−1
⊥ u2t ′

� u2t0
� + 2t0us0

⊥u2(t0−1)
� u�q�,(s′,t ′ )u

s′
⊥u2(t ′−1)

�

)
. (A11)

The evaluation of the expectation values for the nearest-neighbors to the average vertex in the tree-triangle model is given by the
following derivative

F ′
GCC =

∑
s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

, (A12)

where FGCC is given by unpacking Eq. (38) for τ = {⊥,�} to find

FGCC(x, y) =
∑

s

∑
t

ps,t f s
⊥ f 2t

� −
∑

s

∑
t

ps,t g
s
⊥g2t

�. (A13)

To evaluate this consider the following derivative:

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′=1

= d

dzs′t ′

∣∣∣∣
zs′t ′ =1

G0( f⊥, f�) − d

dzs′t ′

∣∣∣∣
zs′t ′=1

G0(g⊥, g�), (A14)

= d

dzs′t ′

∣∣∣∣
zs′t ′ =1

∑
s

∑
t

pst f s
⊥ f 2t

� − d

dzs′t ′

∣∣∣∣
zs′t ′=1

∑
s

∑
t

pst g
s
⊥g2t

�, (A15)

=
∑

s

∑
t

pst

(
s f s−1

⊥
df⊥
dzs′t ′

f 2t
� + 2t f s

⊥ f 2(t−1)
� f�

df�
dzs′t ′

)
−

∑
s

∑
t

pst

(
sgs−1

⊥
dg⊥
dzs′t ′

g2t
� + 2tgs

⊥g2(t−1)
� g�

dg�

dzs′t ′

)
.

(A16)

When evaluated at z(s′,t ′ ) = 1 we have that fτ (1) = 1 and so the first bracket simplifies significantly. The second bracket is
more involved; however, using the self-consistent expressions for u⊥ = G1,⊥(u⊥, u2

�) and u� = G1,�(u⊥, u2
�) we can write
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g⊥(1) = u⊥ and g�(1) = u� to obtain

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′=1

=
∑

s

∑
t

pst (sq⊥,(s′,t ′ ) + 2tq�,(s′,t ′ ) ) −
∑

s

∑
t

pst
(
sus−1

⊥ q⊥,(s′,t ′ )u
s′−1
⊥ u2t ′

� u2t
� + 2tus

⊥u2(t−1)
� u�q�,(s′,t ′ )u

s′
⊥u2(t ′−1)

�

)
.

(A17)

We now sum over (s′, t ′) to obtain

∑
s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

=
∑

s

∑
t

pst

(
s
∑

s′

∑
t ′

q⊥,(s′,t ′ ) + 2t
∑

s′

∑
t ′

q�,(s′,t ′ )

)

−
∑

s

∑
t

pst

(
sus−1

⊥ u2t
�

∑
s′

∑
t ′

q⊥,(s′,t ′ )u
s′−1
⊥ u2t ′

� + 2tus
⊥u2(t−1)

� u�

∑
s′

∑
t ′

q�,(s′,t ′ )u
s′
⊥u2(t ′−1)

�

)
. (A18)

The probability distributions are normalized and hence have the following property
∑

s

∑
t qτ,(s,t ) = 1, so the first bracket reduces

trivially to the sum of the average degrees of each edge topology. The second bracket also reduces; dealing first with the double
summation over dashed variables we find∑

s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

=
∑

s

∑
t

pst (s + 2t ) −
∑

s

∑
t

pst
(
sus−1

⊥ u2t
�u⊥ + 2tus

⊥u2(t−1)
� u2

�

)
(A19)

before observing that ∑
s

∑
t

pst sxs−1yt = 〈s〉G1,⊥(x, y), (A20)

∑
s

∑
t

pst txsyt−1 = 〈t〉G1,�(x, y), (A21)

to arrive at ∑
s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

= 〈s〉 + 2〈t〉 − 〈s〉G1,⊥
(
u⊥, u2

�

)
u⊥ − 2〈t〉G1,�

(
u⊥, u2

�

)
u2

�. (A22)

Substituting the self-consistent relationships for u⊥ and u� we finalize the expression as∑
s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′=1

= 〈s〉(1 − u2
⊥
) + 2〈t〉(1 − u3

�

)
. (A23)

In the case that there are no triangles present in the model, then u� = 1 and 〈t〉 = 0; the expression reduces to∑
s′

dFGCC

dzs′

∣∣∣∣
zs′ =1

= 〈s〉(1 − u2
⊥
)
, (A24)

which is the result of Ref. [33] in the case that l = 1. In the opposite case, when there are no ordinary edges, we find∑
t ′

dFGCC

dzt ′

∣∣∣∣
zt ′ =1

= 2〈t〉(1 − u3
�

)
. (A25)

The probability P(kτ,0, kτ,1) = P((s0, t0), (s′, t ′)) is given by the quotient of Eqs. (A11) and (A23) where we find

P((s0, t0), (s′, t ′)) = dF̂GCC

dzs′t ′

∣∣∣∣
zs′t ′=1

/ ∑
s′

∑
t ′

dFGCC

dzs′t ′

∣∣∣∣
zs′t ′ =1

= ps0t0 (s0q⊥,(s′,t ′ ) + 2t0q�,(s′,t ′ ) ) − ps0t0

(
s0us0−1

⊥ q⊥,(s′,t ′ )u
s′−1
⊥ u2t ′

� u2t0
�

+ 2t0us0
⊥u2(t0−1)

� u�q�,(s′,t ′ )u
s′
⊥u2(t ′−1)

�

)/〈s〉(1 − u2
⊥
) + 2〈t〉(1 − u3

�

)
. (A26)

The conditional probability that a neighbor has joint degree (s′, t ′) given a focal vertex of joint degree (s0, t0) is

P(s′, t ′ | s0, t0) = ps0t0 s0q⊥,(s′,t ′ )
(
1 − us0+s′−2

⊥ u2(t0+t ′ )
�

) + 2ps0t0t0q�,(s′,t ′ )
(
1 − us0+s′

⊥ u2(t0+t ′−2)+1
�

)
ps0t0 (s0 + 2t0)

(
1 − us0

⊥u2t0
�

) . (A27)

Using Eq. (46) we find the average joint degree of a neighbor to a (s0, t0) vertex as

E[kτ,1 | kτ,0] =
(∑

s′,t ′
s′P(s′, t ′ | s0, t0),

∑
s′,t ′

t ′P(s′, t ′ | s0, t0)

)T

. (A28)
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