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Contact tracing via digital tracking applications installed on mobile phones is an important tool for controlling
epidemic spreading. Its effectivity can be quantified by modifying the standard methodology for analyzing
percolation and connectivity of contact networks. We apply this framework to networks with varying degree
distributions, numbers of application users, and probabilities of quarantine failures. Further, we study structured
populations with homophily and heterophily and the possibility of degree-targeted application distribution. Our
results are based on a combination of explicit simulations and mean-field analysis. They indicate that there
can be major differences in the epidemic size and epidemic probabilities which are equivalent in the normal
susceptible-infectious-recovered (SIR) processes. Further, degree heterogeneity is seen to be especially important
for the epidemic threshold but not as much for the epidemic size. The probability that tracing leads to quarantines
is not as important as the application adoption rate. Finally, both strong homophily and especially heterophily
with regard to application adoption can be detrimental. Overall, epidemic dynamics are very sensitive to all of
the parameter values we tested out, which makes the problem of estimating the effect of digital contact tracing
an inherently multidimensional problem.
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I. INTRODUCTION

Until effective vaccines are widely deployed in a pandemic
era, carefully timed nonpharmaceutical interventions [1] such
as wearing face masks [2], school closures, travel restrictions,
and contact tracing [3–7] are the best tools we have for curb-
ing the pandemic. Contact tracing is an attempt to discover
and isolate asymptomatic or presymptomatic (exposed) indi-
viduals. In the absence of herd immunity, contact tracing is
a potent low-cost intervention method since it puts people
into quarantine where and when the disease spreads. There-
fore, it can have a significant role in containing a pandemic
by relaxing social-distancing interventions [8], providing an
acceptable trade-off between public health and economic ob-
jectives [9,10], developing sustainable exit strategies [11,12],
identifying future outbreaks [13], and reaching the “source”
of infection [14].

Thanks to the emergence of low-cost wearable health
devices [15–22] and mobile software applications, digital
contact tracing can now be deployed with higher precision
without the problems of manual contact tracing, such as the
tracing being slow and labor intensive or people’s hesitation
to give identifying data about their contacts due to blame,
fear, confusion, or politics. On the other hand, smartphones
and wearable devices also offer continuous. access to real-
time physiological data, which can be used to tune other
nonpharmaceutical or pharmaceutical strategies. Modern apps
enable us to monitor COVID-19 symptoms [23–25]; iden-
tify its hotspots [26]; track mosquito-borne diseases such as
Malaria, Zika, and Dengue [27,28]; and detect microscopic
pathogens.

In both forms—manual [4,5,29–37] and digital [38–44]—
contact tracing has been commonly considered as an effective
strategy and different empirical data sets have validated this
claim in short-time population-based controlled experiments
[38,40]. It has been estimated that for every percentage
point increase in app-users, the number of cases can be re-
duced by 2.3% (in statistical analysis) [45]. However, such
a linear view of the benefits of the app usage is likely too
simplistic and ignores the complexities disease spreading, es-
pecially in heterogeneous populations [46–49]. For instance,
degree-heterogeneity in the contact network [50] can alter
epidemiological properties in the form of variance in final
outbreak size [51], vanishing epidemic threshold [49,52], hi-
erarchical spreading [53], strong finite-size effects [54], and
universality classes for critical exponents [55]. Moreover, the
existence of superspreaders dictates the extent to which a
virus spreads in a bursty fashion [56–58], especially when
there is high individual-level variation in the number of sec-
ondary transmissions [53,59,60]. Therefore, to evaluate the
effectiveness of contact-tracing, degree-heterogeneity and app
adoption of superspreaders [61,62] should be taken into ac-
count. Note that in some parameter settings, contact tracing
may not be effective enough [8,63,64].

A potentially important factor in the effectiveness of the
contact tracing apps is related to how the app-using and non-
app-using populations are mixed. Several studies have shown
that similar people with similar features are more likely to
be in contact with each other than with people with different
types of features. This phenomenon is known as homophily
[65–67]. It has been reported in app adoption directly [40]
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and indirectly through correlation in app adoption and other
features exhibiting homophily, such as jobs, age, income, and
nationality [68–70]. Therefore, the fraction of population that
adopts the app is not the only important factor for reducing
the peak and total size of the epidemic but also the amount of
homophily in app adoption can potentially have a significant
role.

Since the World Health Organization has declared the
COVID-19 outbreak as a Public Health Emergency of Inter-
national Concern, network scientists have developed different
approaches toward analyzing epidemic tracing and mitigation
with apps. Using the toolbox of network science, different
groups have investigated the effectiveness of contact tracing
based on the topology and directionality of contact networks
[14,44,71–77]. Recently, a mathematical framework aimed at
understanding how homophily in health behavior shapes the
dynamics of epidemics has been introduced by Burgio et al.
[78]. This study expanded the model of Bianconi et al. [71]
and computed the reproduction number and attack rate in a
homophilic population using mean-field equations.

Our study investigates the effect of varying app coverage
on the epidemic’s threshold, probability, and expected size in
homogeneous and heterogeneous contact networks with and
without homophily or heterophily in app adoption. Further,
we explore the effect of distributing the apps randomly and
preferentially to high-degree nodes [71] in these scenarios.
Our main focus is on the epidemic threshold and the final
size of the epidemics. Therefore, we assume the dynamics of
the epidemic to be governed by the simple SIR model [50].
This model can be easily mapped to a static bond-percolation
problem [79,80] so that the epidemiological properties can be
measured based on the topological structure of the underly-
ing network [50,73,81–84]. Note that, more complex disease
transmission models, such as SEIR models in which there
is an infected-but-not-contagious period E, are also covered
by this formalism [79,85]. The difference in the spreading
framework with the app to the normal one is that the infection
cannot spread further if it passes a link between two app-users
(app-adopters). That is, the infection process model needs to
include the memory of the type of node it is coming from. We
then extend the percolation framework such that we can add
memory [86,87] to it in order to keep track of the infection
path. This leads to the observation that the epidemic size is
not the same as the epidemic probability as it would be in this
model without the app-users [88].

Our results are largely based on mean-field-type calcu-
lations of the percolation problem, which are confirmed by
explicit simulations of SIR epidemic process and measure-
ments of component sizes in finite networks. Our findings
show that (1) the number of app-users has a direct effect on
the epidemic size and epidemic probability and the difference
between these two observables is larger in high-degree tar-
geting strategy; (2) epidemics can be controlled to a much
better degree in the high-degree targeting strategy; (3) even
though degree-heterogeneity can strongly affect or even elim-
inate the epidemic threshold, high-degree targeting strategy
can compensate this effect and increase the threshold signifi-
cantly; (4) increasing heterophily from random mixing always
increases the outbreak size and lowers the epidemic threshold;
(5) increasing homophily does the opposite until an optimum,

that is below the maximum homophily case, is reached; and,
finally, (6) the probability of contact tracing succeeding in
preventing further infections is not as crucial as the fraction of
app-users, but can still have significant effects on the epidemic
size and epidemic threshold. The only exception is when the
apps are distributed to heterogeneous networks with the high-
degree targeting strategy.

II. MODELLING APPROACH

A. Disease model and connection to percolation

We employ a SIR disease model on networks with ad-
ditional dynamics given by the disease interactions in the
presence of the disease tracking application. In the model,
without the tracking application, an infected (I) node will
eventually infect a neighboring susceptible (S) node with
a transmission probability p independently of other infec-
tions. The simulations are performed with a model where
the infected nodes try to infect their susceptible neighbors
with independent Poisson processes with rate β and go to
the removed state (R) after fixed time τ . The fixed recov-
ery time ensures that every infected individual, regardless of
app adoption, can infect a susceptible neighbor independently
with a transmission probability p = 1−e−βτ [79,89]. These
assumptions allow us to study the SIR processes using compo-
nent size distributions of undirected networks where parts of
the links are randomly removed [79,85,88–90]: An epidemic
starting from a single node can reach any other node exactly
when there is a path of such transmitting links connecting
them, i.e., they are in the same component in a network
where the potential contact links are removed with proba-
bility p. Thus, the epidemic threshold, epidemic probability
and epidemic size can be read from percolation simulations
[79,85,88–90] (see Sec. II B). Note that without fixed recovery
time, the presence of spreading paths through neighboring
links would not be independent, and this would not be a bond
percolation problem in an undirected network where edges
are removed independently. However, the epidemic threshold,
final epidemic size, and the expected outbreak size below the
epidemic threshold would still be correctly predicted by this
methodology [88,89].

We model the effect of applications to the disease spread-
ing as follows: If an app-user infects another app-user, then
that second node will get infected but will quarantine them-
selves with probability papp. The quarantined user will have
no further connections that would spread the infection they
received from the other app-user. A substantial deviation from
a realistic spreading case in our model is that the quarantine
does not prevent the disease spreading to the quarantined node
through a third node. That is, we only model the primary
infection path from the other app-user causing the alarm but
do not stop the possible concurrent secondary infection paths
from a third node. Strictly speaking, this simplification in the
modeling returns a lower bound on the effectiveness of the
app-based contact tracing, but given that our contact network
models are sparse random graphs (see Sec. II C) that do not
contain local loops, the difference can only be observed if a
large enough fraction of the population is infected at the same
time. Critically, this does not affect the epidemic threshold
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FIG. 1. (a) Original contact network with app-users marked with
the oval symbol. (b) The normal largest component, after the dotted
links have been removed in the percolation process at random. When
apps are working perfectly, links between a pair of app-users are
removed with probability papp = 1 and other links are removed with
probability p. (c) An example for a path of infection: The second app-
user can be infected; therefore, it must be included in the outbreak
size. (d) Extending the giant component to include the secondary
app infections. The second infected app-adopter is added to the giant
component with transmission probability p.

but could have implications for parameter regions where the
epidemic size is large, depending on the quarantine durations.

The SIR spreading process can be mapped to a slightly
more complicated percolation problem in the presence of apps
[44,71]. To model app-user quarantines, one needs to delete
the links between two app-users with the probability of suc-
cessful quarantine due to the app, papp. This ensures that we
ignore the infection paths through two app-users when one
of them is successfully quarantined. However, removing these
links also removes the second app-user from the component,
even though they are infected. To correct this, we need first
to find the network components and then extend them by
including all app-users outside of the component connected
to another app-user (and considering the probability p that
the link is kept). See Fig. 1 for an illustration of this process,
which leads us to two definitions of components: normal and
extended.

B. Components, epidemic size, and epidemic probability

In the SIR model without apps, the component size distri-
bution can be used to describe the late stages of the epidemics
approximately. Given an initially infected node, the size of the
component it belongs to determines the size of the outbreak.
In an infinitely large population, we say that an outbreak is
an epidemic if it spans a nonzero fraction of the population.
The relationship between percolation and the final epidemic
size is straightforward if the population is large enough that it
can be approximated with an infinite undirected transmission
network [79,88]. In this case, the percolation threshold gives
the epidemic threshold and below it, an outbreak always spans
only a zero fraction of the population because all the com-
ponents are of finite size. Above the percolation threshold,

there is a single giant component that spans smax = Smax/N
fraction of the nodes. This is equivalent to both the size of
the epidemic, given that there is one, and the probability that
there is an epidemic starting from a single initially infected
node [79,88]; smax is the fraction of nodes that can be reached
from the giant component (epidemic size) and the probability
that randomly chosen node belongs to the giant component
(probability of the epidemic). The expected epidemics size in
a fraction of eventually infected nodes is, in this case, given
as s2

max.
When we introduce apps to the spreading process, the

equivalence of the epidemic size and epidemic probability
breaks down. Both the normal component and the extended
component become important. The component size still gives
the probability that there is an epidemic, as is the case with-
out the apps. However, the epidemic size, given that there is
one, is now given by the extended component size s′

max. The
expected epidemic size is then given by smaxs′

max.
Similar relationships hold for finite-size systems. For ex-

ample, the expected size of the epidemics from single source
becomes

〈E〉 =
∑

c

Sc

N
S′

c, (1)

where Sc is the normal size and S′
c is the extended size of

the component c and N is the total number of nodes. In this
formula, Sc/N gives the probability that the initially infected
node is in the component c and S′

c gives the size of the
epidemic if a node in component c is chosen.

C. Network models

We aim to study how the network topology, amount, and
distribution of app-users over the network affect the epi-
demics. We study networks with degree distribution P(k) and
average degree 〈k〉 such that each node is an app-user with
probability πa and not an app-user with probability 1 − πa.
We distribute the app-users with one of two strategies: (1)
uniformly at random or (2) by distributing the apps in the
order of their degree such that the high-degree nodes get the
apps first.

We use three different models to generate the network
topology. We use (i) Poisson or Erdős-Rényi (ER) random
graphs [91] to model homogeneous contact patterns and (ii)
scale-free networks generated with the Chung-Lu model (CL)
[92,93] to model heterogeneous networks. In generation of CL
networks, the expected degree of each node is drawn from a
continuous power-law distribution P(k) ∝ k−3 such that the
minimum expected degree is set to a value that gives us the
expected average degree 〈k〉 of our choice. Given a sequence
of expected degrees W = {w1,w2, . . . ,wn}, Miller algorithm
[94] assigns a link between node u and node v with probability
puv ∝ wuwv . This algorithm returns a network without multi-
ple links with almost the same power-law degree distribution.

We model homophily (and heterophily) with regards to
apps usage with (iii) a modular network model (MN) intro-
duced in Refs. [95,96] with two groups of nodes: app-users
and non-app-users. This model starts with a degree sequence
produced either by the ER or CL models and connects
the nodes depending on which groups they belong with
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probabilities πaa (app-user to app-user), πan (app-user to
non-app-user), πna (non-app-user to app user), and πnn (non-
app-user to non-app-user). We only need to fix one of these
probabilities, πaa, and other types of links are formed with
probabilities πan = 1 − πaa, πna = πa

1−πa
(1 − πaa ), and πnn =

1 − πna = 1−πa−πa (1−πaa )
1−πa

, where πa is the probability that a
person is an app-user and the second equality comes from
the balance between the number of links from app-users
to non-app-users and from non-app to app-users, that is,
πaNπan〈k〉 = (1 − πa)Nπna〈k〉. The numerical simulations of
the MN work by randomly choosing a group for half edges
with the given probabilities and matching them to each other
uniformly randomly. This can lead to self-links and mul-
tilinks, which these are discarded after the randomization
procedure.

While there is no correlation between the app adoption
status in homogeneous (ER) or heterogeneous (CL) networks
above, in the third model (MN), the existence of homophily or
heterophily of the network structure is determined by compar-
ing πaa to its value for the neutral case with no homophily or
heterophily. In the absence of homophily or heterophily, πaa =
ηa, where ηa is the ratio of the number of links that emerge
from app-users to the total degree; this is because if the nodes
were connected purely at random, then the probability that a
link from an app-user connects it to another app-user equals
the ratio of the number of stubs that app-users have to the total
number of stubs, i.e., ηa. In the case of a random selection
of app-users ηa = πa, since both app-users and non-app-users
have on average the same number of stubs and the fraction
of stubs that app-users have equals the fraction of app-users
in the system, i.e., πa. In a high-degree targeting strategy,
the number of stubs that app-users have on average is larger
than that of non-app-users. In that case, ηa can be calculated
from the degree distribution (see Sec. III A). When πaa > ηa,
app-users are more likely to be connected to each other than in
a network in which a fraction of ηa of them being uniformly
randomly placed. On the other hand, when πaa < ηa nodes
are more likely to be connected to the nodes of the other
type (heterophilic network). In the heterophilic regime, for
some pairs of (πaa, πa), networks are not realizable because
of the constraints explained in Sec. III A. The white region in
Fig. 6 shows the region of πaa-πa plane that networks cannot
be created in that parameter space.

III. ANALYTIC AND SIMULATION METHODS

The epidemics are studied here with various methods of
approximation. We employ analytical computations based
on mean-field-type approximations to efficiently analyze our
models’ wide parameter space and provide explicit formulas
for our main observable quantities. Here an approximation
based on branching processes [97] can be used to deter-
mine the critical point. Following Ref. [44], a more detailed
calculation based on percolation arguments will give us the
component sizes which can be related to the final epidemic
size and epidemic probability. Simulations of the network
connectivity then complement these mean-field approxima-
tions. Finally, we explore the accuracy of the mean-field
approximations via explicit simulations of the SIR model.

A. Giant component size from consistency equations

To study the behavior of the epidemic dynamics, we
form consistency equations for the giant component size. In
Ref. [44] the governing equations for the size of the epidemic
and the transition point were obtained for the case of random
networks in the absence of homophily. Here we derive the
analytical results for the more general case of the spectrum of
heterophilic to homophilic networks, a special case of which
is the nonhomophilic networks of Ref. [44]. We consider
that app-users and non-app-users might be connected together
with a pattern different from pure random chance using the
MN model.

We aim to write the self-consistent equations for the proba-
bility, un, that following a link to a non-app-user does not lead
to the giant component and probability ua, that following a
link to an app-user does not lead to the giant component. Us-
ing these probabilities, the relative size of the giant component
s and the relative size of the extended giant component s′ can
be obtained, where s is, in fact, the fraction of nodes infected
through non-app-users, while s′ also includes individuals who
caught the infection through an app-user before they could
quarantine themselves (see Sec. III C 1).

We need to know the probability un (ua), that a randomly
chosen link leading to a non-app-user (app-user) is not in the
giant component. The probability that a non-app-user (app-
user) is not connected to the giant component via a particular
neighboring node is equal to the probability that that non-app-
user (app-user) is not connected to the giant component via
any of its other neighbors. A non-app-user is connected to
another non-app-user with probability πnn = 1 − πna and to
an app-user with probability πna. So, a link leading out from a
non-app-user does not lead to the giant component if it leads
to another non-app-user that is not in the giant component
[which happens with probability (1 − πna )un] or an app-user
that is not in the giant component (which happens with proba-
bility πnaua). That is, the total probability for following a link
out from a non-app-user not leading to the giant component is
un→ = (1 − πna )un + πnaua. Since the degree of neighboring
nodes is disturbed according to the excess degree distribution
qk , the probability that a non-app-user that is encountered by
following a link to it is not connected to the giant component
via any of its k neighbors is

∑
k qkuk

n→. This probability is,
by definition, un, leading to the self-consistent equation below
for un:

un = g1[(1 − πna )un + πnaua], (2)

where g1 is the generating function for excess degree distribu-
tion [50]. To find ua, we can use the same treatment, except
that we should consider how app-app connections depend
on the probability of success in contact tracing [44]. If papp

is the probability the apps work as expected, then 1 − papp

is the probability that the app-user does not effectively quar-
antine after being been in contact by an infectious app-user.
Therefore, ua can be expressed as the self-consistent equa-
tion below:

ua = g1{(1 − πaa )un + πaa[papp + (1 − papp)ua]}. (3)

Note that πna is determined by the free parameters πa and
πaa as we already showed that πna = πa

1−πa
(1 − πaa ).
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Given un and ua, the average probability that a node be-
longs to the giant component, or equivalently the fraction
of the network occupied by the giant component, is now
given by:

s = 1 − (1 − πa)g0[(1 − πna )un + πnaua]

−πag0{(1 − πaa )un + πaa[papp + (1 − papp)ua]}, (4)

where g0 is the generating function for degree distribution. We
can approximate s′ by writing:

s′ = 1 − (1 − πa)g0[(1 − πna )un + πnaua]

−πag0[(1 − πaa )un + πaaua)], (5)

where, as opposed to Eq. (4), the third term is not a function
of papp and the reason is that Eq. (4) assumes that if the
app works (which happens with probability papp) then the
probability that a link connected to an app-user does not lead
to the giant component is 1 (while if the app does not work it
is ua). However, whether the app works or not, the probability
that an app-user does not get infected from another app-user
is ua. When apps work, if the second app-user is infected, she
quarantines herself and does not infect any other node).

In the case of including a transmission probability p which
is less than 1 (in the above equations it was assumed the
links are transmitting with probability 1), Eqs. (2) and (3) will
change to:

un = 1 − p + pg1[(1 − πna )un + πnaua], (6)

ua = 1 − p + pg1{(1 − πaa )un + πaa[papp + (1 − papp)ua]}.
(7)

When the fraction πa of nodes selected to adopt the app are
all the highest degree nodes in the network, these nodes all
have a degree higher than ka − 1 such that they include some
of ka nodes and the rest are comprised of all nodes with degree
larger than ka. Then for the fraction ηa of the links protruding
from the app-users (which are the top πa fraction of nodes) we
can write:

ηa = r∗ka pka/〈k〉 +
∞∑

ka+1

kpk/〈k〉, (8)

=
∞∑

ka,right

kpk/〈k〉, (9)

where r∗ is the fraction of degree ka nodes that are app-users
and in Eq. (9) we absorbed r∗ into pk so that pka,right = r∗ pka

represents the fraction of nodes in the network that have
degree ka and are app-users [so in Eq. (9), ka,right takes the
value ka].

Then for a network with homo- or heterophily:

un = 1 − p + p

1 − ηa

ka,left∑
k=0

qk[(1 − πna )un + πnaua]k, (10)

ua = 1 − p + p

ηa

∞∑
ka,right

qk{(1 − πaa )un

+πaa[papp + (1 − papp)ua]}k, (11)

and

s = 1 −
ka,left∑
k=0

pk[(1 − πna )un + πnaua]k

−
∞∑

ka,right

pk{(1 − πaa )un + πaa[papp + (1 − papp)ua]}k.

(12)

A special case of which are networks with neutral (nonexist-
ing) homophily, where πaa is obtained to be equal to ηa and
accordingly πna = ηa, therefore,

un = 1 − p + p
1

1 − ηa

ka,left∑
k=0

qk[(1 − ηa)un + ηaua]k, (13)

ua = 1 − p + p
1

ηa

∞∑
ka,right

qk{ηa[papp + (1 − papp)ua]

+(1 − ηa)un}k, (14)

and

s = 1 −
ka,left∑
k=0

pk[(1 − ηa)un + ηaua]k

−
∞∑

ka,right

pk{ηa[papp + (1 − papp)ua] + (1 − ηa)un}k . (15)

These results predict the behavior of the epidemic dynamics
in the thermodynamic limit. Therefore they describe the dy-
namics very well when the network size is large enough.

B. Mean-field approximation for the branching process

An alternative to writing the consistency equations for the
giant component size is to assume that a branching process
governs the epidemic dynamics. Then, a straightforward way
of finding the epidemic threshold in the SIR model is to find
the critical point of a branching process, where the branching
factor is given by the expected excess degree q. In the epi-
demic setting, the branching factor k̄e = pq gives the expected
number of people one infected person infects during the epi-
demic process. Note that the branching factor has been used
as the definition of the basic reproduction number R0 [88],
but is different from the basic reproduction number when it
is defined in the networks as R0 = β/γ 〈k〉 [80]. In the SIR
model with the app, we need to duplicate the populations so
that we separately track the ones without the app (Sn, In, and
Rn) and with the app (Sa, Ia and Ra).

Given that the apps are uniformly distributed to πa fraction
of the nodes and k̄e is the branching factor, we can write a
mean-field approximation based on the branching process as
follows:

I (t+1)
n = k̄e

[
πnnI (t )

n + πanI (t )
a

]
, (16)

I (t+1)
a = k̄e

[
πnaI (t )

n + πaa(1 − papp)I (t )
a

]
. (17)
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By defining a = πnnk̄e, b = πank̄e, c = πna k̄e, and d =
πaa k̄e(1 − papp), the difference equations can be written as:

Xt+1 = AXt , (18)

where Xt = [I (t )
n

I (t )
a

] and A = (a b
c d).

The steady state Xt+1 = Xt is possible if all the eigenvalues
λ of the transition matrix A (whether real or complex) have an
absolute value which is less than 1;

λ± = a + d

2
±

√(
a + d

2

)2

− (ad − bc). (19)

Without contact tracing, there is a chance of epidemic,
given the initial reproductive number is k̄e > 1. In the case
of app adoption, the critical value of app-users π c

a that is
needed for reducing the reproductive number can be derived
by setting λ = 1 which leads to:

1 − πa(2 − πaa )

1 − πa

[
k̄e + k̄2

e πaa(1 − papp)
]

+ k̄eπaa(1 − papp) + k̄2
e πa(1 − πaa )2

1 − πa
= 1. (20)

When apps work perfectly, the epidemic threshold is given
by:

k̄c =
√

1 + πaπaa[4(πa + πaa ) − 3(πaπaa + 2)]

2πa(πaa − 1)2

+ 2πa − πaπaa − 1

2πa(πaa − 1)2
. (21)

For each value of πa there is a nontrivial optimum value π
opt
aa

that leads to the largest epidemic threshold in terms of the
branching factor, which is

πopt
aa = πa − 2

3πa − 4
. (22)

The critical app adoption can be also calculated as:

π c
a = 1 − k̄e

k̄2
e (πaa − 1)2 + k̄e(πaa − 2) + 1

. (23)

In the absence of homo- or heterophily, πaa = πa, Eq. (20),
gives the same result as of Ref. [44], such that:

π c
a = k̄e − 1 +

√
(k̄e − 1)(k̄e + 3)

2k̄e
. (24)

Vazquez [97] also provides a clear way of combining
different intervention strategies and shows how our specific
results about application homophily are affected by other
interventions.

C. Component size simulations

Next, we describe how to extract the giant component in
simulated networks and how these simulation results can be

used to find the critical points of the disease spreading process.
The component sizes can also be used to find the epidemic size
distributions as described in Sec. II B.

1. Component extension

In each simulation run, we simulate one network structure
G and distribute the apps to the nodes according to one of
the models described in Sec. II C. From the original network
G, we keep each link with probability p = 1 − e−βτ , which
is the probability of infection going through a link without
apps. We also remove all the links between two app-users
with probability papp and call the resulting network Ga. The
components of graph Ga are the normal components.

The extended components can be reached by going through
every normal component and extending it. For every app-
user α in the component C, we go through the neighbors
nα = {α1, α2, . . . , αk} in the original network G. If αi is an
app-user and not in the component αi /∈ C, then we add it
to the component extension C′ with probability p. The total
set of infected nodes, if starting from a node in C, will be
C ∪ C′. As these are disjoint sets, we can compute the size as
S′

C = |C| + |C′| and Sc = |C|.

2. Susceptibility

In numerical simulations of finite-size systems, we can
use the peak of a susceptibility measure to find the critical
transition point. Theoretically, susceptibility [84] is a measure
of fluctuation in the component sizes, which is singular at the
epidemic threshold (the critical point). In network percolation
studies, it is defined as the expected growth in the size of the
giant component when a random link is added to the network.
Therefore, susceptibility in an ordinary percolation problem
can be written as:

χ =
∑

c �=cmax
S2

c − S2
cmax

N − Scmax

, (25)

where Sc is the size of the component c, cmax = argmaxcSc is
the largest component.

Here, we are dealing with two types of components, and
as is shown in Fig. 2(d), the fraction of the sum of compo-
nent sizes and network size S∑/N can be larger than one.
Susceptibility should be a monotonically decreasing function
in the supercritical regime. However, plugging the extended
component sizes into Eq. (25) results in a growth in the tail
of susceptibility, turning it to a nonmonotonic function in the
supercritical regime. Therefore, this formulation of suscepti-
bility is not suitable in the current case since the maximum
of Eq. (25) could lead to estimates of critical points that are
very far from the actual one. Instead, we can use the ex-
pected growth in the extended giant component, which can be
computed as:

χ ′ =
∑

c �=cmax
ScS′

c

(
1 − S′

cmax
N

)
N − Scmax

, (26)

where Sc and S′
c are the size and the extended size of the

component c and cmax = argmaxcS′
c is the largest component

measured in the extended size.
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FIG. 2. Disease spreading statistics in an Erdős-Rényi network
as a function of the effective connectivity k̄e when there are πaN
perfect applications (papp = 1) that are distributed uniformly ran-
domly. Results are normalized to the network size N and shown
for πa ∈ [0, 0.2, 0.4, 0.6, 0.8] with different markers. (a) The normal
component size, i.e., the epidemic probability (dashed lines and
markers following them) and the extended components, i.e., the
epidemic size (solid lines and markers following them). Dashed and
solid lines indicate the results from theory introduced in Sec. III A by
Eq. (4) and the markers are results computed from component sizes
of simulated networks as described in Sec. III C. (b) The expected
epidemic size as given by Eq. (1) computed with theoretical results
introduced in Sec. III A (solid lines), simulated component sizes
introduced in Sec. III C (filled markers), and explicit SIR simulations
introduced in Sec. III D (empty markers). (c) Susceptibility of the
normal giant component χ (dots) and the extended component χ ′

(solid lines) as defined in Eqs. (25) and (26). Since susceptibility is a
divergent quantity at the epidemic threshold, as explained in Sec. III
C 2, it is a good proxy for finding the critical point. Notice that
peaks are at the same positions for both curves, normal and extended
components. (d) The fraction of sum of component sizes and network
size S∑/N .

D. Explicit compartment model simulations

Finally, we will perform explicit simulations of the spread-
ing processes to confirm the theoretical results we arrived
at via the approximations we presented above. The effect
of tracking applications can be integrated into compartment
model simulation by introducing separate susceptible and in-
fected compartments for people with and without the app. The
interactions between people with no app installed is similar to
those of the normal SIR process, namely, susceptible individ-
uals with no app (Sn) can become infected (In) by being in
contact with infected people that either do not have the app
installed (In) or have it installed (Ia). However, if a suscepti-
ble individual with the app (Sa) comes into contact with an
infected individual with app (Ia), they will become infected
but they will also receive infection notification from the app
which means they will be quarantined (Iq). Quarantined indi-
viduals cannot infect anyone else. Eventually, all the infected
individuals will move to the recovered compartment after a
constant predetermined amount of time (1/γ ) has passed from
the beginning of their infection. The recovered compartment

is divided into three compartments Rn, Ra, and Rq to track
which infected compartment the node is originating from.

The set of all reactions can be written as follows:

Sn + In
β−→ In + In, Sa + In

β−→ Ia + In,

Sn + Ia
β−→ In + Ia, Sa + Ia

β−→ Iq + Ia,

In
γ−→ Rn, Ia

γ−→ Ra,

Iq
γ−→ Rq. (27)

Note that while edge reactions are governed by Poisson pro-
cesses happening at a constant rate β, unlike most common
SIR models, node reactions are governed by constant cutoff
time 1/γ and happen exactly 1/γ units of time after the
infection of the node.

As interactions in the simulation are bound to take place
over edges of a static network, with nodes belonging to each
of the compartments, as shown in Sec. IV, the results are
similar to a component size simulation (which are described
in Sec. III C) on a network with effective connectivity of
k̄e = 〈k〉(1 − e−β/γ ). As only the ratio between β and γ plays
as a parameter in the model, we set the value of γ to 1.

In each simulation, starting from a single infected node
and running the simulation in discrete time steps of 10−4

units until no further reaction is possible, the final num-
ber of nodes that end up in Rq, Ra, and Rn determine total
size of infection corresponding to the extended component
size S′ of the component that the initial seed node belongs to.
The final combined size of the Rn and Ra component, however,
represents the size of the component Sn that the seed node
(index case) would belong to, had we removed app-app links.
By adding Ia and Iq compartments, as compared to normal
SIR processes, and linking them to the state of the source
of infection and the internal state of each node, we include
information about the history of the spreading agent more than
one step back in the simulation of the spreading process.

IV. NUMERICAL RESULTS

We will next illustrate using the theory and simulation
introduced in Sec. III how the various parameters affect the
epidemic sizes and epidemic probabilities. The simulation
studies are done in networks of 104 nodes and averaged over
10 realizations. We use two network topologies: homogeneous
networks (Erdős-Rényi networks) with expected degree 〈k〉 =
10 and random networks with expected degree sequence
driven from power-law degree distribution p(k) ∝ k−3, with a
minimum degree cutoff adjusted such that the average degree
is set to 10 [94].

A. Differences in normal and extended components

The difference between the epidemic probability (normal
component size) and the epidemic size (extended component
size), as given by Eqs. (4) and (5), is a phenomenon spe-
cific to epidemics in the presence of app-adaptors. Breaking
the equivalence of these two measures can have practical
consequences, as illustrated in Fig. 2(a). The difference be-
tween these two grows with the fraction of app-users πa.
For example, when πa = 0.8 and the epidemic probability
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FIG. 3. The effect of quarantine failures as described in Sec. IV B
in homogeneous networks when app adoption is done uniformly
randomly. Results are from percolation simulations. (a) The epi-
demic threshold as a function of quarantine probability papp and app
adoption rate πa. All threshold values larger than 4 are shown with
the same color. By setting the effective connectivity of the network
to k̄e = 1.8 (b) the expected epidemic size, (c) the extended giant
component size, and (d) the normal giant component size are shown
as a function of papp and πa. Note that k̄e = 1.8 is chosen as an il-
lustrative example of a parameter region with interesting behavior in
the various component sizes: It is large enough such that without any
intervention, there is a wide epidemic spreading, but small enough
such that the spread can be controlled without extreme measures.

(the normal component size) is smax ≈ 0.5, the epidemic size
(the extended component size) reaches smax ≈ 0.8. This is
also reflected in the expected epidemic sizes [see Fig. 2(b)
and Eq. (1)]. Despite the two component definitions differing
from each other, they still display the transition at the same
point and this point can be measured numerically using the
susceptibilities defined in Eqs. (25) and (26) [see Fig. 2(c)].

The extended component size is not a conserved quantity
like the normal component size in the sense that the sum
of component sizes S∑ would always sum to the number of
nodes N . Instead, the sum of component sizes can be signifi-
cantly larger than the number of nodes [see Fig. 2(d)] and the
maximum value it can reach grows with the number of ap-
plication users πa. The deviation from S∑/N = 1 reaches its
maximum with disease parameters higher than the threshold
values, but when the disease reaches a large enough popula-
tion, the fraction S∑/N starts to decay, reaching S∑/N = 1
when everybody belongs to the normal giant component.

B. Quarantine failures

The assumption in Sec. IV A is that (i) apps work per-
fectly and (ii) an app-user always self-isolates before having
a chance to spread the infection, meaning that there are no
quarantine failures, papp = 1. It is of practical significance
to investigate the effects of quarantine failures [45] on the
epidemic threshold and epidemic size. Figure 3 shows that

FIG. 4. Expected epidemic size 〈E〉 and epidemic threshold k̄c

for two network topologies with different strategies; 〈E〉 as a func-
tion of effective connectivity k̄e for (a) homogeneous networks with
Poisson degree distribution and for (c) heterogeneous networks with
a power-law degree distribution P(k) ∝ k−3. Results are shown for
different values of πa using different markers: 0 (stars), 0.2 (trian-
gles), 0.4 (disks), 0.6 (diamonds), and 0.8 (crosses). The solid lines
with markers indicate the high-degree targeting strategy, while single
markers indicate the random app adoption. Epidemic threshold k̄c

as a function of app-adoption rate πa (such that the upper markers
represent the high-degree targeting strategy) for (b) homogeneous
networks and for (d) heterogeneous networks. Differences between
the threshold values in the presence of homophily are explained in
Figs. 5(b) and 5(d).

in the absence of major quarantine failures, epidemic tracing
and mitigation with apps can still be a valid strategy if the app
adoption level in a society is high enough. The effect of app
adoption rate πa is more important than the rate at which apps
function, but both need to be relatively high in order for the
apps to have a significant impact.

Even if we are above the epidemic threshold, the apps can
be useful. Especially when the application adoption πa is high,
the quarantines can be very unreliable and the outbreak size
[Figs. 3(b) and 3(c)] and epidemic probability [Fig. 3(d)] both
remain small. Again, overall, app adoption and quarantine
reliability are essential, with the app adoption rate being more
important.

C. Degree heterogeneity and high-degree app targeting

Real networks are degree-heterogeneous and this hetero-
geneity has a strong effect on the final outbreak size and the
epidemic threshold. Figure 4 shows the expected epidemic
sizes with two different strategies in app adoption, random,
and high-degree targeting, for different fractions of app-users
πa in the network. In homogeneous networks, Fig. 4(a), con-
tact tracing decreases the expected epidemic size and pushes
the epidemic threshold forward. These effects can be fur-
ther amplified by shifting to the high-degree targeting in
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FIG. 5. The effect of homophily or heterophily in app adoption
in homogeneous networks as described in Sec. IV D. Homophily
(heterophily) region is below (above) the diagonal πa = πaa. Ex-
pected epidemic size at k̄e = 1.8 for (a) random app adoption and
for (c) high-degree targeting strategy. The epidemic threshold for
(b) random app adoption and for (d) the high-degree targeting strat-
egy. Thresholds are from theoretical results given by Eq. (21) and
expected epidemic sizes are from percolation simulations. The empty
white region is the spectrum that having such a homo- or heterophilic
population is impossible.

app adoption. With 80% of app-users, the epidemic thresh-
old can move from k̄e = 1 to k̄e = 4, which means at that
point expected epidemic size is zero, while without contact
tracing it would be almost 1. Note that in homogeneous net-
works, the effective average degree of the contact network k̄e,
has good correspondence to the reproduction number of the
infection.

In networks with degree-heterogeneity, the epidemic
threshold vanishes in normal SIR processes. This effect holds
in contact-traced epidemics if we distribute the apps uni-
formly randomly. However, from Fig. 4(b) it is clear that
contact tracing can significantly reduce the expected epidemic
size even when the apps are randomly distributed and the
epidemic threshold remains unchanged. With the high-degree
targeting strategy, it is possible to move the epidemic thresh-
old. Comparing the expected epidemic size at different values
of k̄e < 3 shows that in real-world situations, app adoption
of superspreaders is of significant importance. Since hubs
become the app-users, this strategy has drastic effects on the
size and threshold of the epidemic, such that the threshold gets
pushed from somewhere near zero to a value k̄e > 5 with the
app adoption rate πa = 0.8. Therefore, the reproduction num-
ber can be much more controlled in the high-degree targeting
strategy.

D. The effect of homophily and heterophily

In previous sections, there was an assumption that app-
users are distributed with random mixing patterns; the
fact that one of the connections of a node is an app-
user has no effect on the probability of that node being

FIG. 6. Existence of optimum value for homophily based on
branching process approximation as described in Sec. III B. (a) The
critical value of app-users π c

a that are needed for reducing the repro-
ductive number as a function of effective connectivity and homophily
probability πaa. The value of π c

a remains the same within each black
curve. The inset is the graph of π c

a as a function of k̄e in the absence
of homophily πaa = πa given by Eq. (24). (b) The epidemic threshold
k̄e as a function of πaa and πa. The red symbols show the π opt

aa for each
πa which is given by to Eq. (22). The pattern here is consistent with
another approximation shown in Fig. 5(b), while epidemic threshold
values are slightly different due to different levels of approximations.
Note that here we display the epidemic threshold for all values of πaa

and πa such that 0 � πna � 1 so the networks with some of these
parameters can be created in practice [95].

an app adopter. Next, we explore how homophily or het-
erophily affects epidemics based on app usage using the MN
model. A Swiss experiment has reported that while a small
fraction of πa = 0.2 of people have used the app, the in-
side connections between them was high enough such that
πaa = 0.7 [40].

Figure 5 illustrates that increasing heterophily leads to
a lower epidemic threshold and larger epidemic size for a
fixed k̄e. Increasing homophily from random mixing is ini-
tially preferable, but the optimum lies between random mixing
and full homophily. For the expected epidemic size, strong
heterophily is especially detrimental [see Fig. 5(a) for the
homogeneous network and with random app adoption and
in Fig. 5(c) for high-degree targeting strategy]. The optimum
value for heterophily or homophily is evident for the epidemic
thresholds in Figs. 5(b) and 5(d), respectively, for the ran-
dom and high-degree targeting strategies. Figure 6(b) gives
a more clear picture of existence of an optimum value for
the epidemic threshold in the case of homophily. According
to Eq. (21), for each fraction of app-users πa in the network,
the epidemic threshold k̄c(πa, πaa ) can be maximized by con-
trolling the homophily in app adoption πaa. The pattern in the
Fig. 6(b) is very similar to the convex pattern in Fig. 5(b), even
though they are calculated using different approximations and
approaches (see Secs. III A and III B).

Another view on the effect of homophily and heterophily
is given by finding the critical fraction app-users π c

a that is
needed to go beyond the epidemic threshold as a function
of (πaa and k̄e). Figure 6(a) depicts this relationship based
on Eq. (23) and shows that π c

a is not monotonic function of
πaa but there is an optimal value of πaa giving the lowest
fraction apps that are needed to stop the epidemic. Note that
in a network without homophily or heterophily π c

a increases
monotonically as the function of the effective connectivity k̄e

[see the inset of Fig. 6(a)].
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FIG. 7. The expected epidemic size computed with theoreti-
cal results introduced in Sec. III A for heterogeneous networks
with degree distribution P(k) ∝ k−3 (solid lines) compared with
ones with P(k) ∝ k−2.5 (dotted lines) as a function of the effec-
tive connectivity k̄e when apps are distributed uniformly randomly.
Results are normalised to the network size N and shown for πa ∈
[0, 0.2, 0.4, 0.6, 0.8] with different colors. Note that by lowering the
exponent, epidemic thresholds get closer to zero and the expected
epidemic sizes decrease since there more low-degree nodes in the
network. Therefore, by lowering the exponent, while we can add
more degree heterogeneity in the network, the physics of the phe-
nomena does not change.

V. DISCUSSIONS

In this article, we have developed two flexible analytic
approximations to SIR epidemics in the presence of contact
tracing apps. First, we use a branching process to derive ex-
plicit analytical solutions for the epidemic thresholds. Second,
we expand the framework of using self-consistent equations to
analyze digital contact tracing [44], which is an alternative
to other approaches [71]. Contrary to the conventional SIR
spreading, a full picture of the late-state epidemics in the
presence of digital contact tracing is not given by a single
observable (the component size), but one also needs two
variables (normal and extended component sizes). These cor-
respond to the probability of the epidemic and the epidemic
size, which are equivalent in the SIR process. Here we see that
the two quantities can be significantly different if the number
of application users is high.

Our numerical results illustrate that the effects of digital
contact tracing can be very sensitive to the network structure,
how applications are distributed among the population, and
how well the tracing works. Realistic estimates of the effects
of digital contact tracing can only be achieved if one can
choose correct parameter ranges in a high-dimensional param-
eter space. In this study, we had six of such parameters: the
shape of the degree distribution, average degree, amount of
heterophily or homophily, application prevalence, quarantine
probability and targeting strategy. While we were able to
establish and confirm basic laws governing individual param-
eters and some combinations of parameters, exploring such a
parameter space fully for possible compound effects is out of
the reach in simulations. However, these effects can be largely
revealed by inspecting the analytic equations we derived.

FIG. 8. The epidemic threshold as a function of quarantine prob-
ability papp and app adoption rate πa. The effect of quarantine failures
in homogeneous networks with (a) random app adoption (b) and
high-degree targeting strategy. Also, for heterogeneous networks
with a power-law degree distribution with (c) random app adoption
(d) and high-degree targeting strategy. All threshold values larger
than 5 are shown with the same color.

There are several open questions for which this study and
other studies only hint at the results. There are types of net-
work structures we ignore here. For example, the heterophily

FIG. 9. Expected epidemic size in the case of quarantine failures.
Expected epidemic size at k̄e = 1.8 for homogeneous networks with
(a) random app adoption (b) and high-degree targeting strategy. Also,
for heterogeneous networks with a power-law degree distribution
with (c) random app adoption (d) and high-degree targeting strategy.
In (b) and (d) the pattern is different due to the effects of hubs.
When doing a high-degree targeting strategy, quarantine failures are
more significant since the infected ones are highly influential on the
spreading dynamics.
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FIG. 10. The effect of homophily or heterophily in app adop-
tion on the expected epidemic size. Expected epidemic size at k̄e =
1.8 from percolation simulations for homogeneous networks with
(a) random app adoption (b) and high-degree targeting strategy. Also,
for heterogeneous networks with a power-law degree distribution
with (c) random app adoption and (d) high-degree targeting strategy.
The empty white region is the spectrum that having such a homo- or
heterophilic population is impossible.

and homophily could be constructed in the network in slightly
different ways. For example, a case study using a realistic
agent-based model [69] has recently considered, among many
other modeling choices aimed at precise calibration on the
French population, the contributions of individuals of differ-
ent ages. One could also develop a more realistic version
of our stylized model to systematically analyze the effects
of homophily caused by an age-based contact structure and
different scenarios of app adoption within that structure. The
age-based approach would also allow one to estimate the ben-
efits of applications relative to the risk groups in this model.

Overall the problem of digital contact tracing offers not
only a practical problem to solve but also an interesting the-
oretical puzzle because it introduces memory to the epidemic
process. This memory is limited to one step within the tracing
model we use here, but one could also use multistep tracing,
where also the second neighbors of infected nodes are quar-
antined in the case that the first neighbors have already passed
on the infection. Further, here we ignore effects such as quar-
antines that do not directly stop the infection from one appli-
cation user to another from spreading further. However, in the
case of a strong group structure in the network, there could be
situations where a nonapplication user A infects application
user B, who alerts another application user C, who actually
gets infected by A and stops the spreading because of the
quarantine. Analyzing such more complicated phenomena can
provide challenges for network scientists for years to come.
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APPENDIX

The heterogeneity in the number of contacts could also
be modeled with other distributions, for example, the nega-
tive binomial distribution. This would have the advantage of
having a nodivergent second moment supported by empiri-
cal evidence. However, we aimed to illustrate the effects of
degree heterogeneity and not perform a systematic analysis.
We already have many different random network models and
combinations of parameters related to the app distribution,
how well it works, and disease parameters. The equations we
give make it possible for one to do such analysis if needed.
Therefore we limited our main discussion to the differences
observed in a power-law network with exponent −3 compared
to the results for homogeneous networks. However, to satisfy
the curiosity of the reader interested in extreme heterogeneity,
we have now added Fig. 7 showing the expected epidemic size
for exponent −2.5.

About quarantine failures, as it was shown in Figs. 3, 8 and
9 also show that contact tracing can yield very good results
in terms of reducing the epidemic threshold and expected
epidemic size if everything goes right at least for 50% and
half of the people use the apps. This effect is more prominent
if we go for the high-degree targeting strategy, especially in
heterogeneous networks, as shown in Figs. 8(d) and 9(d).
Figures 10 and 11 show that there is an optimum value for
homophily in app adoption as it was shown in Fig. 5 and
Fig. 6. The only exception is when we follow a high-degree
targeting strategy in heterogeneous networks. In this case, we
can see the hub effect on the epidemic threshold and size.
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