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Recent experimental and theoretical studies have indicated that the putative criticality of cortical dynamics
may correspond to a synchronization phase transition. The critical dynamics near such a critical point needs
further investigation specifically when compared to the critical behavior near the standard absorbing state phase
transition. Since the phenomena of learning and self-organized criticality (SOC) at the edge of synchronization
transition can emerge jointly in spiking neural networks due to the presence of spike-timing dependent plasticity
(STDP), it is tempting to ask the following: what is the relationship between synchronization and learning in
neural networks? Further, does learning benefit from SOC at the edge of synchronization transition? In this
paper, we intend to address these important issues. Accordingly, we construct a biologically inspired model of
a cognitive system which learns to perform stimulus-response tasks. We train this system using a reinforcement
learning rule implemented through dopamine-modulated STDP. We find that the system exhibits a continuous
transition from synchronous to asynchronous neural oscillations upon increasing the average axonal time delay.
We characterize the learning performance of the system and observe that it is optimized near the synchronization
transition. We also study neuronal avalanches in the system and provide evidence that optimized learning is
achieved in a slightly supercritical state.
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I. INTRODUCTION

A cognitive system, either biological or artificial, is a con-
tinuously active complex system autonomously exploring and
reacting to the environment with the capability to survive [1].
In contrast with the usual paradigm of artificial intelligence
(AI) which mainly follows an all-in-one-step approach to in-
telligent systems [2–4], a cognitive system is not necessarily
intelligent, but intelligence can be achieved once the system
has been developed [5]. The universal principles necessary
for the realization of a cognitive system resembling our own
cognitive organ is not fully understood, yet. However, it is
believed that learning within a biological cognitive system
with self-induced dynamics is not supervised [6]. Accord-
ingly, reinforcement learning (RL), i.e., learning how to map
situations to actions so as to maximize a numerical reward
signal, is the closest paradigm to the kind of learning that
biological systems follow [7,8]. Trial-and-error search and
delayed reward are the most important distinguishing charac-
teristics of RL [7].

Spike-timing dependent plasticity (STDP) is an experimen-
tally well-established rule that leads to synapse strengthening
for correlated activity at the pre- and postsynaptic neurons and
synapse weakening for decorrelated activity [9–13]. A mod-
ified version of this rule that is called dopamine-modulated
STDP is the main candidate to explain the relationship be-
tween synaptic plasticity on the microscopic level, and the
adaptive changes of behavior of biological organisms on
the macroscopic level; i.e., linkage of dopamine signaling
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with STDP triggered the development of phenomenological
models for RL that could explain how behaviorally relevant
adaptive changes in complex networks of spiking neurons
could be achieved in a self-organizing manner [14–18].

STDP is also identified as a candidate mechanism un-
derlying the emergence and maintenance of self-organized
criticality (SOC) in neural circuits [19–21]. It is hypothe-
sized that cortical neural circuits self-organize to a critical
state which is associated with a transition point of a contin-
uous phase transition [22–25]. Operating at the vicinity of
this critical point has functional benefits for a neural system
including optimal capacity of information processing, trans-
fer, and storage as well as optimal dynamic range [25–28].
However, the relationship between SOC and learning is not
clear. Criticality has been shown to be beneficial for learning
in some models [29–31], but destructive to learning [32], or
having task-dependent profit [33], in other models.

As opposed to the earlier models which have attributed the
putative criticality of cortical dynamics to an activity transi-
tion point associated with an absorbing state phase transition
[34–37], recent experimental and theoretical studies indicate
that such critical dynamics corresponds to a synchronization
phase transition, at which incipient oscillations and scale-free
avalanches coexist [38–40]. In particular, we have previously
shown that neurophysiological regulatory mechanisms such
as STDP with suitable axonal conduction delays brings about
and maintains SOC at the edge of synchronization transition
in a biologically meaningful model of cortical networks [39].
The basic idea is that the positive feedback, where synchro-
nization leads to synaptic potentiation which in turn leads to
more synchronization, is broken with a time delay. Conse-
quently, synaptic strengths depress and potentiate in turn as
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the system finds and maintains a critical state at the edge of
synchronization with scale-free avalanches. The implications
for the brain’s performance at such a critical point has been
investigated in recent studies [38–42].

We note that the phenomena of learning and SOC at the
edge of synchronization are both rooted in the regulatory
mechanism of STDP. Therefore, it is natural to ask what the
relation between learning and the edge of synchronization is.
In particular, can learning profit from the brain operating at
or near a synchronization transition? This is exactly what we
propose to address in this article.

In order to specify the relationship between synchroniza-
tion, learning, and SOC in cognitive systems, we construct a
biologically relevant model of cortical networks with parame-
ters that are set according to empirical evidence. Constructing
a biologically inspired model of a cognitive system is of
crucial importance because it is an attempt toward building
an artificial brain on one hand and toward understanding the
relevance of various biological mechanisms in the brain on the
other hand. This cognitive system learns to perform stimulus-
response (SR) tasks with different levels of complication.
We train this system using a RL rule which is implemented
through dopamine-modulated STDP. We show that the sys-
tem exhibits a continuous transition from synchronous to
asynchronous neural oscillations upon increasing axonal time
delays. The learning performance of the system depends on
the amount of synchronization in neural activity. For all SR
tasks of various complexity, optimal performance is achieved
while the system is above but very close to the transition point
of synchronization. More strictly, the optimal performance
occurs at a slightly supercritical state of synchronization.

In the following section, we describe the model we use
for our study. Results of our numerical study are presented in
Sec. III and we close the paper with some concluding remarks
in Sec. IV.

II. MODEL AND METHODS

We construct a biologically inspired cognitive system. A
detailed description of this system is given below.

Neural dynamics. The system consists of N spiking Izhike-
vich neurons interacting by transition of chemical synaptic
currents with axonal conduction delays. The dynamics of each
neuron is described by a set of two differential equations [43]:

v̇i = 0.04v2
i + 5vi + 140 − ui + IDC

i + Isyn
i , (1)

u̇i = a(bvi − ui ), (2)

with the auxiliary after-spike reset:

if vi�30, then vi→c and ui→ui + d (3)

for i = 1, 2, . . . , N . Here, vi is the membrane potential and ui

is the membrane recovery variable. When vi reaches its apex
(vmax = 30 mV), vi and ui are reset according to Eq. (3). a, b,
c, and d are adjustable parameters that determine the pattern
of firing and are different for excitatory and inhibitory neu-
rons (see Table I) [43]. The population density of inhibitory
neurons is set to be ρ = 0.2.

The term IDC
i is an external current which determines the

intrinsic firing rate of uncoupled neurons [43,44]. The values

TABLE I. Values of constant parameters used in this study.

Izhikevich aex = 0.02 bex = 0.2 cex = −65 dex = 8
neuron ain = 0.1 bin = 0.2 cin = −65 d in = 2

Synaptic current τ f = 1 τs = 5 V ex
0 = 0 V in

0 = −75
Plasticity A± = 0.05 τ± = 30 wmin = 0 wmax = 1

rule τx = 1000 τy = 200 y0 = 2

of IDC
i are chosen randomly from the range [3.8,4.5]. This

choice leads to alpha-band intrinsic firing frequencies with
a mean firing rate around 9 Hz. Alpha rhythms are typically
observed during learning and task performance [45–48]. The
term Isyn

i represents the chemical synaptic current that goes
into each postsynaptic neuron i [49]:

Isyn
i = V0 − vi

Di

∑
j

w ji

exp(− t−(t j+τ ji )
τs

) − exp(− t−(t j+τ ji )
τ f

)

τs − τ f
. (4)

Here, Di is the in-degree of node i, t j is the instance of last
spike of presynaptic neuron j, and τ ji is the axonal conduction
delay from presynaptic neuron j to postsynaptic neuron i. The
values of τ ji are chosen randomly from a Poisson distribution
with mean value τ = 〈τ ji〉. τ = 0 means that τ ji = 0 ∀ j �= i.
τ f and τs are the synaptic fast and slow time constants and
V0 is the reversal potential of the synapse. The most relevant
variable in the context of learning is w ji, which denotes the
strength of synapse from neuron j to neuron i. w ji’s are the
elements of the adjacency matrix of the underlying network
(w ji �= 0 if there is a directed edge from neuron j to neuron i
and w ji = 0 otherwise). The simulations are carried out using
Erdős-Rényi (ER) random networks of size N and average
connectivity z = pN , where we set the connection probability
p = 0.1 [50]. The initial strength of excitatory synapses is
w ji(t = 0) = w0. To enforce the excitation-inhibition balance
in the system, the initial strength of inhibitory synapses is set
to w ji = rw0, where r is the ratio of excitatory to inhibitory
synapses.

Dopamine-modulated STDP rule. To train the network, we
modify the strength of excitatory synapses using the sim-
plest phenomenological model that captures the essence of
dopamine modulation of STDP [14]. According to this model,

ẇ ji = x jiy, (5)

ẋ ji = −x ji

τx
+ � ji(�t )δ(t − tpre/post ), (6)

ẏ = − y

τy
+ y0δ(t − trew), (7)

� ji(�t ) =
{

A+(wmax − w ji )e
− �t−τ ji

τ+ if �t > τ ji,

−A−(w ji − wmin)e
�t−τ ji

τ− if �t � τ ji.
(8)

Here, x ji is the synaptic eligibility function or synaptic tag,
y is the extracellular concentration of dopamine, which is
assumed to be the same for all synapses, τx and τy are time
constants, and δ(.) is the Dirac delta function. trew is the time
when the reward is delivered to the network and y0 is the
amount of dopamine released by the activity of dopaminergic
neurons at t = trew. �(�t ) is a nearest-neighbor and soft-band
STDP function with upper and lower bands wmax and wmin
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FIG. 1. Illustration of reward-modulated STDP rule to potentiate
a synapse: temporal order of pre- and postsynaptic spikes determines
the value of � ji(t ) (green) and subsequently changes the synaptic
tag x ji(t ) (red). While the global reward y(t ) (blue) is released with
a small delay after a correct network’s response, if x ji(t ) has a
relatively large positive value, the synaptic strength w ji(t ) (black)
increases.

[9,11]. �t = tpost − tpre is the time difference between the
last post- and presynaptic spikes, A± determine the maximum
synaptic potentiation and depression, and τ± determine the
temporal extent of the STDP window for potentiation and
depression. Numerical values of all of these parameters are
listed in Table I. Figure 1 illustrates how dopamine-modulated
STDP leads to potentiation of a synapse that plays a role in the
correct network’s response.

To include the transmission time for a causal relation be-
tween pre- and postsynaptic firing, we employ a temporally
shifted STDP window for which the boundary separating po-
tentiation and depression does not occur for simultaneous pre-
and postsynaptic spikes, but rather for spikes separated by a
small time shift [51]. We set the value of this shift equal with
the actual axonal delay for each synapse. This rule retrieves
the conventional STDP rule when τ = 0. This temporal shift
causes synchronous or nearly synchronous pre- and postsy-
naptic spikes to induce long-term depression, which leads to
intrinsic stability in the network [51–53]. Also to keep the
excitation-inhibition ratio balanced during the simulations, the
strength of each inhibitory synapse is set to be w ji(t ) = rw̄(t ),
while w̄(t ) is the average strength of all excitatory synapses at
time t .

Neural synchronization. We integrate the dynamical equa-
tions using the fourth-order Runge-Kutta method with a time
step h = 0.1 ms and obtain vi(t ) and the spike times of all
neurons. We assign a phase φi(t ) = 2π

t−tm
i

tm+1
i −tm

i
to each neuron

between each pair of successive spikes. tm
i is the time that neu-

ron i emits its mth spike. Next we evaluate a time-dependent
order parameter [39,44,54]:

S(t ) = 2

N (N − 1)

∑
i �= j

cos2
(φi(t ) − φ j (t )

2

)
. (9)

This order parameter measures the collective phase synchro-
nization at time t . S(t ) is bounded between 0.5 and 1. If
neurons spike out of phase, then S(t )�0.5, when they spike
completely in phase S(t )�1 and for states with partial syn-
chrony 0.5 < S(t ) < 1. The global order parameter S∗ is the
long-time average of S(t ) at the stationary state after the
influence of STDP [S∗ = 〈S(t )〉t ].

Learning and performance. Reinforcement of specific fir-
ing patterns is possible by this cognitive system. In this paper,
we reinforce the network to produce an appropriate response
to a stimulus. We choose n random nonoverlapping group
of five neurons, called S1, . . . , Sn, which represent the input
stimulus to the network, and n other random nonoverlapping
group of five neurons, called R1, . . . , Rn, which give rise to
n distinct responses of the network. Ri is assumed to be the
correct response to stimulus Si (i = 1, . . . , n). Larger n cor-
responds to more complicated tasks learned by the network.
A series of simulations is carried out with n pairs of stimu-
lus response denoted as n-SR simulated experiment and we
consider the cases n = 2, 3, 4, 5. Our simulations consist of
trials separated by one second. At the onset of each trial the
stimulus is delivered to the network by injection of a strong
2-ms pulse of current into the neurons in Si. The sequence
of Si’s are delivered to the network randomly. The coincident
firing of neurons in this group typically induces a few spikes
in the other neurons in the network. During a 20-ms time
window beginning τ ms after the stimulation, we count the
number of spikes fired by neurons in all R groups. We say
the network has exhibited response Ri if Ri has fired the
largest number of spikes among R groups. If in a trial after
delivering the stimulus Si to the network, Ri and another group
Rj simultaneously fire the largest number of spikes, we do
not accept Ri as a correct response and label the case as
no response. One might think of R groups as projecting, for
example, to different motor areas in the brain. To produce
a noticeable movement, one group has to fire more spikes
than the other groups [14]. After each stimulation, we monitor
the response of the circuit. If the circuit has exhibited the
desired response, then we deliver a reward in the form of
the increase of extracellular dopamine with a random delay
in the range 10–50 ms [see Eq. (7)]. This delay is included
because in biological neural networks reward typically comes
with some delay after reward-triggering actions. The network
performance is evaluated as [55]

p(T ) = p(T − 1)(1 − λ) + λq, (10)

where p(T ) is the performance in the T th trial and λ is a
parameter that controls the size of fluctuations of p(T ). Al-
though the stationary state amount of p(T ) is independent of
λ, it preferably should be a small value. We set λ = 0.002; q
is a binary variable which is equal to 1 if the network response
is correct and is 0 otherwise.

We note that the intricate details of the model along with
the need to obtain long-time dynamics of the system limit our
computational abilities. We have therefore performed simu-
lations for 100 < N < 400. We however note that our general
results and conclusions are independent of the system size and
will therefore present results for N = 100 and/or N = 200. A
FORTRAN code is available upon request.

III. RESULTS

First, we establish the occurrence of a synchroniza-
tion transition in this cognitive system. The amount of
synchronization in neural networks with static synapses
can be controlled upon changing the average synaptic
strength [44,54]. In the present study synaptic strength is an
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FIG. 2. Synchronization plots (S∗ vs τ ) for different n-SR simu-
lated experiments for the system size (a) N = 100 and (b) N = 200.
The dopamine-modulated STDP leads to the emergence of syn-
chronization transition with a sharp, size-dependent transition point.
τc(N = 100) = 31 ms and τc(N = 200) = 26 ms.

autonomous variable which is modified by the internal dy-
namics of the network through the RL process. Thus one
cannot control the synaptic strength to tune the amount of
synchronization. However, we have previously shown that,
in a similar adaptive network of spiking Izhikevich neu-
rons, synchronization is a self-organized emergent property
which depends instead on the average time delay τ [39]. In
particular, spike-timing dependent plasticity along with time
delay provides an underlying mechanism where the causal
effect (synapse) between strongly correlated neurons gets sup-
pressed, while slightly correlated activity will be potentiated.
Motivated by this insight, we monitor the amount of synchro-
nization S∗ for different values of τ in the cognitive system
and find that increasing τ leads to a continuous phase transi-
tion from strong synchronization (S∗ � 0.9) to asynchronous
neural oscillations (S∗ � 0.5). Synchronization diagrams of
the circuits with N = 100 and N = 200 in different n-SR
experiments are shown in Figs. 2(a) and 2(b), respectively. It
is observed that the transition point τc depends on the system
size and moves toward smaller τ values by increasing N . We
note that τc = 31 ms for N = 100 and τc = 26 ms for N =
200 in all considered n-SR experiments. Increasing the system
size further (N = 400) reduces the transition point by a lesser
amount; however, computational limits (N = 100, 200, 400)
do not allow us to obtain enough points to extrapolate to the
thermodynamic limit.

Next, we show that reinforcement of specific firing patterns
is possible by this cognitive system. Specially, reward-based
reinforcement of the network produces an appropriate re-
sponse to a stimulus. Figures 3(a)– 3(d) show the performance
of the system p(T ) vs trail number T for different τ ’s in each
n-SR simulated experiment for N = 200. Over time, p(T )
increases quickly as the system learns to respond correctly to
each stimulus as it reaches a stationary state after nearly 2000
trials. The stationary value of p(T ) depends on τ . It is seen
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FIG. 3. Dynamics of network performance over time for the
system size N = 200 and for different τ values in n-SR simulated ex-
periments with n = 2, . . . , 5. Time is shown in units of T . To obtain
each p(T ) vs T plot, we carried out an ensemble of 20 simulations
with different stochasticity conditions including network realization.
We coarse grained the raw data on T axis for each simulation and
next averaged over the ensemble.

from Figs. 3 the p(T ) vs T plots for τ = τm = 25 ms (red
curve) stand above the other curves for all n-SR simulated
experiments. This is an important indication of the possible
relation between synchronization and learning in the system.
Clearly, the emergence of spontaneous synchronization is re-
lated to learning and its optimization, i.e., performance.

It is evident from Figs. 2 and 3 that variation of τ changes
the state of synchronization in the system and subsequently
influences the network’s performance. Thus performance de-
pends on synchronization. Now, one may ask “what amount of
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FIG. 4. p∗ vs τ in n-SR simulated experiments for (a) trained system with N = 100 and n = 2, 3, 4, (b) trained system with N = 200
and n = 2, 3, 4, 5, (c) untrained system with N = 200 and n = 2, 3, 4, 5, and (d) η vs n plots that show the relative efficiency of the model
improves with increasing n as well as system size N . (Inset: the relative efficiency of the model vs τ for the system with n = 2 and N = 200.)

synchronization optimizes the performance of the system for a
given SR task?” To address this question, we define p∗ as the
average of p(T ) in the stationary state [p∗ = 〈p(T )〉T >2000].
Figures 4(a) and 4(b) illustrate p∗ as a function of τ for all
n-SR simulated experiments in the network with N = 100
and N = 200, respectively. One observes a significant peak
at the value of τm regardless of the value of n or the size
of the system. Interestingly, the value at which performance
is optimized is not exactly at the critical point, τc, where
synchronization begins to emerge, but a slightly supercritical
state where a small amount of order is present in the system
S∗(τm) ≈ 0.52. For the record, for N = 100τm = 30, where
τc = 31, and for N = 200 network, τm = 25, where τc = 26,
within our numerical resolution. Also, note that, for N = 100,
n � 4 due to limited network size.

Clearly, if one turns off the mechanism for plasticity, no
learning occurs despite the fact that τ can change and thus
influence the amount of synchronization in the system. The
performance of the system in this scenario is a random per-
formance which tends to decrease as the learning task gets
more complicated, i.e., increasing n. However, for a given
n one can evaluate the performance of the system in order
to compare how plasticity plays a role in the learning per-
formance. This is shown in Fig. 4(c) for N = 200. In order
to better characterize the relative performance of the system,
we define η(n) = p∗

m(n)/p∗
un(n), where p∗

m(n) = p∗(τm) and
p∗

un is the maximum of the untrained, random performance
depicted in Fig. 4(c) for each n task. In Fig. 4(d) we show
the results for the relative performance as a function of n
for the two system sizes we have studied. The results indi-
cate that the relative performance increases with increasing
n and for a given n with increasing system size. Therefore,
optimization may lead to significant improvement in learning
of complicated tasks in large networks. We also note that one
can simply define η(τ ) = p∗(τ )/p∗

un(τ ), for various n-task
performance [see inset of Fig. 4(d)]. Incidentally, we note that
the relative performance due to plasticity can increase from
η(τ = 40) ≈ 1.3 to η(τm) ≈ 2.1, i.e., a difference between a

30% improvement and a more than 100% improvement for a
given task by taking advantage of criticality.

Many recent studies have indicated the functional advan-
tages of operating near the critical point associated with
second order, critical phase transition. Such studies both in-
clude computational models [56] as well as clinical studies
[57]. Our results seem to indicate such functional advantage
in a biologically relevant spiking neural network. However,
our results also indicate a slightly supercritical state in a
synchronization transition as the optimal point of reinforce-
ment learning. A standard method to characterize the critical
state is to look at neuronal avalanches [22–24,38,58,59]. We
next propose to study neuronal avalanches in order to better
correlate critical dynamics with reinforcement learning.

Neural avalanches are heterogeneous outbursts of activity
interspersed by brief periods of quiescence [22–24]. To study
neural avalanches, we record the raster plot in the stationary
state of the system in each simulated experiment. Next, we
divide it into temporal bins of length 5 ms and count the
number of spikes in each bin to extract the time series of
network activity M; see Figs. 5(a) and 5(b). By monitoring
the network activity M we can identify outbursts of spikes the
number of which is associated with the size s and the lifetime
with the duration d of avalanches. An avalanche begins when
M exceeds a threshold Mth and ends when it turns back below
that threshold, Fig. 5(b). Here, we set the threshold to be
Mth = M − σ , while M and σ are the mean value and standard
deviation of M, respectively. Our consideration shows that
displacement of the threshold in the interval [M − σ, M] does
not influence the avalanche statistics.

We consider neural avalanches for different values of τ and
different n-SR simulated experiments. For any given set of
parameters the network is simulated for a considerably long
time, producing nearly five million avalanches. Probability
distribution of avalanche sizes and avalanche durations for
2-SR simulations of the network with N = 200 are illustrated
in Figs. 5(c) and 5(d), respectively. P(s) and P(d ) for other SR
tasks are qualitatively the same (not shown). The dotted lines
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FIG. 5. (a) 1 s segment of the raster plot for the system that
learns 2-SR task. The orange area illustrates a typical time bin used
to extract M time series. (b) A typical snapshot of the network
activity M and the threshold Mth. The blue area shows the size s
of an avalanche and the length of purple line shows its duration d .
(c),(d) Probability distribution function of avalanche size P(s) and
avalanche duration P(d ) for the trained networks performing 2-SR
task. The network size is N = 200. Avalanches are measured only
when the performance has reached a stationary state. The dashed
lines are meant to help the eye.

in Figs. 5(c) and 5(d) depict power-law functions P(s) ∼ s−α

and P(d ) ∼ d−β with α = 3/2 and β = 2. These exponents
are associated with the mean-field branching process which
is thought to underlie the critical dynamics of such networks
[60,61]. For both size and duration statistics [Figs. 5(c) and
5(d)], we show avalanche statistics for critical (τ = τc = 26)
and subcritical (τ = 30), as well as supercritical (τ = 20)
states. The critical state is associated with a power law lim-
ited by the finite size of the network at large events. Tha
subcritical state is associated with a cutoff and thus decaying
large events, while the supercritical state is associated with a
significant “bump” at large events. We have also plotted the

avalanche statistics for the corresponding value of time delay
which optimizes RL performance, i.e., τ = τm. As expected,
it displays a very similar statistics to the critical state with a
slight bump towards the large events. We therefore conclude
that being near the critical point offers the cognitive system
functional advantages which are not present when operation
occurs away from criticality. The fact that such optimization
occurs in a slightly supercritical state could be related to
the occurrence of more frequent large avalanches (i.e., small
bump) which may play a role in correlated activity at large
distances which facilitate pathways between S and R neurons,
while still keeping the usual advantages associated with the
actual critical point. We finally note that similar changes in
the profile of avalanche statistics due to task performance have
been observed in various experimental studies [62–64]. How-
ever, a clear method to measure “the distance” to criticality is
still lacking.

IV. CONCLUDING REMARKS

In this work we have proposed to study a biologically
relevant dynamical system which learns to exhibit specific re-
sponses to stimuli via reinforcement learning. The Izhikevich
spiking neuronal network is supplemented by time-delayed
chemical synapses as well as dopamine-modulated, time-
delayed, spike-timing dependent plasticity. We observe that
the system can show various amounts of synchronization de-
pending on the average time delay, with a continuous phase
transition to an asynchronous state. Learning performance is
then evaluated in the steady state and is shown to depend on
the amount of synchronization in the system. Interestingly,
it is found that, regardless of the task complication (n) or
network size studied (N), optimized performance for learning
occurs near the critical transition point. In order to better
understand such behavior we studied avalanche statistics as
a way to probe the critical behavior of the system. We observe
subcritical and supercritical avalanche statistics away from the
critical point which itself exhibits clear power-law behavior
with experimentally relevant exponents. We observed that the
optimal learning state corresponds to a near critical state with
a slight bump in the tail of the statistics, indicating the signifi-
cance of more probable large events which may help correlate
the distinct areas of the network associated with stimulus and
response. This type of correlated activity provides more fre-
quent long-range pathways which facilitate efficient learning.

A few points are of note. First, the reinforcement learning
model which we have used [14] is based on reward modula-
tion of a purely Hebbian STDP rule with a reward signal that
is always positive. Another possible approach to implement
reinforcement learning through reward-modulated STDP is
given by Florian [16], with Hebbian STDP when the reward is
positive and anti-Hebbian STDP when the reward is negative.
A neural network trained using a simplified version of the
Florian algorithm has shown to be a competitive alternative to
the optimized state-of-the-art models in the field of machine
learning [65].

Second, in comparison to the typical models employed
in physics, the model considered in the current study is a
detailed model which is quite complicated, in the sense that it
is high dimensional and possesses many parameters. However,
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several parameters, including the parameters of the Izhikevich
neurons (Table I) which are set to produce a regular spiking
pattern of firing as well as the parameters of synaptic currents
(Table I) and dopamine signaling [Eqs. (6) and (7)] that are
set to be compatible with empirical findings, are fixed in all
simulations. We carried out intensive computer simulations to
examine the effect of other parameters on the system’s behav-
ior. We found that the above results are robust upon changing
STDP parameters (Table I) and upon changing the average
connectivity of the initial ER network. We assessed the statis-
tical properties of the networks before and after learning and
observed that the trained networks still remain as random (ER)
networks with Poisson degree distribution functions. The av-
erage connectivity, p, however typically decreases as a result
of pruning caused by learning. Additionally, we observed that
the above results are preserved while we start with a complete
network rather than an ER network.

Third, critical behavior and its associated benefits in neural
networks do not necessarily come by operating exactly at the
critical point. Various mechanisms exist which can extend the
“critical regime.” Griffith’s phase is the most well-known such

mechanism which has structural origins [66,67]. There are
also dynamical mechanisms such as refractoriness in neuronal
oscillations which can extend the critical regime [68]. How-
ever, what we have observed is that a slight deviation from
the standard critical scaling regime leads to a more efficient
learning.

Lastly, further studies are needed to better understand the
relevance of synchronization and criticality, with reinforce-
ment learning. Specifically, with regards to the functional
advantages associated with the critical dynamics of neuronal
networks, and recent intensive studies in machine learning,
one would expect that insights from criticality literature may
find important ramifications in the field of machine learn-
ing. However, neuromorphic networks may provide an ideal
system to experimentally study oscillations, learning, and
avalanches in a controlled manner [69].
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