
PHYSICAL REVIEW E 105, 044311 (2022)

Persistent homology of convection cycles in network flows
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Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of network flows.
Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the
detection and characterization of convective flows (also called cyclic or chiral flows) over networks, particularly
those that arise for irreversible Markov chains. As two applications, we study convection cycles arising under the
PageRank algorithm and we investigate chiral edge flows for a stochastic model of a bimonomer’s configuration
dynamics. Our experiments highlight how system parameters—e.g., the teleportation rate for PageRank and the
transition rates of external and internal state changes for a monomer—can act as homology regularizers of con-
vection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach
establishes a connection between the study of convection cycles and homology, the branch of mathematics that
formally studies cycles, which has diverse potential applications throughout the sciences and engineering.
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I. INTRODUCTION

One of the main goals of topological data analysis (TDA)
is to characterize the structure of an object—usually a point
cloud—through its topological features. In particular, per-
sistent homology [1,2] is a family of techniques that detect
and summarize multiscale topological features and has been
applied to a wide variety of applications including time series
data [3,4], image processing [5], as well as machine learning
and AI [6]. Complementing the study of point-cloud data,
another line of research involves utilizing the TDA tool set
to study complex systems, for which applications include the
analysis of spreading processes over social networks [7], net-
work neuroscience [8–10], mechanical-force networks [11],
jamming in granular material [12], molecular structure [13],
and DNA folding [14].

In this paper, we employ techniques from TDA to study
Markov chains (MCs), which provide a foundation to nu-
merous areas of science and engineering including queuing
theory [15], population dynamics [16], as well as statistical
(and machine learning) models that rely on Markov chain
Monte Carlo [17], hidden Markov models [18], and Markov
decision process [19]. We utilize the mathematical framework
of persistent homology to automate the detection (and sum-
marize the multiscale properties) of convection cycles that
arise for the stationary flows of irreversible MCs. Notably,
while convection cycles have been extensively studied in fluid
dynamics, they are less understood in the context of flows
over networks. For example, it was recently observed that
the coupling together of reversible MCs can give rise to an
irreversible MC with convection cycles that are an emergent
property [7]. Emergent convection cycles have also been re-
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cently found to describe the phenomenon of “chiral edge
flows” [20], providing new insights into the quantum Hall
effect, configurational dynamics of monomers, and biological
(e.g., circadian) rhythms. Given the inherent prevalence of
convection cycles in MCs and other network flows, it is im-
portant that we place their study on a stronger mathematical,
computational, and theoretical footing.

We study convection using a branch of mathematics called
homology and the related field computational homology [21].
Both are concerned with studying the absence or presence of
k-dimensional “holes” (and their connectivity) within a topo-
logical space such as a simplicial complex. Importantly, cycles
on a graph are one-dimensional (1D) holes, and so persistent
homology is a natural fit to analyze convection cycles. We
construct filtrations of graphs by including edges according to
the stationary flows across them (which is done in descending
order so that the last edges to be included are those with the
smallest stationary flows), and we summarize the persistent
homology of the filtered graphs’ associated clique complexes.
See Fig. 1 for a graph and its associated clique complex.
Computationally, we implement these techniques by building
on a popular TDA framework called Gudhi [22], which we
adapt to implement edge-value clique (EVC) filtrations of
scalar functions that are defined over the edges of a graph.

We apply this technique to two applications. First, we study
convection cycles arising under the PageRank algorithm [23],
examining the role of the teleportation parameter. Second,
we study chiral edge flows that emerge for a four-state model
that describes the configurational changes of a bimonomer
[20], examining the roles of the external and internal tran-
sition rates. These parameters significantly affect convection
cycles arising for these respective applications, and we show
that they act as “homology regularizers” of convection. We
introduce “homological bifurcation diagrams” to summarize
these effects. Our methods provide mathematically principled
(and automated) tools to gain a deeper understanding of the
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FIG. 1. A graph and an associated simplicial complex (SC).
(a) Graph G with N = 7 vertices and M = 10 undirected, unweighted
edges. (b) The corresponding clique complex S, where each k-clique
gives rise to a (k − 1)-simplex. Each triangle (i.e., 3-clique) gives
rise to a 2-simplex (see shaded triangles). The SC is a topological
space and has associated vector spaces. Consider the space R7 of
real-valued functions defined over the vertices. Since there is just
one connected component, the SC’s 0-dimensional (0D) homology is
a 1D subspace of R7. Similarly, there are two “homological” 1-cycles
that are not a boundary of a 2-simplex, and so the 1D homology is a
2D subspace of R10 (i.e., the space of real-valued functions defined
over the 10 edges).

structural patterns of convection on networks, and they are ex-
pected to be useful in myriad applications across the physical,
social, biological, and computational sciences.

The remainder of this paper is organized as follows: We
present background information in Sec. II, our methodology
in Sec. III, applications in Sec. IV, and a discussion in Sec. V.

II. BACKGROUND INFORMATION

Here, we present introductory material about simplicial
complexes and homology (Sec. II A), persistent homology of
graphs (Sec. II B), and discrete-time MCs (Sec. II C).

A. Simplicial complexes (SCs) and their homology

We first define an undirected graph G = {V, E}, where
V = {1, . . . , N0} is a set of N0 vertices and E ⊂ V × V is a set
of edges. Note that each vertex is specified by a single index
i ∈ V , and each edge is specified by an unordered pair (i, j) ∈
V × V . More generally, we define a (k + 1)-tuple of vertices
σ = (i0, i1, . . . , ik ) as a k-dimensional simplex, or k-simplex
[24]. Vertices and edges are equivalent to 0-simplices and
1-simplices, respectively. An abstract SC is a set of simplices
of possibly different dimensions, and it is a generalization of
an undirected graph. It is also a type of hypergraph with a con-
straint on which simplices can exist. That is, for any k-simplex
(i0, i1, . . . , ik ) in an SC, its faces are the (k − 1) simplices
in which one of the indices is omitted [e.g., i1 is omitted to
yield (i0, i2, . . . , ik )]. The cofaces of a (k − 1)-simplex are
the k-simplices for which it is a face. Note that the faces of
an edge (i, j) are the vertices i and j, and likewise, (i, j) is a
coface of each of these vertices.

With these definitions, we state the two restrictions that are
required for a SC: (i) for any face, its faces must be included
in the SC; and (ii) the intersection of any two faces is either
a face of both or it is an empty set. The dimension of an SC
is the maximum dimension of its simplices, and an undirected
graph is a one-dimensional SC—it contains 0-simplices and
1-simplices, and for any edge (i, j), the vertices i and j must
exist. We will focus on a particular type of SC that can be

generated from a graph and is called a clique complex. A
clique complex K (G) of a graph G is the SC in which there is a
one-to-one correspondence between the (k + 1)-cliques in the
graph and the k-simplices in the SC. (Recall that an n-clique
is a complete subgraph on n + 1 vertices of a graph.) Given
this one-to-one correspondence, the map from G to K (G) is
invertible, and G can be recovered as the 1-skeleton of K (G).
(A k-skeleton of a SC is the SC that is obtained after removing
all simplices having dimensions that are greater than k.)

We next discuss simplicial homology, which will lead to
a formal definition of “homological” cycles. To this end, we
consider vector spaces defined over the k-simplices in a SC.
A k-chain,

∑Nk
n=1 αnσn, is a linear combination of k-simplices

{σn} with weights {αk}. (Note that N0 and N1 are the number of
vertices and edges, respectively.) If a SC contains Nk different
k-simplices, then the vector space of k-chains is Nk dimen-
sional, and it is isomorphic to RNk if one assumes αk ∈ R.
We now consider a simplicial map f : Xk → Xk−1 between
Xk , which is a SC of dimension k, and Xk−1, which is a SC
of dimension k − 1 that contains the faces of the simplices
in Xk . Considering the vector space Ck of k-chains defined
over k-simplices in Xk and vector space Ck−1 of (k − 1)-
chains defined over their cofaces in Xk−1, we define the linear
boundary map ∂k : Ck −→ Ck−1, where the action of ∂k on any
k-simplex is given by

∂k (i0, . . . , ik ) =
k∑

j=0

(−1) j (i0, . . . , i j−1, i j+1, . . . , ik ). (1)

The boundary map allows one to relate vectors in Ck to those
in Ck−1. For example, the boundary of a 2-simplex (i.e., trian-
gle) (i, j, k) is the signed combination if the associated edges,
∂2(i, j, k) = ( j, k) − (i, k) + (i, j). Notably, the boundary of
any closed path is zero, which yields an algebraic definition of
a k-cycle: any k-chain that lies within the subspace Zk , where
Zk = ker(∂k ) ⊆ Ck , is the vector space of k-cycles.

Notably, k-cycles can arise for different reasons and we
distinguish two types. The boundary map satisfies the property
∂k ◦ ∂k+1 = 0, which essentially states that the boundary of
a boundary is zero. [For the triangle, ∂1 ◦ ∂2(i, j, k) =
∂1( j, k) − ∂1(i, k) + ∂1(i, j) = (k − j) − (k − i) + ( j − i) =
0.] Thus we define Bk = image(∂k+1) as the subspace of
(k + 1)-boundaries, and it follows that Bk ⊆ Zk . In other
words, some cycles arise simply because they are boundaries
of (k + 1)-simplices For example, observe in Fig. 1(b) that
there are two “triangular” cycles that exist around the two
2-simplices, but that there are two other cycles that also exist.
The kth simplicial homology is defined as the quotient space
Hk = Zk/Bk , and it represents the subspace of k-dimensional
cycles (i.e., k-cycles) that do not arise simply as the boundary
of a (k + 1)-simplex.

The kth simplicical homology can be represented by the
span of homology generators, which are a linearly indepen-
dent set of k-chains that span Hn and represent the associated
k-cycles. The number of linearly independent homology gen-
erators is called a Betti number,

βk = dim Hk = dim(Zk ) − dim(Bk ). (2)

Informally, β0 is the number of connected components; β1

is the number of one-dimensional cycles or “loops” (that is,
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FIG. 2. Persistent homology of a graph according to an edge-value clique (EVC) filtration. (a) An undirected graph G(V, E ) with a scalar
function f : E → R defined over the edges E . We apply an EVC filtration to the graph by considering a monotonically decreasing filtration
parameter ε = (0, 5], and by considering a filtered sequence of graphs G(V, Eε ), where Eε = {(i, j)| f (i, j) > ε} is the subset of edges for
which f (i, j) are larger than a threshold ε. (b) Visualization of the graphs’ associated clique complexes Kε ≡ K (G(V, Eε )) for several ε.
(c) A persistence barcode summarizes how the zero-dimensional (red) and one-dimensional (blue) homological k-cycles of Kε change with
decreasing ε. The arrows highlight two events: at ε = εb, a homological 1-cycle involving four edges is born; at ε = εd , the 1-cycle dies, since
it is “filled in” by a 1-simplex and two 2-simplices.

not including the triangular boundaries of 2-simplices) and
β2 is the number of two-dimensional holes or “voids” (e.g.,
the interior of a triangulated sphere). For the SC shown in
Fig. 1(b), β0 = 1 since there is one connected component,
and β1 = 2 since there are two cycles that are not simply the
boundaries of 2-simplices.

By formulating k-cycles algebraically, one can consider the
linear dependence and independence of k-cycles. As such,
one can not only identify cycles, but also investigate the
relations and connectivity between cycles, which we find to
be instrumental for understanding pattern formation for cy-
cles. We also highlight that a given homological k-cycle can
potentially have more than one homological generator. Such
generators are said to be homologically equivalent, and they
can be obtained by considering linear combinations of k-
cycles (including both homological k-cycles and boundaries).
We will later show that this complicates the investiga-
tion of convection cycles through the lens of homological
k-cycles.

B. Persistent homology of scalar functions defined over edges

One of the greatest tools of topological data analysis is the
study of persistent homology [1,2]. Here, we examine how the
homology of a topological object changes as it undergoes a
filtration to yield a monotonically increasing sequence X0 ⊆
X1 ⊆ X1 ⊆ . . . (e.g., of simplicial complexes {Xt }). We con-
sider filtrations in which one has a scalar function f : E −→ R
over the edges, and each edge (i, j) ∈ E is retained or removed
according to f (i, j). The values f (i, j) could be edge weights
for a weighted graph, but in general they can encode any scalar
property. We visualize such a graph and the values f (i, j) in
Fig. 2(a).

We call the process an edge-value clique (EVC) filtration
and we construct it as follows. Given a graph G(V, E ) and a fil-
tration function f , we define the subsets Eε = {(i, j)| f (i, j) >

ε} in which one retains edges only for which f (i, j) is suffi-

ciently large. Note that the subsets {Eε} are nondecreasing as
ε decreases (i.e., Eε ⊆ Eε′ for any ε′ < ε). We must specify
a range over which to decrease ε ∈ (εB, εA], and in practice
we assume εA > max(i, j)∈E f (i, j) and εB < min(i, j)∈E f (i, j).
It then follows that Eε = ∅ is an empty set of edges when
ε � εA, and Eε = E (i.e., all edges are retained) when ε � εB.
See [25] for our codebase that implements EVC filtrations by
adapting the TDA framework called Gudhi [22], and which
reproduces the results of this paper.

In Fig. 2(b), we visualize a sequence of filtered clique
complexes {Kε} that are associated with the filtered graphs
{Gε} that are defined with the edge sets {Eε}. In Fig. 2(c), we
summarize the persistent homology of {Kε} in a persistence
barcode, which reveals how homology changes with ε. Ob-
serve that when ε is sufficiently large, Kε contains vertices
but no edges. On the other hand, when ε decreases to be suf-
ficiently small, then Kε recovers the original clique complex
[recall Fig. 1(b)]. The values of ε that were used to create
Fig. 2(b) are indicated by the vertical dotted lines in Fig. 2(c).

Each horizontal bar in the persistence barcode shown in
Fig. 2(c) indicates the lifetime of a homological 1-cycle—that
is, the values of ε for which it exists. The red and blue bars
reflect 0-homology and 1-homology, respectively. The dimen-
sions of the homology spaces (i.e., Betti numbers) can be
found by counting the number of homological 1-cycles at any
particular ε. For example, one can observe that β1 = 0 when
ε = 3.5, β1 = 1 when ε = 2.5, and β1 = 2 when ε = 1.5.
Clearly, the homological 1-cycles are undergoing bifurcations
as ε varies. A persistence barcode is convenient to identify
for each generator: the value εb of ε when it is “born” (i.e.,
the homological k-cycle does not exist when ε > εb); the
value εd of ε when it “dies” (i.e., the homological k-cycle
does not exist when ε < εd ); its lifetime (εd , εb]; and lifespan
|εd − εb|. A cycle’s lifespan quantifies its persistence under
the filtration, and it is often interpreted as a proxy for the
cycle’s significance (although short-lifetime cycles can also
be important in certain contexts).
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FIG. 3. Stationary distribution, edge flows, and convection cycles for an irreversible MC. We study a discrete-time random walk over a
directed, weighted graph that resembles the undirected graph in Fig. 2, except that the edges are now either directed or bidirectional. (Recall that
undirected graphs give rise to reversible MCs that lack convection cycles.) (a) The color of each vertex indicates the stationary distribution πi

of random walkers at each vertex i. (b) Edge colors indicate the stationary flows Fi j = πiPi j across edges, i.e., the stationary fraction of random
walkers that traverse each directed edge. (c) Flow imbalances �i j = (Fi j − Fji ) manifest as a pattern of convection cycles. By construction,
�i j = −� ji, and we use arrows to indicate the directions of imbalance, e.g., i → j if �i j > 0.

C. Convection cycles for irreversible Markov chains (MCs)

We will apply persistence homology to study convection
cycles in irreversible MCs [26], which we now briefly summa-
rize. A discrete-time MC is a “memoryless” random process
in which, for time steps t = 0, 1, 2, . . . , the system state St ∈
V satisfies the Markov property P[St+1 = i|S0 = i0, . . . , St =
it ] = P[St+1 = i|St = it ], which implies that the probability
of a state occurring at the next time step only depends on
the current state and not earlier states. In our case, we con-
sider MCs that correspond to a random walk on a (possibly)
weighted and directed graph having an adjacency matrix A in
which Ai j ∈ R is nonzero if (i, j) is an edge, (i, j) ∈ E , and
Ai j = 0 otherwise. We similarly define a transition matrix,
P = D−1A, where D is a diagonal matrix with entries that
encode the (possibly) weighted vertex degrees Dii = ∑

j Ai j .
For directed graphs, each (i, j) is considered to be an ordered
pair, and each Dii encodes the out-degree of vertex i. Each
matrix element Pi j gives the probability for a random walk to
transition from vertex i to j. Letting xi(t ) denote the probabil-
ity that the system is in state i (or, equivalently, the probability
that a random walker is at vertex i) at time t , one can utilize
the Markov property to obtain the linear discrete-time system
x j (t + 1) = ∑

i xi(t )Pi j . By defining x(t ) = [x1(t ), . . . , xN0 ]T ,
one equivalently has

x(t + 1)T = x(t )T P. (3)

Since x(t ) is a vector of probabilities, we assume that it is
normalized in 1-norm,

∑
i xi(t ) = 1.

Herein, we focus on network flows after a system reaches
a stationary state, in which case x(t ) converges to a limiting
vector π = limt→∞ x(t ) that satisfies the eigenvalue equa-
tion πT = πT P. By construction, π is a vector of probabilities
and contains non-negative entries. Furthermore, as a row-
stochastic matrix, P has an eigenvalue equal to one (i.e., the
largest eigenvalue) and its right dominant eigenvector is the
vector containing 1’s as entries. Our assumption of conver-
gence requires that matrix P is irreducible and aperiodic [27]
or that the initial condition x(0) lies in a converging subspace.
In the stationary state, the stationary flow across each edge
(i, j) per time step is given by

Fi j = πiPi j . (4)

We study convection cycles using an approach that was
developed in [28]. Specifically, for each edge, we define the
stationary flow imbalance,

�i j = Fi j − Fji. (5)

By construction, � ji = −�i j , and we say that the imbalance
direction is from i to j when �i j > 0. Importantly, the defin-
ing feature of a reversible MC is that �i j = 0 for all i and
j. That is, the directional flows match πiPi j = π jPji for any
edge (i, j). This is the case for any undirected graph, since
in this case A = AT , and it follows that πi = Dii/

∑
j D j j .

In contrast, an irreversible MC yields asymmetric stationary
flows and �i j is nonzero for some edges. To formally define
convection cycles, we consider a new graph G�(V, E�) such
that each positive value �i j gives rise to a directed edge
(i, j,�i j ) ∈ E� having weight �i j . We then define a convec-
tion cycle to be any nonintersecting closed path in G�(V, E�).

In Fig. 3, we illustrate, for an example MC, how flow
imbalances manifest as a pattern of convection cycles. In
Figs. 3(a)–3(c), we use edge colors to indicate the stationary
distribution π , stationary edge flows Fi j , and flow imbalances
�i j , respectively. Observe that some of the arrows in Figs. 3(a)
and 3(b) are bidirectional, since some of the graph’s edges
are bidirectional. In contrast, the arrows in Fig. 3(c) are ex-
clusively directed since they now indicate the directions of
flow imbalances. There exists an edge i → j only if �i j > 0,
which also implies j → i is not an edge since � ji = −�i j .
Observe in Fig. 3(c) that this yields five convection cycles. In
Sec. III B, we will further discuss these convection cycles and
their relation to homological 1-cycles.

Before continuing, we highlight that convection cycles re-
vealed through flow imbalances [28] do not take into account
the probability of transitioning to or away from a convection
cycle, and so they are not necessarily “cyclic traps.” That
is, the presence of a convection cycle does not imply that
it is unlikely for a random walker to leave (or move in an
opposite direction as) the cycle. For example, observe in
Fig. 3 that the counterclockwise flow around convection cycle
A → B → C → D is approximately 0.025, yet there is a flow
of approximately 0.02 that leaves the cycle at node D, and
a flow of approximately 0.15 moves in the opposite direction
from node C to B. Future research will likely uncover comple-
mentary notions of convection with different advantages and
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FIG. 4. Persistent homology of convection cycles. (a) Visualization of an EVC filtration applied to flow imbalances arising for the
irreversible MC shown in Fig. 3, and we use the magnitude |�i j | of flow imbalance as the filtration function f : E → R. We indicate the flow
imbalances’ directions with arrows, noting that the clique complexes that are constructed by the filtration are undirected, since the filtration
does not incorporate information about edge directions. (b) Persistence barcodes for homological 1-cycles. Observe that the 1-cycle that first
appears dies before the other 1-cycles are born.

disadvantages, and our proposed techniques using persistent
homology can likely be similarly extended.

III. HOMOLOGICAL ANALYSES OF CONVECTION

We now employ persistent homology to automate the
detection, characterization, and summarization of the homo-
logical patterns of convection cycles. In Sec. III A, we study
the MC that was presented in Fig. 3. In Sec. III B, we discuss
the relation between convection cycles and homological 1-
cycles.

A. Persistent homology of convection cycles

Recall from Sec. II B that EVC filtrations were defined
for an undirected graph with a scalar function defined on
the edges. Therefore, given an MC corresponding to a (po-
tentially) directed and weighted graph, we first consider the
associated undirected graph. Then we study homology under
an EVC filtration in which the filtration function f : E −→ R
is given by the magnitudes of the flow imbalances,

f (i, j) = |�i j |. (6)

In this way, the persistent homology that is revealed cor-
responds to the convection cycles that arise under flow
imbalances.

In Fig. 4, we visualize persistence barcodes for an EVC
filtration associated with the convection cycles shown in
Fig. 3(c). Note that this figure is analogous to Fig. 2(c), where
we had previously chosen the filtration function f (i, j) to be
the edge weights. Since we now use a different function f , the
cycles now have different births, deaths, lifetimes, and lifes-
pans. Interestingly, the 1-cycle involving vertices {A, B,C, D}
is now born and dies before the other two 1-cycles are born.
While there is an obvious connection between the EVC ho-
mology of a graph induced by edge weights and that which is
induced by convective flows, this relation remains unclear and
should be explored in future work.

We note that one could also construct EVC filtrations by in-
creasing ε and retaining edges (i, j) for which |�i j | is smaller
than ε. In the Appendix, we provide an example illustrating
why EVC filtrations with decreasing ε are superior to those
with increasing ε for the goal of studying convection cycles.
In particular, EVC filtrations that decrease ε focus on 1-cycles
that are associated with large-flow convection cycles (i.e.,
large values of |�i j |), which we consider to be the ones that
are more significant. In contrast, EVC filtrations that increase
ε focus on 1-cycles that are associated with small-flow con-
vection cycles (i.e., small values of |�i j |), which we consider
to be less significant.

B. Comparing convection cycles and homological 1-cycles

We propose to study pattern formation for convection
cycles using persistent homology techniques for homologi-
cal 1-cycles; however, one should keep in mind that these
are two different notions for cycles. Homological 1-cycles
are one-dimensional holes for a topological space, and
k-cycles generalize to higher dimensions by representing
higher-dimensional holes (Sec. II A). In contrast, we define
convection cycles to be closed nonbacktracking paths in a
directed graph that encodes flow imbalances (Sec. II C). In
this section, we will clarify the relationship between homo-
logical k-cycles and convection cycles, thereby revealing the
capabilities and disadvantages of existing persistent homology
techniques for studying convection cycles. Continuing with
the previous example (see Figs. 3 and 4), we find that flow
imbalances give rise to five convection cycles, which we enu-
merate I–V and visualize in Fig. 5(a). In contrast, we identify
three homological 1-cycles using persistent homology with
EVC filtrations, which we enumerate (i)–(iii) and visualize in
Fig. 5(b).

Observe that there is a one-to-one correspondence between
convection cycles I and II and homological 1-cycles (i) and
(ii). Also observe that homological 1-cycle (iii) has three
homologically equivalent generators, and any of them can
be used to represent the 1-cycle (which, again, is defined as
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homological 1-cycle (ii) homologically equivalent generators for 1-cycle (iii)

(a)

homological 1-cycle (i)

(b)

convection cycle II convection cycle III convection cycle IV convection cycle Vconvection cycle I

inconsistent

FIG. 5. Relation between convection cycles and homological 1-cycles. (a) The flow imbalances shown in Fig. 3(c) give rise to five
convection cycles, which we label I–V. (b) Persistent homology using EVC filtrations applied to a network of flow imbalances reveals three
homological 1-cycles, which we label (i)–(iii). Each homological 1-cycle represents a “one-dimensional hole” and can be represented by
one or more homological generator (recall Sec. II A). Observe that there is a one-to-one correspondence between convection cycles I and
II and homological 1-cycles (i) and (ii). In contrast, there are three homologically equivalent generators for 1-cycle (iii), as shown. Two of
the generators correspond to convection cycles III and IV. The third generator does not correspond to a convection cycle because the edge
directions are not consistently in the same orientation (i.e., always clockwise or counterclockwise).

a one-dimensional hole). Each subsequent generator can be
obtained via a topological retraction in which a 2-simplex is
collapsed down onto one of its edges. Interestingly, the first
two homological generators for 1-cycle (iii) correspond to
convection cycles III and IV. In contrast, the third generator
corresponds to a loop that is not a convection cycle since
the flow-imbalance directions do not point in a consistent di-
rection along the cycle (i.e., clockwise or counterclockwise).
Finally, observe that convection cycle V is a boundary of a
2-simplex, and it therefore does not contribute to the one-
dimensional simplicial homology.

Thus, it is important to not misinterpret one notion of cycle
for the other. At the same time, our findings in Fig. 5 also
highlight that there is a need for new persistent homology
techniques that cater specifically to convection cycles and di-
rected graphs. For example, if one were to omit the 2-simplex
that involves vertices A, B, and D from the clique complexes
that arise under an EVC filtration, then convection cycle V
would coincide with a homological 1-cycle. However, the aim
of this paper is not to develop new methods for persistent ho-
mology. Instead, we proposed to begin this pursuit by studying
convection cycles using existing methods for persistent ho-
mology. Even though there is not an exact one-to-one match
between convection cycles and homological 1-cycles because
they are closely related, we find that persistent homology
can effectively detect and summarize the convection cycles’
patterns.

IV. APPLICATIONS

In this section, we apply our approach to two applications.
In Sec. IV A, we study MCs arising for the Google PageRank
algorithm, exploring how convection cycles are affected by
the teleportation parameter α. In Sec. IV B, we study a type of
emergent convection cycle called a chiral edge flow.

A. Teleportation is a homology regularizer for PageRank

We now study the persistent homology of convection cy-
cles arising for the PageRank algorithm [23,29], which is a
popular technique to rank the importance of vertices in graphs.
It has been applied to numerous applications (see survey [30]),
but most notably, for many years it was utilized by Google to
rank website and facilitate web search. The PageRank of a
vertex i is given by the stationary density πi(α) of MC having
a transition matrix of the form

P(α) ≡ αP + (1 − α)N−111T , (7)

where P is the transition matrix described in Sec. II C and
α ∈ (0, 1) is the teleportation parameter. As α → 1, the sec-
ond term vanishes and P(α) → P. Usually, α is chosen to be
near 1 (often 0.85) so that the second term can be considered
as a small perturbation that improves the mathematical char-
acteristics of P—or, more formally, it is a “‘regularization”
of matrix P. In particular, when α ∈ (0, 1), the matrix P(α)
is guaranteed to be irreducible, aperiodic, and positive, and
the Perron-Frobenius theorem [27] ensures that its dominant
left eigenvector π is unique and has positive entries [i.e.,
πi(α) > 0 for all i]. In other words, the PageRanks are well
defined for all vertices.

We now show that the introduction of teleportation also
regularizes the homology of convection cycles. In this experi-
ment, we construct EVC filtrations with the filtration function
f (i, j) = |�i j (α)|, which now depends on α. In Fig. 6(a), we
illustrate for several choices of α the flow imbalances that
arise under PageRank, which we apply to the graph from
Fig. 3(a). In Fig. 6(b), we visualize their associated persistence
barcodes, which we create using EVC filtrations. Note that
the choice α = 1 recovers the transition matrix, stationary
distribution, flow imbalances, and persistence barcodes that
were were previously studied in Figs. 3 and 4.
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(a)

(b)

FIG. 6. Persistent homology of convection cycles arising under PageRank. We study the MC associated with PageRank for the directed
graph from Fig. 3(a) under several choices of α. (a) Flow imbalances �i j (α) give rise to convection cycles. For clarity, we do not
visualize flow imbalances for transitions due to teleportation. (b) Their homology changes with α, which is summarized by persistence
barcodes.

Observe that the homological patterns of convection cy-
cles significantly change with α. For example, when α

is sufficiently small, the homological 1-cycle {A, B,C, D}
vanishes—it is “washed out” by the introduction of teleporta-
tion. In other word, α is a homology regularizer. This is further
illustrated in Fig. 7(a), where we plot the birth and death
times of homological 1-cycles versus α. For comparison, we
also plot the PageRanks πi(α) in Fig. 7(b). The vertical line
highlights that one of the 1-cycles vanishes when α decreases
(approximately) below α∗ = 0.54.

(a)

(b)

FIG. 7. Bifurcation diagram summarizes homological changes
onset by α. (a) Birth and death times εb,d of 1-cycles arising under
PageRank vs α. (b) For comparison, we depict the vertices’ PageR-
anks πi(α). Vertical dashed lines near α∗ = 0.54 highlight that there
are three cycles when α > α∗, but only two when α < α∗.

In the Appendix, we present additional experiments that
explore convection cycles arising under PageRank with α =
0.8. We show that homological 1-cycles arising for EVC
filtrations with decreasing filtration parameter ε reveal pat-
terns for large-flow convection cycles. In contrast, when EVC
filtrations are constructed with increasing ε, we find that the
resulting homological 1-cycles relate to small-flow convection
cycles and, in particular, those involving low probability tele-
portation transitions.

B. Persistent homology of chiral edge flows

Our second application investigates homological patterns
of convection cycles that arise for an MC that models the
stochastic configuration dynamics of two monomers. We
adopt the same notation as in [20], which motivated our ex-
periment. The monomer configuration (i.e., “external state”)
is given by the number of monomers of each type, (s1, s2),
whereas the “internal state” is one of four possibilities: a, b, c,
or d. Transitions that involve a change of internal state occur at
rate γin, whereas transitions between involving external states
(i.e., the addition or removal of a monomer) occur at rate
γex. The resulting MC can be visualized as a two-dimensional
lattice, which we visualize in Fig. 8.

In Fig. 9(a), we visualize flow imbalances for transitions
between the external states. We fix γin = 0.01 and consider
several γex. Observe that as γex increases, a large counter-
clockwise convection cycle emerges on the boundary (i.e.,
“edge”) of the lattice. This type of convection cycle is called
a chiral edge flow, and such convection cycles have important
implications for the quantum Hall effect, biological rhythms,
and the dynamics of monomers [20]. In Fig. 9(b), we visualize
persistence barcodes for EVC filtrations constructed using the
method that we described in Sec. III A. The chiral edge cycle
corresponds to the 1-cycle with having the largest lifespan,
and its homology becomes more persistent (i.e., prominent)
in the limit γex � γin.
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FIG. 8. MC model for configuration dynamics of a monomer.
The system contains two monomers of sizes s1 and s2, respectively,
giving the external state (s1, s2). Moreover, there are four internal
states: a, b, c, and d. Transitions involving changes to external and
internal states occur at rates γex and γin, respectively.

V. DISCUSSION

In this paper, we examined the patterns of convection cy-
cles that arise under irreversible Markov chains (MCs) from
the perspective of persistent homology. Our approach required
formalizing a type of filtration (EVC filtration) for scalar func-
tions that are defined on the edges of a graph, and we studied
convection cycles by choosing the filtration function to be an
MC’s flow imbalances in the stationary state. Because Markov
chains are crucial to so many diverse applications, we expect
our methods to be broadly applicable across the sciences and
engineering. Herein, we highlighted two such applications:
the PageRank algorithm for centrality analysis and chiral edge
flows that arise for the configuration dynamics of monomers.
Our experiments revealed how system properties can act as
homology regularizers of convection cycles, and we intro-
duced homological bifurcation diagrams to summarize these
changes. This approach automates the detection, summary,
and examination of convection cycles over networks, places it
on stronger mathematical and computational foundations, and
paves the way for further investigation into convective flows
on networks.

Additionally, our work highlights the need for new per-
sistent homology methods to study convection cycles as well
as other functions and signals defined on directed graphs. In
Sec. III B, we discuss the relation between convection cycles
and homological 1-cycles, and we show that these are two
closely related, but notably different notions of cycles. Some-
times there is a one-to-one correspondence between these

(a)

(b)

FIG. 9. Persistent homology chiral edge flow. (a) Flow imbal-
ances �i j between external states for the bimonomer shown in Fig. 8
with γin = 0.01 and different γex. In the limit γex � γin [20], there is
an emergence of a chiral edge flow, i.e., a convection cycle around the
lattice’s outer boundary. (b) The corresponding persistence barcodes
capture the emergence of this prominent convection cycle and other
convection cycles within the lattice.

cycles, and sometimes the relation is more complicated, due
in part to the fact that a given homological k-cycle can be
equivalently represented by possibly more than one homolog-
ical generator. Such generators may or may not correspond
to convection cycles. Moreover, convection cycles can also
correspond to the boundaries of 2-simplices and, as such, they
will not be identified via the traditional tools of persistent
homology. Developing persistent homology techniques that
cater to convection cycles, and which specifically account for
edge directions, remains an important open challenge for the
applied mathematics and physics communities.

Our work opens up several other lines of research that
are also worth noting. First, convection cycles were recently
found to be an emergent property of multiplex Markov chains
[28] in which a set of (intralayer) Markov chains are coupled
together by another set of (interlayer) Markov chains. It would
be interesting to employ persistent homology to gain a deeper
understanding of this phenomenon. Second, chiral edge flows
are known to be important to other applications including the
quantum Hall effect and biological rhythms [20], and future
work could utilize our methods to investigate these exciting
applications. Notably, our methods can reveal convection cy-
cles that exist in addition to a chiral edge flow, which may lead
to new insights for these applications and other applications
(e.g., reinforcement learning) that rely on irreversible Markov
chains.

See [25] for a codebase that reproduces our results and can
be used to study the persistent homology for convection cycles
arising for other applications.
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(a)

(b)

FIG. 10. Comparing EVC filtrations with decreasing and increasing filtration parameter ε. Extending our study in Sec. IV A that uses
persistent homology to study convection cycles arising for a MC under the PageRank algorithm with α = 0.8, we now study homological
1-cycles obtained via two different EVC filtrations. (a) Similar to our results in Fig. 6, we construct EVC filtrations by including edges for
which |�i j | > ε while decreasing ε. Observe that the 1-cycles reveal large-flow convection cycles that are associated with large values of |�i j |.
(b) For comparison, we construct EVC filtrations by including weighted edges |�i j | < ε while increasing ε. Observe that these 1-cycles now
correspond to small-flow convection cycles that are associated with small values of |�i j |. They primarily describe low-probability transitions
that occur due to teleportation. In this work, we focus on EVC filtrations with decreasing ε, since we consider high-flow convection cycles to
be the ones that are the most important.

APPENDIX: CONVECTION CYCLES ARE BETTER
REVEALED BY FILTRATIONS THAT DECREASE THE

FILTRATION PARAMETER ε VERSUS INCREASE ε

In Sec. II B, we defined EVC filtrations in which one
decreases a filtration parameter ε, retaining edges for which
f (i, j) > ε. Our numerical experiments that study convection
cycles using persistent homology use this approach and let
the filtration be given by the flow imbalances f (i, j) = |�i j |.
By decreasing ε, the cycles that are first revealed correspond
to large-flow convection cycles, which we consider to be
the ones that are more significant. One could also construct
EVC filtrations by increasing ε and retaining edges for which

f (i, j) < ε. Here, we show that this latter filtration reveals
1-cycles that relate to small-flow convection cycles, which we
consider to be insignificant.

In Fig. 10, we study EVC filtrations applied to flow imbal-
ances arising under the PageRank algorithm with α = 0.8 for
the same MC that we investigated in Sec. IV A. In Figs. 10(a)
and 10(b), we illustrate EVC filtrations with decreasing and
increasing ε, respectively. Observe in Fig. 10(a) that the
1-cycles revealed by decreasing ε correspond to large-flow
convection cycles. In contract, observe in Fig. 10(b) that the
1-cycles revealed by increasing ε are small-flow cycles that
relate to low-probability transitions that occur due to telepor-
tation.
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