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Scale-invariant representation of machine learning
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The success of machine learning has resulted from its structured representation of data. Similar data have
close internal representations as compressed codes for classification or emerged labels for clustering. We observe
that the frequency of internal codes or labels follows power laws in both supervised and unsupervised learning
models. This scale-invariant distribution implies that machine learning largely compresses frequent typical data,
and simultaneously, differentiates many atypical data as outliers. In this study, we derive the process by which
these power laws can naturally arise in machine learning. In terms of information theory, the scale-invariant rep-
resentation corresponds to a maximally uncertain data grouping among possible representations that guarantee a
given learning accuracy.
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I. INTRODUCTION

The remarkable performance of machine learning [1–3] is
due to the internal representation, denoted by z, of features ex-
tracted from data by neural network models. Here, z functions
as effective representations to discriminate images, speech,
time series for pattern recognition [4], classical and quantum
phases in matters and active matters [5–8], chemical struc-
tures for drug discovery [9,10], time arrows of nonequilibrium
dynamics [11], etc. Therefore, understanding the mechanism
behind the effective feature distillation of neural network
models is a fundamental problem in machine learning.

The information bottleneck theory interprets machine
learning as information compression and transmission as
described by communication theory [12]. Neural networks
encode internal representations z that maximally compress
irrelevant information in input data x to restore desired outputs
y, called labels. Given data without labels, autoencoders use
input itself as output y = x [13]. Then, the self-supervised
learning can perform the dimensional reduction of data by
providing a compressed representation z that can faithfully
reproduce x. In particular, when the transformation of x → z
is a linear mapping, the machine corresponds to principal
component analysis [14,15]. In addition to the self-supervised
learning, unsupervised learning such as restricted Boltzmann
machines (RBMs) and deep belief networks have also been
used for dimensional reduction of x [16]. In unsupervised
learning, the internal representation z can be interpreted as
emergent labels for each x.

The representations z sometimes reflect features them-
selves, edges detected in image recognition [17]. On the other
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hand, z can be considered as a dummy code, the frequency of
which only matters when no prior knowledge of x is provided.
Let us focus on compressing structures of neural networks
in which internal layers have lower dimensions as they are
farther from input layers. Interestingly, given the compressing
structures, a recent work observed that the frequency of z
follows power laws in RBMs [18,19], reminiscent of critical-
ity in statistical mechanics [20]. Using the dummy code z as
emergent labels of x, the frequency of z can be interpreted
as a cluster size of x labeled by z. Then, the power laws
imply that the cluster size distribution is scale invariant. It
is an interesting challenge to address how these power laws
arise during the learning process devoid of any specific in-
struction for scale invariance. Song et al. have derived that the
power-law clustering is an entropy-maximized distribution at
a certain compression level of z in RBMs [18]. In this study,
we extend this idea using information theory, and show that
the power-law scaling of the cluster size distribution emerges
naturally not only in unsupervised learning, but also in super-
vised learning.

This paper is organized as follows. In Sec. II, we show that
various machine learning models have scale-invariant distri-
butions for their internal representation. We then explain the
emergence of this scale invariance using information theory
in Sec. III. Finally, we summarize and discuss our findings in
Sec. IV.

II. POWER LAWS IN MACHINE LEARNING

We first reproduce that the frequency of z follows power
laws in RBMs [Fig. 1(a)]. Next, we observe that the scale-
invariant internal representation is also found in supervised
learning [Figs. 1(b) and 1(c)]. Finally, we examine how the
emergence of power laws can depend on learning processes
and data preparation. To aid in reproducing our results, we
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FIG. 1. Scale-invariant internal representations of machine learning. (a) Unsupervised learning of restricted Boltzmann machine (RBM)
with MNIST dataset. The network architecture of RBM models comprises visible and hidden units of x and z. An image x of MNIST was
reconstructed to x̂ through the hidden representation z. (b) Supervised learning with image dataset of Fashion-MNIST. The architecture of
a deep neural network consists of input x, hidden zμ(μ = 1, 2, 3), and output ŷ. Note that the number of nodes is arbitrary for a schematic
visualization. (c) Self-supervised learning with EMNIST dataset. The model had a symmetric structure with the bottleneck layer z2. Right
panels show corresponding log-log plots between the degeneracy m(k) and frequency k of internal representations: z (circles) for RBM; z1

(triangles), z2 (squares), and z3 (circles) for supervised and self-supervised learning.

have provided the complete source code and documentation
on GitHub [21].

A. Unsupervised learning

The goal of unsupervised learning is to extract the inherent
probability distribution p(x) of data x. In contrast, supervised
learning extracts the paired information between x and label
y. RBM is a representative neural network for unsupervised
learning that is composed of an input layer for x and a hidden
layer for z [22,23]. RBMs have a special graph structure in

which input nodes are not connected to other input nodes,
and the same is true for hidden nodes [Fig. 1(a)]. This al-
lows the factorization of a conditional probability p(z|x) =∏

i p(zi|x) for z = (z1, z2, . . . , zm) and p(x|z) = ∏
j p(x j |z)

for x = (x1, x2, . . . , xn). The goal of RBM, that of matching
the model distribution p(x) into the data distribution p̂(x), is
achieved by the contrastive divergence algorithm, a type of
sampling method which uses the forward probability p(z|x)
and backward probability p(x|z) [24].

To perform unsupervised learning, we used the MNIST
dataset [25], which consists of 60 000 training and 10 000
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FIG. 2. Power-law data clustering. (a) The size distribution of data clusters via internal representation z of the restricted Boltzmann machine
(RBM, blue circles) and k-means clustering (coral squares). (b) Two-dimensional visualization of z using t-distributed stochastic neighbor
embedding (t-SNE) with different colors for different z. (c) t-SNE plot of x with different colors for different k-means clusters. We set
k = 2048 to be comparable with the total number (≈2000) of distinct states in the RBM.

testing images of 28 × 28 pixels of 10 different hand-written
digits (0–9). After the RBM successfully generates original
digit images, we counted the frequencies kz of specific z
allowing the mapping of different images of x into the same z.
We observed that the neural networks exhibited a few frequent
z and many rare z, which is described by the degeneracy
of the frequency k, m(k) = ∑

z δ(k − kz ). It is of particular
interest that the frequency degeneracy follows power laws of
m(k) ∼ k−β−1 [Fig. 1(a)], as reported in Song et al. [18]. The
scale-invariant cluster size distribution was nontrivial given
that the representative clustering method of k means, based
on the Euclidean distance between data, produced unipolar
distribution with a characteristic cluster size [Fig. 2(a)]. The
different cluster size distributions can be further visualized
using two-dimensional projection through the t-distributed
stochastic neighbor embedding (t-SNE) method [Figs. 2(b)
and 2(c)]. The scale-invariant distribution of RBMs may lead
to a functional advantage in classifying data into a large
cluster of frequent typical data, and many small clusters of
atypical data as outliers.

B. Supervised learning

The goal of supervised learning is to predict true labels y
from input data x. In communication theory (y → x → z →
ŷ), a message y is transferred to a noisy code x, which is then
mapped into a compressed code z. Finally, we decode z to
obtain ŷ. The transmission succeeds if the decoded message is
consistent with the true message (ŷ = y).

As a concrete example, we consider the Fashion-MNIST
dataset [26], in which labels y are assigned to 10 fashion
products such as sneakers and shirts. The labels are assigned
to 70 000 (60 000 training and 10 000 test) 28 × 28 pixel im-
ages of x. Using a deep neural network, we transformed x →
z1 → z2 → z3 → ŷ while reducing the dimension of the cor-
responding layers from 784 to 70, 50, 35, and 10 [Fig. 1(b)].
Here, true labels y are expressed as 10-dimensional one-hot
vectors, the components of which have values between 0 and
1. The network is trained to reduce the discrepancy between y
and ŷ.

Once the classification accuracy for the test data reached
87%, we examined frequencies of internal representations of
z1, z2, and z3. Because these representations have continuous
values in multilayer perceptrons, we binarized them to count
finite coarse-grained representations. We counted frequencies
kz of discretized z allowing the mapping of different images of
x into the same z. It is of particular interest that the frequency
degeneracy followed power laws of m(k) ∼ k−β−1, where the
exponent β depends on the dimension of the μth hidden layers
zμ [Fig. 1(b)]. We confirmed that the existence of power
laws was insensitive to the binarization threshold, and the
power-law exponents did not depend on the initialization of
learning. Furthermore, our conclusion was robust on varying
the architecture depth and width of neural networks, if they
had narrowing structures for compressing. It is noteworthy
that the scale invariance had never been instructed by the
learning algorithm.

C. Self-supervised learning

In real-world datasets, labels are not always available. For
such datasets, if x plays the role of label y = x, self-supervised
learning models are referred to as autoencoders, which are
useful for dimensional reduction [13], denoising [27], and
generation [28,29]. In particular, the structure of x → z → x̂
implies that the compressed representation z is used to re-
construct the original x [Fig. 1(c)]. This study focuses on the
compressing conditions where the dimension of z is smaller
than that of x. Unlike the narrowing networks, widening net-
works map different x into different z. Hence, the frequency
of representation z is trivial, with kz = 1.

Autoencoders are closely related to RBMs. The unfolded
structure of the forward and backward processes of x ↔ z in
RBMs can be interpreted as information flows of x → z → x̂
in autoencoders where the weight parameter of the encoder
part is the transpose of the weight parameter of the decoder
part [30]. However, it is noteworthy that z is a stochastic and
discrete variable in RBMs, whereas z(x) is a deterministic
and continuous function of x in autoencoders. Nevertheless,
if one adopts the sigmoid function as the activation function
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for autoencoders, z(x) can be interpreted as the expectation
value E[z] of z in RBMs.

We confirmed that binarized z of the autoencoders also
showed the power-law scalings when we carried out all-to-
all connected multilayer perceptron learning on the above
Fashion-MNIST data (data not shown). Instead of repeating
with the same dataset, here we considered another dataset,
EMNIST, consisting of hand-written images of 10 digits (0–9)
and 26 uppercase (A–Z) and lowercase letters (a–z) [31].
Among them, we trained 30 000 lowercase letters with deep
structure of autoencoders x → z1 → z2 → z3 → x̂. Once the
reconstructed image x̂ faithfully reproduced the original im-
age x, we counted the frequency of zμ of each hidden layer.
The frequency degeneracy m(k) again followed power laws in
every hidden layer with different exponents [Fig. 1(c)].

To examine the robustness of our findings, we replaced
the sigmoid activation function with a rectified linear unit
(ReLU) function. Then, we confirmed that power laws re-
mained evident with the ReLU activation (data not shown).
Next, we examined a convolutional neural network (CNN)
that incorporated the information of proximal sites of x, which
is known to show excellent performance for image recognition
[32]. We considered CIFAR-10, consisting of 50 000 training
and 10 000 testing 32 × 32 color images in 10 classes, such as
airplane and automobile [33]. We then adopted convolutional
autoencoders. Once the reconstructed image x̂ faithfully re-
produced the original image x, we counted the frequency of
z, and confirmed that the frequency degeneracy m(k) again
followed power laws (Fig. 3), although they were less promi-
nent than the previous ones in Fig. 1. For the successful image
reconstruction, the CNN is required to have high-dimensional
internal representations with many filters. On the other hand,
the increased model complexity caused undersampling for a
given data. The trade-off hindered a clearer confirmation of
the existence of power laws in the CNN.

D. Learning and data

We also considered the question of whether these power
laws originate from learning processes, or merely from data
distributions.

Suppose that neural networks start with random initial pa-
rameters before learning. Then, input data x are transformed
to random internal representations. Depending on parameter
initialization schemes, a shallow internal representation z1

sometimes displays a power-law scaling (Fig. 4). However,
deep internal representation of zμ for μ > 1 experiences re-
peated transformations with random weights, which averages
out the signal transfers, and converges into a few trivial rep-
resentations. Therefore, the robust emergence of power laws
clearly requires a learning process. This excludes the pos-
sibility that the power laws may result from an artifact of
random binarization of internal representations. However, it is
surprising that a single epoch, which processes every training
sample once, is sufficient to begin to show power-law scaling.

Next, the power laws should depend on original data distri-
butions. For example, when data include identical samples,
the distribution of corresponding internal representations is
trivially influenced by the frequency of the identical samples.
Although the image data in our study did not include identical

FIG. 3. Internal representations of a convolutional neural net-
work (CNN). (a) Architecture of a CNN with three internal layers
of z1, z2, and z3. Image data of CIFAR-10 reconstructed through the
self-supervised learning of the CNN. (b) Frequency distributions of
internal representations: z1 (purple triangles), z2 (green squares), and
z3 (blue circles).

samples, one may speculate that they have complex structures
which generate the power laws without a learning process. To
check this possibility, we examined structureless patterns x
sythesized by two-dimensional Ising models. The Ising model
has equilibrium patterns of x depending on its energy,

E (x) = −J
∑
〈i, j〉

xix j, (1)

where 〈i, j〉 represents the nearest-neighboring pairs, and we
set J = 1. Then, the realization probability of a pattern x
follows the Boltzmann distribution, as given below.

p(x) = exp[−E (x)/T ]

Z
, Z =

∑
x

exp[−E (x)/T ]. (2)

Depending on temperature T , diverse patterns can be gener-
ated. Low temperature produces simple patterns including a
few defects, whereas high temperature produces random pat-
terns mixing white (xi = 1) and black (xi = −1) pixels. At the
critical temperature (T ≈ 2.26) in the two-dimensional Ising
model, complex patterns arose with long-range correlations
between pixels. For the simulation of the Ising model, we
considered a 10 × 10 square lattice, and used a Monte Carlo
method with the Metropolis algorithm under low (T = 1.53),
critical (T = 2.26), and high (T = 3.28) temperatures. We
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FIG. 4. Data clustering during learning processes. Supervised learning of MNIST data through three internal representations of z1, z2, and
z3. The frequency distributions of internal representations: z1 (purple triangles), z2 (green squares), and z3 (blue circles) at (a) 0, (b) 1, (c) 10,
and (d) 100 epochs. Data beyond the window size, log k > 6.5, were ignored.

prepared 50 000 equilibrium samples at each temperature.
Because low temperature produces simple patterns, many
identical samples of x were inevitably included in the low-
temperature samples. We input the diverse Ising patterns of
x to a shallow autoencoder (x → z → x̂) including a single
hidden layer. For the self-supervised learning of the Ising
patterns, we changed xi = −1 of black pixels into xi = 0. The
autoencoder was trained to reconstruct a pattern x̂ identical
with the input x. Given the input x and transformed z, we
obtained their frequencies kx and kz, and then their degeneracy
distributions of m(kx ) and m(kz ) for x and z (Fig. 5). Note that
we introduced new notations of m(kx ) and m(kz ) to distinguish
the degeneracy m(k) for kx and kz. As expected, the peculiar
input distribution of kx due to identical samples at low temper-
ature was trivially reflected in the distribution of kz. However,
if sufficiently diverse patterns, generated above critical tem-
perature, were used for learning, their internal representations

follow power laws. This result lends support to our observa-
tion of power laws not only for natural images, but also for
synthetic structureless images, unless input data distributions
exhibit unusual shapes with many identical samples.

III. THEORY

The mechanism by which these power laws arise fre-
quently in various machine learning operating on diverse data
poses an intriguing question. None of the learning algorithms
were instructed as to the special shaping of z. Our claim is that
the power laws correspond to entropy-maximized distribu-
tions among possible distributions that satisfy given learning
accuracies (Fig. 6). To progressively investigate this idea, we
first review the information-theoretic concepts of resolution
and relevance [34], and the derivation of the scale-invariant
hidden representations of RBMs [18]. Then, we extend this

044306-5



SUNGYEOP LEE AND JUNGHYO JO PHYSICAL REVIEW E 105, 044306 (2022)

FIG. 5. Self-supervised learning of Ising patterns. 10 × 10 lattice Ising patterns are used for input x for a shallow autoencoder (x →
z → x̂). Output x̂ corresponds to reconstructed patterns. A two-dimensional Ising model was used to generate 50 000 equilibrium samples at
three temperatures (low T = 1.53, critical T = 2.26, high T = 3.28). Input x and internal representation z were characterized with different
degeneracy distributions m(kx ) and m(kz ). For the binarization of z, we used a threshold of 0.4.

reasoning to explain the scale-invariant hidden representations
for self- and authentic supervised learning, which is the major
finding of this study.

A. Resolution and relevance

Let us consider a random variable z, the frequency of
which is kz with a total number of realizations M = ∑

z kz.
The uncertainty of z can be quantified using the Shannon
entropy,

H (Z ) = −
∑

z

kz

M
log

kz

M
. (3)

Because H (Z ) quantifies the effective number of distinct re-
alizations of z, it is referred to as resolution [34]. In terms of

coding theory, H (Z ) corresponds to a minimum description
length for z [20]. Different realizations z may exhibit the same
frequency kz = k. Unless we have any prior knowledge on z,
the frequency kz may be the only feature extractable from z
at this point. Then, it is natural to consider the degeneracy
m(k) of the frequency k. Given the degeneracy m(k), we can
reformulate Eq. (3) in terms of k summation instead of z
summation as

H (Z ) = −
∑

k

km(k)

M
log

k

M
, (4)

with M = ∑
k km(k).
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FIG. 6. Cluster size distribution of machine learning. In super-
vised learning, an input image x is represented by its compressed
code z (blue solid line), and then finally grouped into output y (red
dotted line). Cluster size distribution m(k) of cluster size k for two
clustering scenarios. Two clustering scenarios give the same learning
accuracy. Hence, we consider the question of which is more likely to
occur.

Now let us quantify the uncertainty of k that a certain z has
a frequency kz = k,

H (K ) = −
∑

k

km(k)

M
log

km(k)

M
. (5)

If one does not distinguish states z that have the same fre-
quency kz = k, the variability of frequency k can measure
the amount of relevant information in data. Thus H (K ) is
referred to as relevance [34]. If every z is distinct with the
same frequency kz = 1 and m(1) = M, we have no relevance
H (K ) = 0, although we have a maximal resolution H (Z ) =
log M. In contrast, if every z is identical with kz = M and
m(M ) = 1, we have also no relevance H (K ) = 0, but with
zero resolution H (Z ) = 0. Therefore, these two extreme cases
correspond to a lack of frequency variability, in which we
cannot distinguish z in terms of their frequency kz.

B. Unsupervised learning

The information measures of resolution and relevance have
been adopted to explain the scale-invariant hidden represen-
tations of RBMs [18,20]. The graphical model of RBMs
consists of visible and hidden units of x and z. RBMs are
trained to have a large model probability p(x, z) with a good
pairing of data x and hidden representation z [16]. We can
interpret z as emergent labels for x. This allows us to define
a group of x, which have the same label z, as a cluster. In
particular, under compressing conditions when the dimension
of z is smaller than the dimension of x, similar x are grouped
together with label z. Then, kz denotes the size of the z-labeled
cluster, and m(k) corresponds to the distribution of cluster
sizes.

What is an expected distribution of the cluster sizes? RBMs
do not impose any constraint on the shaping of the size distri-
bution during the learning process. Song et al. found that the
size distribution m(k) follows power laws, and derived that
the power laws correspond to the most likely distribution at

a fixed resolution of z [18]. The scale-invariant distribution
maximizes the uncertainty of the size k of a cluster to which
a specific x belongs. This constrained optimization can be
formulated using Lagrange multipliers, as given below.

L = H (K ) + β(H (Z ) − R) + α

( ∑
k

km(k)

M
− 1

)
. (6)

The Lagrange multiplier α controls the normalization for k
distribution, while β controls the resolution of hidden rep-
resentation z for a fixed value of H (Z ) = R. The maximum
frequency variability H (K ) subject to the two constraints is
obtained at the variation condition of δL/δm(k) = 0. The
optimal condition leads to the power-law size distribution,

m(k) ∝ k−β−1. (7)

Moreover, the scale-invariant hidden representation z is good
enough to make the model probability p(x) = ∑

z p(x, z)
close to the data probability p̂(x).

C. Supervised learning

The goal of supervised learning is faithful reproduction of
true labels y given input x. For multilayer neural networks, x
is transformed to hidden representations z, and then, z is again
transformed to output ŷ. The supervised learning optimizes an
appropriate representation z to produce ŷ, which is ultimately
used to predict true y. The learning accuracy can be estimated
by the mutual information between internal representation z
and true label y,

I (Z;Y ) = H (Y ) − H (Y |Z ), (8)

that quantifies how much uncertainty H (Y ) of y is reduced
by knowing z. The information gain corresponds to learning
accuracy of the internal representation z. Here, we focus on
the neural networks, the internal layers of which have smaller
sizes with increasing distance from the input layer. The com-
pressing condition provides a coarse-grained representation z
for x. In particular, if we discretize z, we can again interpret
a group of x with the same hidden state z, as a cluster. Now,
we derive the most likely distribution of hidden representation
z that guarantees a certain learning accuracy as I (Z;Y ) = R′.
Like the objective for unsupervised learning in Eq. (6), the
objective for supervised learning can be formulated as

L′ = H (K ) + β(I (Z;Y ) − R′) + α

( ∑
k

km(k)

M
− 1

)
. (9)

Among possible representations z satisfying a given learning
accuracy, we find a representation z that maximizes the uncer-
tainty of the cluster size. Caution is required to understand
that this exploration is different from the optimization of
learning algorithms. We seek the most flexible representation
z providing the largest frequency variability H (K ), subject to a
fixed learning accuracy. Thus, we explore snapshots of z at any
learning status. Indeed, we observed that supervised learning
exhibited power-law distributions of m(k) at any given learn-
ing accuracy during learning epochs (Fig. 4).
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1. Self-supervised learning

We first consider the self-supervised learning of autoen-
coders in which labels are input themselves as y = x. The mu-
tual information of autoencoders is simply I (Z; X ) = H (Z ) −
H (Z|X ) = H (Z ), where the conditional entropy H (Z|X ) = 0
vanishes because the hidden representation is a deterministic
function z(x) of x in autoencoders. This condition makes
Eq. (9) identical to Eq. (6) with L′ = L and R′ = R. We have
already established that the optimal size distribution follows
power laws in Eq. (7) that maximizes L. This explains why
power laws naturally arise in self-supervised learning.

As mentioned earlier, the unfolded structure of RBMs can
be interpreted as constrained autoencoders [30]. The forward
and backward propagation of x ↔ z corresponds to the in-
formation flow of x → z → x̂. To be specific, we consider
a vector of x = (x1, x2, . . .) and a vector of z = (z1, z2, . . .).
The autoencoders have a constraint that the encoder weight
parameter wi j for xi → z j remains the same with the transpose
of the decoder weight parameter w ji of z j → x̂i. Then, the
scale-invariant hidden representation of RBMs can be un-
derstood either as (i) maximizing H (K ) subject to a certain
resolution H (Z ) = R, or (ii) maximizing H (K ) subject to a
certain learning accuracy I (Z; X ) = R′.

2. Authentic supervised learning

Next, we show that the previous conclusion on self-
supervised learning is also applicable to authentic supervised
learning. The mutual information can be decomposed as

I (Z;Y ) = H (Y ) + H (Z ) − H (Y, Z ). (10)

The first term H (Y ) is constant, because labels y are given
as data in supervised learning. As a result, H (Y ) is trivially
independent of z and m(k). The second term H (Z ) depends
on m(k) as shown in Eq. (4). The third term is the entropy for
the joint frequency ky,z,

H (Y, Z ) = −
∑
y,z

ky,z

M
log

ky,z

M
. (11)

Now, we derive that H (Y, Z ) does not explicitly depend on
m(k). At first, the independence of H (Y, Z ) from m(k) appears
nontrivial, as both H (Y, Z ) and m(k) depend on z. For the self-
supervised learning (Y = X ), we have a constant H (X, Z ) =
log M, if every x is distinguished (kx,z = 1). It is clear that
H (X, Z ) is always constant independently of m(k).

For the authentic supervised learning, let us imagine a
causal graph between variables (Fig. 7). The number of re-
alizations of hidden representation z is the frequency kz, the
degeneracy of which is m(k). The number of realizations for y
and z is ky,z, which is used to compute H (Y, Z ). Therefore, z is
a confounder that affects both m(k) and H (Y, Z ) in the causal
graph. In terms of causality [35], H (Y, Z ) and m(k) are called
d separate for fixed z,

(12)

which means that m(k) does not explicitly affects H (Y, Z )
and vice versa. The functional independence can be further
demonstrated in two situations. The first situation is that m(k)
changes, but H (Y, Z ) does not change [Fig. 8(a)]. The second

FIG. 7. Causal graph of supervised learning. Solid arrows rep-
resent explicit transformation from parent to child nodes, whereas
dotted arrows represent implicit transformation from a set of parent
variables to child nodes.

situation is that H (Y, Z ) changes, but m(k) does not change
[Fig. 8(b)].

Thus far, we have confirmed that H (Y ) and H (Y, Z ) in
the learning accuracy of Eq. (10) do not explicitly depend on
m(k). This results in δL′/δm(k) = δL/δm(k). This explains
why authentic supervised learning exhibits a power-law dis-
tribution of m(k) as in self-supervised learning.

It is noteworthy to mention one exceptional situation, in
which every cluster has data x with pure labels y [Fig. 8(c)].
This situation is relatively unlikely to occur in practice in ma-
chine learning with large noisy data. The ideal clustering with
no impurity leads to H (Y, Z ) = H (Z ) + H (Y |Z ) = H (Z ), be-
cause labels do not include additional information beyond the
hidden representation z. Substituting this result into Eq. (10),
we obtain I (Z;Y ) = H (Y ). This makes H (K ) the only m(k)-

FIG. 8. Schematic diagrams of data clustering with labels and
internal representations. MNIST digit images x have true labels (2,
3, and 8), and they are grouped with their internal representations z
(blue circles). (a) A scenario in which kz changes from kz = {1, 2} to
kz = {3}, but ky,z = 1 does not change. Therefore, the size distribu-
tion m(k) changes, but H (Y, Z ) does not change. (b) A scenario in
which kz = {1, 2} does not change, but ky,z changes from ky,z = 1 to
ky,z = {1, 2}. Therefore, the size distribution m(k) does not change,
but H (Y, Z ) changes. (c) A pure clustering scenario in which every x
for a given z has the same label y.
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dependent term of L′ in Eq. (9). Then, m(k) ∝ k−1 maximizes
L′. This solution corresponds to the power-law distribution
with β = 0. The zero value of the Lagrange multiplier nulli-
fies the constraint for the learning accuracy in L′.

In summary, except for the pure clustering, the objec-
tive L′ for supervised learning has only two m(k)-dependent
terms of H (K ) and H (Z ). This conclusion is the same with
L for unsupervised learning. The objective functional, L =
H (K ) + βH (Z ), has been intensively studied by Marsili et al.
[18,20,34,36–38]. Assuming that data follows a Boltzmann
distribution, k/M ∝ exp(−E (k)), as in equilibrium thermo-
dynamics, the entropy of Z can be interpreted as an internal
energy by ignoring a constant shift.

H (Z ) = −
∑

k

p(k) log
k

M
=

∑
k

p(k)E (k) = U, (13)

where p(k) = km(k)/M. Then, the Shannon entropy H (K )
can be interpreted as thermodynamic entropy.

H (K ) = −
∑

k

p(k) log p(k) = S. (14)

Interpreting β = −1/T as negative inverse temperature, one
can define thermodynamic free energy.

F = −TL = U − T S. (15)

Then, the maximization of L corresponds to the minimization
of free energy F . The optimal distribution m(k), satisfying
δF/δm(k) = 0, has thus been derived to follow the scale-
invariant power laws, m(k) ∝ k−β−1 [34]. This explains why
power laws naturally arise in both unsupervised and super-
vised learning. This result could thus be referred to as an
analog of the second law of thermodynamics in machine
learning.

IV. SUMMARY

We have studied the internal representations z of data in
machine learning. Song et al. first observed that restricted
Boltzmann machines have special representations with a few
frequent z and many rare z, the frequency distributions of
which follow power laws [18]. In this study, we showed
that the scale-invariant representations are observed not only
in unsupervised learning, but also in supervised learning.
Furthermore, we have derived that the scale invariance can
naturally arise in machine learning using information theory.

The critical representations correspond to entropy-maximized
encodings given learning accuracies. If we define a group of
data x that have the same z (compressed codes or emergent
labels), the frequencies of z can be interpreted as cluster sizes
of x. Then, the maximum uncertainty of the cluster size dis-
tribution implies that the size of a cluster, to which a certain
data x belongs, can be most flexibly determined. Therefore, at
any given learning accuracy, z can show the criticality.

In this study, we have examined compressing structures of
neural networks with classical architectures such as multilayer
perceptrons, vanilla autoencoders, convolutional neural net-
works, and restricted Boltzmann machines, although recent
deep learning considers infinitely wide networks and over-
parametrized models as well [39–41]. It remains a topic of
future research to explore the application of our conjecture
of the second law of machine learning thermodynamics in
modern architectures of large-scale generative models with a
compressed latent space.

The power laws, also known as the Pareto principle, have
been ubiquitously observed in social and biological data in-
cluding real neural activities [42–46]. Unlike the symbolic
property of criticality in statistical mechanics, the emergence
of criticality in those data does not require fine tuning [47–49].
Schwab et al. have shown that multivariate systems can gen-
erate such criticality without fine tuning when latent variables
are involved in the systems [47]. We note that whereas these
studies focused on the statistics of observed data x in real
neural networks, the present study has explained the statistics
of internal representation z in artificial neural networks. The
criticality of existing data that comprise the natural world
and the emergence of criticality during the learning process,
discussed in this study, are of considerable intellectual inter-
est. A further investigation of criticality may be expected to
stimulate cross fertilization between the fields [50].
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