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Quantum self-trapping on a star graph
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The attractive Bose-Hubbard model is applied for describing the two-exciton dynamics in a nonlinear quantum
star graph. When the excitons are created on the core of the star, it is shown that the interplay between the
complex architecture of the network and the nonlinearity favors the occurrence of a real quantum self-trapping.
Quite weak in the small nonlinearity limit, this self-localization is enhanced as the nonlinearity increases. This
feature originates in the restructuring of the two-exciton eigenstates whose localized nature intensifies with the
nonlinearity. Nevertheless, the quantum self-trapping is never complete since it is impossible to localize the
entire exciton density, even in the strong nonlinearity limit.
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I. INTRODUCTION

Nonlinearity-induced energy localization in classical lat-
tices has been intensively studied during the last four decades.
This concept can be traced back to the seminal works of
Davydov devoted to the vibrational energy flow in proteins
[1]. Using a quasiclassical approximation, Davydov suggested
that a vibrational exciton propagates according to a soliton
mechanism, a solution of the nonlinear Schrödinger (NLS)
equation in the continuum limit [2]. In the mid-1980s, lattice
effects were introduced through the analysis of the discrete
version of the NLS equation. This equation revealed the oc-
currence of a remarkable phenomenon known as self-trapping
[3]: the local accumulation of energy remains trapped where
it has been created. Later, Sievers and Takeno [4] showed that
self-trapping is a special example of more general solutions
called discrete breathers [5]. In classical anharmonic lattices,
discrete breathers correspond to time-periodic and spatially
localized solutions which result from the interplay between
discreteness and nonlinearity.

In the quantum regime, a different situation occurs. Indeed,
the quantum equivalent of the discrete NLS equation is the
Bose version of the Hubbard model. This model has been
used to study a great variety of situations such as Bose-
Einstein condensates [6], photonic quantum computers [7], or
vibrations in molecular lattices [8]. The Bose-Hubbard model
describes interacting bosonic excitations (called excitons in
the following of the text) evolving on a lattice with trans-
lational invariance. Therefore, the Bloch theorem applies so
that the corresponding eigenstates cannot localize the energy.
Nevertheless, the coupling between the excitons is responsible
for the occurrence of specific states called multiexciton bound
states [8–17]. A bound state corresponds to the trapping of
several excitons over only a few neighboring sites, with a
resulting energy which is less than the energy of excitons
lying far apart. The distance separating the excitons is small,
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so that they behave as a single particle delocalized along
the lattice with a well-defined momentum. Although bound
states cannot localize the energy because they must share
the symmetry of the translation operator, they take a very
long time to tunnel from one lattice site to another. In other
words, the initial creation of several excitons on a single site
produces a localization of the energy over a timescale that
increases with both the nonlinearity and the exciton number.
This localized behavior, known as the quantum signature of
the classical self-trapping, disappears in the long-time limit
due to the nonvanishing dispersion of the bound-state energy
band.

At present, because the occurrence of bound states in
lattices with translational invariance is relatively well under-
stood, our aim is to investigate what happens in complex
networks one encounters in graph theory.

Indeed, it has been suggested recently that exploiting the
motion of a single exciton in a complex network is a promis-
ing way for performing scalable quantum computing [18,19].
For instance, in a dendrimer, the propagation of an exciton
corresponds to a physical realization of a continuous-time
quantum walk (CTQW) [20]. Extensively studied during the
past few years, CTQW has become a very popular research
subject due to its potential use in quantum information pro-
cessing [21–23]. For example, a CTQW on a complex network
provides a natural way for performing efficient quantum
searches in the spirit of the well-known Grover’s algorithm
[24–26]. Consequently, CTQW and single-exciton dynamics
have been investigated in a great variety of networks such as
extended dendrimers [20,27], binary and glued trees [28,29],
Apollonian networks [30], fractal networks [31,32], sequen-
tially growing networks [33], and star graphs [34–40], to cite
but a few examples.

Although some nonlinear effects in complex networks have
been investigated using the discrete NLS equation [41,42],
little is known about the quantum case. Therefore, in this
paper, the concept of CTQW is extended to the case of several
quantum walkers, i.e., to the case of several excitons moving
on a complex network according to a Bose-Hubbard model.
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FIG. 1. The star graph.

More precisely, to show that nonlinearity-induced quantum
self-trapping may occur in complex networks, we will con-
sider the situation in which two excitons are initially created
on the core of a star graph. The star graph is one of the
most regular structures in graph theory. Organized around a
central core, it exhibits the local tree structure of irregular and
complex networks. However, its topology remains sufficiently
simple so that analytical calculations can be carried out. The
influence of both the exciton numbers and the graph architec-
ture will be investigated in forthcoming works.

The paper is organized as follows. In Sec. II the star graph
is introduced and the exciton Bose-Hubbard Hamiltonian is
defined. Then, the time-dependent Schrödinger equation is
established and the relevant ingredients required for charac-
terizing the dynamics are described. The problem is solved
numerically in Sec. III and the results are finally discussed
and interpreted in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

The star graph SN we consider is shown in Fig. 1. It cor-
responds to a tree that involves N branches that emanate out
from a central core. The central core, labeled by the index
� = 0, is connected to N branch sites � = 1, . . . , N . Each site
� is occupied by a molecular subunit whose internal dynamics
is described by an anharmonic oscillator. Let b†

� and b� denote
the corresponding standard boson operators. Within these no-
tations, the exciton Hamiltonian is the Bose-Hubbard model
defined as (with the convention h̄ = 1)

H =
N∑

�=0

ω0b†
�b� − Ab†

�b†
�b�b� +

N∑
�=1

�(b†
0b� + b†

�b0), (1)

where ω0 is the internal frequency of each oscillator, � rep-
resents the hopping constant between the core site and each
branch site, and A is the nonlinearity responsible for an attrac-
tive interaction between the excitons.

To characterize the exciton dynamics, the corresponding
time-dependent Schrödinger equation has to be solved. Since
the Hamiltonian H conserves the number of excitons, this
can be achieved by using the number states method [12]. To
proceed, the Hilbert space E is partitioned into independent
subspaces as E = E0 ⊕ E1 ⊕ E2 ⊕ · · · , where Ev refers to
the v-exciton subspace. The dimension of Ev is equal to the
number of ways for distributing v identical quanta onto N + 1
sites, i.e., (v + N )!/(v!N!). Within this representation, the
Hamiltonian is block diagonal, each block corresponding to
a particular exciton number.

In this paper, we focus our attention on the two-exciton
dynamics. To proceed, a useful basis set to generate the entire
E2 subspace is given by the normalized and symmetrized
states |�; �′) with � = 0, . . . , N and �′ = �, . . . , N . A partic-
ular vector |�; �′) characterizes two excitons located onto the
sites � and �′, respectively, as

|�; �′) =
{

b†
�b†

�′ |�) if �′ > �,

1√
2
b†2

� |�) if � = �′,
(2)

where |�) stands for the vacuum state. Note that the dimen-
sion of E2 reduces to (N + 1)(N + 2)/2.

B. Schrödinger equation

In the local basis |�; �′), the two-exciton quantum state is
expanded as

|�(t )〉 =
N∑

�=1

N∑
�′=�

���′ (t )|�; �′). (3)

Therefore, the time-dependent Schrödinger equation depends
on the nature of the basis vectors involved in so that dif-
ferent situations occur. By performing the projection on
the basis vector that describes two excitons on the core
of the graph (� = �′ = 0), the Schrödinger equation is ex-
pressed as

i�̇00 = (2ω0 − 2A)�00 +
N∑

�=1

√
2��0�. (4)

By performing the projection on basis vectors referring to an
exciton located on the core whereas the other exciton belongs
to the periphery of the graph (� = 0 and �′ = 1, . . . , N), the
Schrödinger equation is written as

i�̇0�′ = 2ω0�0�′ +
√

2�(�00 + ��′�′ )

+ �(�1�′ + · · · + ��′−1�′ + ��′�′+1 + . . . ��′N ). (5)

By performing the projection on basis vectors that describe
two excitons occupying the same site of the periphery of the
star (� = �′ = 1, . . . , N), the Schrödinger equation is written
as

i�̇�� = (2ω0 − 2A)��� +
√

2��0�. (6)

Finally, when one performs the projection on basis vectors that
refer to two excitons lying far apart and far from the core (� =
1, . . . , N and �′ = � + 1, . . . , N), the Schrödinger equation is
expressed as

i�̇��′ = 2ω0���′ + �(�0� + �0�′ ). (7)

Equations (4)–(7) reveal the equivalence between the two-
exciton dynamics and the dynamics of a single fictitious
particle moving quantum mechanically on the complex graph
displayed in Fig. 2. Within this equivalence, the two-exciton
wave function ���′ (t ) can be viewed as the wave function of
the fictitious particle. According to Eqs. (4)–(7), its dynamics
is described by a tight-binding Hamiltonian characterized by
self-energies located on each site and hopping matrices which
couple different sites. The nonlinearity is responsible for the
occurrence of defects in the graph leading to a shift of the
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FIG. 2. Equivalence between the two-exciton Schrödinger equa-
tion and the dynamics of a single fictitious particle moving quantum
mechanically on a complex network. Open circles describe ba-
sis vector involving two excitons located on the same site, the
corresponding self-energy being 2ω0 − 2A. Full circles refer to ba-
sis vectors involving two excitons located on two different sites
and whose self-energy is 2ω0. A thick line defines the hopping
constant equal to

√
2� whereas a thin line stands for the hopping

constant �.

corresponding self-energies. This equivalence allows us to
simplify the resolution of the Schrödinger equation. Indeed,
when the two excitons are initially created on the core of the
star, Fig. 2 clearly shows the symmetry of the problem. It turns
out that the wave function ���′ (t ) exhibits only four different
values since both �0�(t ) and ���(t ) are � independent ∀ � =
1, N and ���′ (t ) is both � and �′ independent ∀ � = 1, . . . , N
and ∀ �′ = � + 1, . . . , N .

Consequently, Eqs. (4)–(7) can be solved by performing
the following change of variables:

�00(t ) = �00(t ),

χ0p(t ) = 1√
N

N∑
�=1

�0�(t ),

χpp(t ) = 2√
N (N − 1)

N∑
�=1

N∑
�′=�+1

���′ (t ),

�pp(t ) = 1√
N

N∑
�=1

���(t ). (8)

With these new variables, the Schrödinger equation reduces to
a system of four equations expressed as

i�̇00 = (2ω0 − 2A)�00 +
√

2N�χ0p,

iχ̇0p = 2ω0χ0p +
√

2N��00 +
√

2��pp

+
√

2(N − 1)�χpp,

iχ̇pp = 2ω0χpp +
√

2(N − 1)�χ0p,

i�̇pp = (2ω0 − 2A)�pp +
√

2�χ0p. (9)

2A 2A

2(N-1)

2(N-1)
N

N

00) PP)

+)

- )

FIG. 3. Energy diagram of the four-level system in which the
two-exciton dynamics is confined.

Finally, to remove the coupling between χ0p and χpp, one
introduces the new variables χ± = (χ0p ± χpp)/

√
2 so that

the Schrödinger equation is written as

i�̇00 = (2ω0 − 2A)�00 +
√

N�(χ+ + χ−),

iχ̇+ = ε+χ+ +
√

N��00 + ��pp,

iχ̇− = ε−χ− +
√

N��00 + ��pp,

i�̇pp = (2ω0 − 2A)�pp + �(χ+ + χ−), (10)

with ε± = 2ω0 ± √
2(N − 1)�.

To summarize, when the two excitons are initially created
on the core of the star, the quantum dynamics is isomorphic to
that of a four-level system whose energy diagram is shown in
Fig. 3. This system involves the four orthogonal and normal-
ized states {|�̂00), |χ̂+), |χ̂−), |�̂pp)} defined as

|�̂00) = |0; 0),

|χ̂±) = 1√
2

[|χ̂0p) ± |χ̂pp)],

|�̂pp) = 1√
N

N∑
�=1

|�; �), (11)

with

|χ̂0p) = 1√
N

N∑
�=1

|0; �),

|χ̂pp) = 2√
N (N − 1)

N∑
�=1

N∑
�′=�+1

|�; �′). (12)

The state |�̂00), whose energy is equal to 2ω0 − 2A, defines
an excitonic pair located on the core of the graph whereas
the state |�̂pp), with the same energy, describes an excitonic
pair delocalized over the periphery of the star. These two
pair states are coupled with the states |χ̂±) that define su-
perpositions of states involving excitons far from each other.
Within this representation, the Hamiltonian of the four-level
system will be diagonalized numerically. The knowledge
of the corresponding eigenvalues εμ and eigenvectors |φμ〉,
with μ = 1, . . . , 4, will allow us to solve the Schrödinger
equation (10) and to compute the two-exciton quantum state
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as

|�(t )〉 = �00(t )|�̂00) + χ+(t )|χ̂+)

+ χ−(t )|χ̂−) + �pp(t )|�̂pp), (13)

with the initial condition |�(t = 0)〉 = |�̂00).

C. Observables

From the knowledge of both the two-exciton eigenstates
and the two-exciton time-dependent wave function, different
observables can be computed.

First, we introduce the survival probability of the initial
state PS (t ) = |(0; 0|�(t )〉|2. It defines the probability to ob-
serve the two excitons on the core of the star at time t , and
characterizes the network memory of the initial localized state
as

PS (t ) = |�00(t )|2. (14)

Then, information about the way the energy is distributed
along the star is given by the expectation value of the
population operator 	�(t ) = 〈�(t )|b†

�b�|�(t )〉. The exciton
population represents a key observable to describe the en-
ergy flow between the core and the periphery. It allows us to
discriminate between both energy localization and delocaliza-
tion. Therefore, in terms of the two-exciton wave function, the
population at the core site and at time t is expressed as

	0(t ) = 2|�00(t )|2 + 1
2 |χ+(t ) + χ−(t )|2. (15)

Note that the population of the core site can be expressed
as 	0(t ) = 2PS (t ) + Pχ0p (t ) where Pχ0p (t ) = |χ0p(t )|2 is the
probability to observe one exciton on the core of the star and
one exciton uniformly delocalized over the periphery of the
star. By symmetry, the exciton population at a peripheral site
� 	= 0 is defined as 	�(t ) = [2 − 	0(t )]/N .

Finally, the physics of the two excitons is encoded in
their eigenstates |φμ〉, with μ = 1, . . . , 4, whose nature
strongly depends on the model parameters. Therefore, to
characterize this feature, we define Pμ,α , with α = 00, +,
−, and pp, as the weight of the eigenstate |φμ〉 in the ba-
sis {|�̂00), |χ̂+), |χ̂−), |�̂pp)}. For instance, with α = 00, the
weight is defined as Pμ,α = |(�̂00|φμ〉|2.

III. NUMERICAL RESULTS

In this section, the previous formalism is applied for de-
scribing the quantum dynamics when the two excitons are
initially created on the core of the star graph. Note that the
convention � = 1 will be used.

When A = 0 and N = 9, Fig. 4 reveals that the exciton
density and the survival probability are periodic functions
whose period is equal to T0 = 1.05�−1. The exciton den-
sity varies between 0 and 2 [Fig. 4(a)] whereas the survival
probability oscillates between 0 and 1 [Fig. 4(b)]. Note that
both functions reach their maximum value simultaneously. By
contrast, as shown in Fig. 4(c), the probability to occupy the
state χ0p oscillates between 0 and 0.5 with period equal to
T0/2. Therefore, both PS (t ) and Pχ0p (t ) vanish simultaneously
indicating that a perfect delocalization arises so that a coherent

FIG. 4. Time evolution of (a) the exciton density, (b) the survival
probability, and (c) the probability to occupy the state χ0p for A = 0
and N = 9.

energy transfer takes place between the core and the periphery
of the graph.

When A = 1 and N = 9, a different behavior occurs, as
illustrated in Fig. 5. Initially equal to 2, the exciton density
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FIG. 5. Time evolution of (a) the exciton density, (b) the survival
probability, and (c) the probability to occupy the state χ0p for A = 1
and N = 9.

decreases as time increases, until it reaches a value equal
to 0.085 at time t = 0.525�−1 [Fig. 5(a)]. Then it increases
until it reaches a value approximately equal to 1.68 at time
t = 1.035�−1. Such a behavior continues so that the density

exhibits fast oscillations whose corresponding period is ap-
proximately equal to T0. Nevertheless, these oscillations are
modulated by a slowly varying envelope which prevents the
density to vary between 0 and 2. Indeed, over the timescale
considered in Fig. 5(b), the minimum value of the density is
equal to 0.084. However, recurrences take place almost peri-
odically over a timescale defined by the period T1 = 10.8�−1.
Therefore, at time t = T1, the density reaches a local maxi-
mum equal to 1.985. Similarly, at time t = 2T1, the density
reaches another local maximum equal to 1.940.

As illustrated in Fig. 5(b), the survival probability be-
haves similarly, and it shows fast oscillations modulated by
a slowly varying envelope. But a fundamental difference oc-
curs. Although the exciton density no longer vanishes, the
survival probability still reaches extremely low values. Over
the present timescale, the minimum value of the survival
probability is equal to 5 × 10−5. These results indicate that
although a coherent energy transfer still arises between the
core and the periphery of the graph, approximately 4.25%
of the initial energy remains always trapped on the core site
where it has been created. The difference between the density
and the survival amplitude indicates that this trapping does
not exclusively correspond to a confinement in the pair state
localized on the core. Indeed, the detailed analysis of Fig. 5(c)
reveals that PS (t ) and Pχ0p (t ) no longer vanish simultaneously.
Therefore, when the survival probability becomes extremely
small, it turns out that the population of the state χ0p remains
finite. Therefore, the exciton density does not vanish indicat-
ing that the trapping of the energy results from the localization
of one exciton on the core of the star, the second exciton being
uniformly delocalized over the periphery.

This is no longer the case when A = 3 and N = 9, as
shown in Fig. 6. Indeed, the exciton density still exhibits
fast oscillations, whose period is approximately equal to T0,
modulated by a slowly varying envelope [Fig. 6(a)]. Initially
equal to 2, recurrences take place almost periodically so that
the density reaches local maximum equal to 1.98 and 1.95
at t = 11.32�−1 and 24.48�−1, respectively. However, over
the timescale shown in Fig. 6(a), the minimum value of the
density is equal to 0.47 indicating that more than 23.5% of the
initial energy is trapped on the core site. This trapping effect
now involves the pair state localized on the core site since the
survival probability no longer vanishes as shown in Fig. 6(b).
Instead, it exhibits a minimum value equal to 0.053 over the
timescale considered here. Nevertheless, Fig. 6(c) reveals that
the population of the state χ0p still plays a significant role in
the process of the energy trapping.

As shown in Fig. 7 for A = 10 and N = 9, this localization
process is clearly enhanced as A increases. The exciton den-
sity now behaves as a slowly varying function that supports a
high-frequency small-amplitude modulation [Fig. 7(a)]. The
low-frequency component, whose period is approximately
equal to 6.4�−1, scales as a sinelike function that varies
typically between 2 and 1. More precisely, over the timescale
considered here, the maximum value of the exciton density
is equal to 1.99 and it arises at time t = 6.43�−1. Sim-
ilarly, the minimum value of the exciton density is equal
to 1.16 and it arises at time t = 28.48�−1. The key point
is that the survival probability behaves as the exciton den-
sity, and we have verified that the relation 	0(t ) ≈ 2PS (t )
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FIG. 6. Time evolution of (a) the exciton density, (b) the survival
probability, and (c) the probability to occupy the state χ0p for A = 3
and N = 9.

is almost satisfied for all time [Figs. 7(b) and 7(c)]. In
other words, the energy transfer is now mediated by a pair
state. Moreover, an important self-trapping arises since more

FIG. 7. Time evolution of (a) the exciton density, (b) the survival
probability, and (c) the probability to occupy the state χ0p for A = 10
and N = 9.

than 50% of the initial energy stay localized on the core of the
star.

In Fig. 8, a special attention is paid for describing the
minimum value of both the exciton density on the core of the
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FIG. 8. A dependence of the minimum value of (a) the exciton
density and (b) the survival probability over the timescale 100�−1

and for different N values.

star 	∗
0 [Fig. 8(a)] and, the survival probability P∗

S [Fig. 8(b)].
These observables have been extracted over a timescale equal
to 100�−1 for N equal to 5, 10, 15 and 20.

Equal to zero when A = 0, the minimum value of the
exciton density 	∗

0 increases as A increases, indicating that
a localization occurs on the core of the star as soon as the
nonlinearity turns on [Fig. 8(b)]. However, the strength of
this localization strongly depends on the nonlinearity and
different regimes take place. For small A values, 	∗

0 slowly
increases with A indicating that a quite weak localization
arises. It depends quadratically on the nonlinearity provided
that A remains smaller than 2. Note that the larger the size
of the star N is, the smaller is the minimum value of the
exciton density. For larger A values, the density 	∗

0 increases
faster with the nonlinearity indicating that the localization is
enhanced. It approximately scales linearly with A according to

FIG. 9. A dependence of the two-exciton eigenenergies in the
four-dimensional active subspace for N = 9. Note that here ω0 de-
fines the origin of the energy, i.e., ω = 0.

a slope that is almost N independent. Such a behavior persists
until 	∗

0 reaches a maximum value that strongly depends on
the size of the star. The larger the size of the star is, the
larger is the maximum value reached by 	∗

0. This maximum is
equal to 0.89, 1.33, 1.52, and 1.62 for N = 5, 10, 15, and 20,
respectively. In other words, the convergence of 	∗

0 towards
an A independent maximum value reveals that a strong, but
incomplete, localization arises.

As shown in Fig. 8(b), the minimum value of the survival
probability P∗

S behaves as 	∗
0 provided that A is sufficiently

important. Indeed, for small A values, a fully different behav-
ior occurs since P∗

S remains at zero until A reaches a critical
value A∗. This critical value increases with the size of the star.
It is approximately equal to 1.8, 2.2, 2.6, and 3.0 for N = 5,
10, 15, and 20, respectively. For A > A∗, P∗

S increases with
the nonlinearity until it reaches a maximum and becomes A
independent. This maximum strongly depends on the size of
the star and it is equal to 0.44, 0.66, 0.75, and 0.80 for N = 5,
10, 15, and 20, respectively.

To understand these features, let us focus our attention on
the nature of the two-exciton eigenstates. The A dependence of
the two-exciton eigenenergies in the four-dimensional active
subspace is displayed in Fig. 9 for N = 9. When A = 0, the
energy spectrum exhibits two nondegenerate states whose the
energies are defined as 2ω0 ± 6�. In addition, the spectrum
shows the energy 2ω0 that is twofold degenerate. Note that this
result perfectly matches with the one-exciton properties of the
star graph that support two nondegenerate states whose energy
is ω± = ω0 ± √

N� [38]. When two excitons are present, the
corresponding eigenenergies are thus 2ω+, 2ω−, ω+ + ω+,
and ω− + ω+, as observed in Fig. 9.

When A turns on, two distinct behaviors take place. First,
the energy of the two lowest-energy states μ = 1 and 2 de-
creases when A increases. It is straightforward to show that
ε2 = 2ω0 − 2A and ε1 scales similarly for large A values. By
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FIG. 10. A dependence of the two-exciton eigenstates in the
four-dimensional active subspace for N = 9.

contrast, the energies ε3 and ε4 are slowly varying functions
of the nonlinearity which slightly decreases as A increases.

Figure 10 shows the A dependence of the weight Pμ,α , with
α = 00, +, −, and pp, of the eigenstates |φμ〉 in the basis
{|�̂00), |χ̂+), |χ̂−), |�̂pp)}.

When A = 0, Fig. 10(a) reveals that the lowest-energy state
μ = 1 corresponds basically to a superposition involving |χ̂−)
(69.44%) and |�̂00) (25%). As A increases, an important
restructuring arises. The weight of the state |χ̂−) decreases
whereas the weight of the states |�̂00) and |�̂pp) increases.

Finally, for strong A values, the state μ = 1 almost localizes in
the state |�̂00) (89.5%), exhibiting a rather small contribution
of the state |�̂pp) (9.9%).

As illustrated in Fig. 10(b), the structure of the state μ =
2 is quite surprising. Indeed, when A = 0, it corresponds
to a degenerate state fully delocalized over the four basis
states. However, when A turns on, the degeneracy is removed.
Therefore, the state μ = 2 becomes A independent. It almost
localizes in the state |�̂pp) (90.0%), exhibiting a rather small
contribution of the state |�̂00) (10.0%).

When A = 0, the state μ = 3 defines the second degenerate
state that is delocalized over the four basis states [Fig. 10(c)].
Then, for small A values, it basically involves |�̂00) and |χ̂±).
However, an important restructuring arises as A increases. The
weight of the states |χ̂−) increases whereas the weight of the
remaining states decreases. Consequently, for strong A values,
the state μ = 3 almost reduces to |χ̂−) whose weight reaches
99.65% for A = 30.

As shown in Fig. 10(d), when A = 0 the state μ = 4 corre-
sponds basically to a superposition involving |χ̂+) (69.44%)
and |�̂00) (25%). As A increases, the weight of the states
|χ̂+) increases whereas the weight of the remaining states
decreases. As a result„ the state μ = 3 almost reduces to |χ̂+)
for strong A values. For instance, the weight of the state |χ̂+)
represents 99.71% for A = 30.

IV. DISCUSSION

Our numerical results reveal a fundamental feature. Indeed,
in a star graph, the Bose-Hubbard model allows the occur-
rence of a real quantum self-trapping as soon as the nonlinear
parameter turns on. Such a phenomenon is quite remarkable
because it does not appear in a quantum dimer or in Euclidean
lattices with translational invariance. In other words, it is the
interplay between the complex architecture of the network and
the nonlinearity that gives rise to the self-localization of the
energy. Nevertheless, the quantum self-trapping is not perfect
in the sense that even for a very strong nonlinearity, it is
impossible to localize the entire exciton density on the core
site.

The key point is that the self-trapping phenomenon remains
quite subtle because it strongly depends on the strength of
the nonlinearity. As shown in Fig. 3, such a sensitivity re-
sults from the position of the energy level of the localized
pair state |�̂00) with respect to the other energy levels. This
position controls the nature of the eigenstates that, in turn,
govern the dynamics. This feature allows us to introduce a
critical nonlinearity A∗ = √

2(N − 1)�/2 for which there is
a resonance between the pair states |�̂00) and |�̂pp) and the
states |χ̂±) (see Fig. 3). Note that this value basically corre-
sponds to the critical value identified in Fig. 8(b). Indeed, in a
rather good agreement with the numerical results, one obtains
A∗/� = 1.41, 2.12, 2.64, and 3.08 for N = 5, 10, 15, and 20,
respectively.

When the nonlinearity is rather weak, i.e., when A < A∗,
the localized pair state |�̂00) interacts with all the other basis
states. As a consequence, the initial state that follows the cre-
ation of the two excitons on the core site decomposes almost
over all the eigenstates. Due to the nature of these eigenstates,
such a situation favors the transfer of the localized pair state
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|�̂00) towards the other basis states |χ̂±) and |�̂pp) giving rise
to the delocalization of the exciton density from the core to
the periphery of the star. Nevertheless, this density exhibits
two contributions, i.e., 	0(t ) = 2|�00(t )|2 + |χ0p(t )|2. The
first contribution involves the population |�00(t )|2 of the pair
state localized on the core whereas the second contribution
refers to the population |χ0p(t )|2 of the state involving an
exciton localized on the core and an exciton delocalized over
the periphery. These two populations vary as time elapses and
they vanish for specific times indicating that a delocalization
arises. But the key point is that these two populations never
vanish simultaneously. As a consequence, the exciton density
on the core of the star is always greater than zero, resulting in
a self-localization of the energy.

As the nonlinearity increases, the self-trapping is en-
hanced. Nevertheless, its origin begins to change as one
reaches the resonance for A = A∗.

When A > A∗, the quantum self-trapping originates in
the restructuring of the eigenstates whose localized nature
is intensified. More precisely, a key role is played by the
two lowest-energy eigenstates μ = 1 and 2 that basically
correspond to superpositions involving the pair states. The
eigenstate μ = 1 refers to the pair state localized on the core
site and it exhibits a small contribution of the pair state delo-
calized over the periphery. In turn, the state μ = 2 refers to
the pair state delocalized over the periphery and it exhibits
a small contribution of the pair state localized on the core
site. Consequently, the initial creation of the two excitons on
the core site mainly excites the eigenstate μ = 1, as well as
the state μ = 2 to a lesser extent. Therefore, the population
|�00(t )|2 oscillates around an important mean value whereas
the population |�pp(t )|2 oscillates around a quite small mean
value. A rather strong self-trapping arises that mainly cor-
responds to the localization of the energy in the pair state
localized on the core of the star. But, this self-trapping is never
complete because the population of the pair state delocalized
over the periphery never vanishes.

To interpret that the eigenstate restructuring favors the self-
trapping, let us apply to the star graph the model developed in
Refs. [16,17]. This model is based on the numerical obser-
vation that the dynamics is confined in a relevant subspace
provided that A is sufficiently strong. The dimension of the
problem is thus reduced so that the model provides a simple
view of the dynamics in which pair states play the central role.
According to Fig. 2, the relevant subspace is generated by
the number states |0; 0), |0; �), and |�; �), with � = 1, . . . , N ,
only. Disregarding the influence of the remaining states, the
representation of H reduces to a tight-binding model on an
extended star graph. Both states |0; 0) and |�; �) exhibit the
same energy ε00 = εpp = 2ω0 − 2A whereas the energy of the
states |0; �) is 2ω0.

Therefore, when the two excitons are created on the core
site, the dynamics reduces to that of pair states whose proper-
ties are modified due to their interactions with the intermediate
states |0; �). According to standard perturbation theory, these
interactions are responsible for the following features. First,
due to the coupling with the N states |0; �), the self-energy
of the localized pair state |0; 0) is renormalized and becomes
ε̃00 = 2ω0 − 2A − N�2/A. Second, because the peripheral
pair state |�; �) interacts with the intermediate single state

|1;1)

|2;2)

|3;3)

|0;0)

|N;N)
|...)

FIG. 11. Effective Hamiltonian that governs the pair states dy-
namics in the strong A limit. Full circles stand for the renormalized
self-energy ε̃pp of the peripheral pair states |�; �) whereas the open
circle defines the renormalized self-energy ε̃00 of the localized
pair states |0; 0). Dashed lines represent the effective coupling J =
−�2/A between the pair state localized on the core and the peripheral
pair states (see the text).

|0; �), its self-energy is also modified according to ε̃pp =
2ω0 − 2A − �2/A. Then, an effective coupling arises between
|0; 0) and each pair state |�; �) whose intensity reduces to
J = −�2/A.

Consequently, it is as if the excitonic pair behaves as a
single particle moving on the star graph shown in Fig. 11,
this graph exhibiting a defect on its core site. In that case,
different strategies have been developed for describing the
corresponding eigenstates [34–36]. Here, we take advantage
of the fact that the graph possesses discrete rotational sym-
metry. It remains invariant under the discrete rotation of angle
θ0 = 2π/N and centered on the core site. The diagonalization
of the Hamiltonian is thus greatly simplified when one works
with the Bloch basis [36] that involves the local state |0; 0) =
|�̂00) and N orthogonal Bloch states |�̂k ) (k = 1, . . . , N)
defined as

|�̂k ) = 1√
N

N∑
�=1

eiklθ0 |�; �). (16)

Within the Bloch basis, the graph exhibits two kinds of
eigenstates. First, the spectrum shows the (N − 1)-fold de-
generate eigenenergy ε̃pp, the corresponding eigenstates being
the N − 1 Bloch states |�̂k ), with k = 1, . . . , N − 1. These
states do not play any role in the present situation. Second,
the graph supports two eigenstates that correspond to su-
perpositions involving the state |0; 0) = |�̂00) and the Bloch
state |�̂k=N ) = |�̂pp) that is uniformly distributed over the
periphery of the star. These eigenstates, which govern the
dynamics when two excitons are created on the core site, are
defined as

|φ1〉 = = (
√

N |�̂00) + |�̂pp))/
√

N + 1,

ε1 = 2ω0 − 2A − (N + 1)�2/A (17)

and

|φ2〉 = = (|�̂00) −
√

N |�̂pp))/
√

N + 1,

ε2 = 2ω0 − 2A. (18)

In a perfect agreement with our numerical results, Eqs. (18)
and (19) define the two lowest-energy states that govern the
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dynamics in the strong A limit. The eigenstate μ = 1 defines
a pair state mainly localized on the core site whereas the state
μ = 2 is mainly delocalized over the periphery. The nature
of these two states is due to the presence of a defect on the
star graph that describes the pair state dynamics. This defect
originates in the energy correction of the pair states that differs
depending on whether the pair occupies the core or the periph-
ery of the star. In other words, because the degree of the core
site is N times larger than the degree of a peripheral site, the
correction of the self-energy of the localized pair state |0; 0)
is N times larger than that of the pair state |�; �). This feature
favors the localization of the eigenstates that gives rise to the
quantum self-trapping phenomenon observed in the previous
section.

Indeed, from the knowledge of Eqs. (18) and (19), standard
quantum mechanical calculations allow to get an analytical
expression of the survival probability to observe the excitons
in the localized pair state |0; 0) at time t . This probability is
written as

PS (t ) = 1 − 4N

(N + 1)2
sin2

(
(N + 1)�2t

2A

)
. (19)

As observed in the numerical section, the survival probability
oscillates around an average value P̄S = 1 − 2N/(N + 1)2.
This value increases as N increases indicating that the degree
of the central core enhances the quantum self-trapping effect.
Note that in a perfect agreement with the observations in
Fig. 8(b), Eq. (19) yields a minimum value of the survival
probability equal to 0.44, 0.67, 0.76, and 0.82 for N = 5, 10,
15, and 20, respectively.

V. CONCLUSION

In this paper, the Bose-Hubbard model has been used to
analyze the energy transfer in a nonlinear quantum star graph.
Within this model, the dynamics is controlled by two rele-
vant parameters, i.e., the nonlinearity A and the degree N of
the core site. When two excitons are initially created on the
core site, it has been shown that a real quantum self-trapping
occurs. Such a phenomenon is quite surprising because it
does not appear in lattices with translational invariance. In
fact, the self-localization of the energy results from the in-
terplay between the complex architecture of the network and
the nonlinearity. Rather weak in the small nonlinearity limit,
the self-trapping is enhanced as the nonlinearity increases
due to the restructuring of the two-exciton eigenstates whose
localized nature intensifies. Nevertheless, the quantum self-
trapping is never complete since it is impossible to localize the
entire exciton density, even in the strong nonlinearity limit.

This work falls within a more general framework de-
voted to the study of nonlinear quantum complex networks.
Therefore, forthcoming papers will be devoted to the charac-
terization of different features expected to play a crucial role
for the occurrence of the observed quantum self-trapping. For
instance, it would be interesting to analyze the influence of
the initial conditions, i.e., to create initially either an excitonic
pair on the periphery of the star or two excitons lying far apart.
The self-trapping could compete with degeneracy-induced lo-
calization that arises in star graphs [38,39]. Then, we know
that the exciton number is also a key ingredient that may
enhance self-trapping effects. Finally, the natural pursuit of
these searches would be to investigate what happens in more
complex networks such as, for instance, extended star graph,
dendrimers, or glued trees.
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