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Optimizing synchrony with a minimal coupling strength of coupled phase oscillators
on complex networks based on desynchronous clustering
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Finding the globally optimal network is an unsolved problem in synchrony optimization. In this paper, an
efficient edge-adding optimization method based on global information is proposed. The edge-adding scheme
is obtained through the eigenvector corresponding to the maximum eigenvalue of the system’s Jacobian matrix.
With different frequency distributions, we find that the optimized networks have similar features, concluded
as three conditions: (i) The deviations of nodes’ frequencies from the mean value are linear with the nodes’
degrees, (ii) the oscillators form a bipartite network divided according to the frequencies of the oscillators, and
(iii) oscillators are only connected to those with sufficiently large frequency differences. An optimal network
can be constructed directly based on these three conditions for a given distribution of natural frequencies. We
show that the critical coupling strengths of these constructed networks approach the theoretical lower bound.
The constructed networks are or at least close to the globally optimal ones for synchrony.
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I. INTRODUCTION

Synchronization, as one of the commonly observed col-
lective behavior in coupled oscillators, has been a hot topic
in nonlinear science because it is related to diverse generic
mechanisms of self-organization and has wide applications,
such as neuronal computation and pacemakers [1,2]. The most
successful paradigm for studying synchronization of coupled
oscillators is the Kuramoto model introduced in 1975 [3],
which has been used to explain the emergence of collective
motion in many different areas of science and technology
[4–7], such as electrochemical oscillators [8], flashing fireflies
[9], arrays of lasers [10,11], power grids [12–14], Josephson
junctions [15,16], etc.

The classical Kuramoto phase oscillator model reads

θ̇i = ωi + k

〈d〉
N∑

j=1

Ai j sin(θ j − θi ), i = 1, 2..., N, (1)

where θi and ωi are the phase and natural frequency of the ith
oscillator. k is the coupling strength, and A is the adjacency
matrix with Ai j = 1 if node i and node j have a connection,
otherwise Ai j = 0. di is the degree of the ith oscillator, and
〈d〉 = ∑N

i=1 di/N is the average value.
To measure the state of the system, the order parameter R

is defined as R = 〈r(t )〉T , with

r(t )eI�(t ) = 1

N

N∑
j=1

eIθ j (t ), (2)
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where 〈...〉T is time average over a large time span T and I =√−1. R ∈ [0, 1] measures the phase coherence of oscillator
populations. When R → 1, the system reaches a completely
synchronous state, and when R → 0, the oscillators exhibit
incoherence and behave almost independently.

Considerable research has shown that the underlying
structure of a network plays a crucial role in determining
synchronization [17–24]. Synchrony optimization [25,26] is
to promote the system’s synchronization by adjusting net-
work structure and node’s frequency. Previous optimization
procedures [27–31] are carried out by checking the order
parameter, maximizing the synchronization degree R of the
final synchronous state. However, in the synchronous state,
R is close to 1. The optimization easily goes awry in the
presence of noise and is thus not robust. Therefore, synchrony
optimization considered in this paper is from another angle,
synchronizing a system with minimal coupling strength. This
is inspired by and closely related to applications such as the
synchronous swing of power grid [32–34]. Hence, in this
paper we try to minimize the critical coupling strength of
synchronization. The critical coupling strength is negatively
correlated with the order parameter R. The smaller the critical
coupling strength, the greater the system order parameter R
with the same coupling strength. Therefore, the optimization
of the critical coupling strength in this paper is consistent
with optimizing the order parameter R. With the optimization,
the system can achieve synchronization under smaller cou-
pling strengths, which is also related to synchronous control
[35,36]. However, unlike the general synchronous control,
which requires a time-dependent input, our method only
changes the network structure.

The aim of the paper is to obtain a globally optimal net-
work that minimizes the critical coupling strength. At present,
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an analytic formula of the critical coupling strength of coupled
oscillators on complex networks is not obtainable in general.
It is difficult to analyze the synchronization directly from the
coupling strength. Through numerical simulations, we find
that adding edges between different partial synchronization
groups can effectively reduce the critical coupling strength.
Based on this fact, we develop an edge-adding optimization
scheme, where edges are added to connect the two com-
ponents with the largest difference of the eigenvector for
maximum eigenvalue of the Jacobian matrix. By analyzing
the characteristics of the optimized network, this paper sum-
marizes three conditions, for its construction with a given
distribution of natural frequencies.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the optimization scheme based on the
clustering of asynchronous groups. In Sec. III, with differ-
ent distributions of frequencies, a network is optimized by
adding edges. The characteristics of the optimized network are
obtained, and demonstrated in examples of synchronization
optimization. Concluding remarks are made in Sec. IV.

II. OPTIMIZATION METHOD

In this paper, we focus on the desynchronization process.
The initial state of the oscillators are prepared in the com-
plete synchronization state with sufficiently large coupling
strength. We gradually decrease the coupling strength to the
critical coupling strength, when the system splits into multiple
groups. To reduce the critical coupling strength, one obvious
strategy is to suppress the splitting. The simplest way is to add
edges between the groups split first. The following is a simple
example to verify. Consider adding edges on a ring network
of 11 nodes, whose natural frequencies are linearly and evenly
distributed on [0,1], as shown in Fig. 1(a). The values in the
dots represent the nodes’ natural frequencies. Based on nu-
merical simulations of Eq. (1), the desynchronization process
with a decrease of the coupling strength is shown in Fig. 1(b),
being a bifurcation diagram of nodes’ average frequencies.
When the coupling strength k is large (k = 1.5), the system
is in complete synchronization. Then the coupling strength is
gradually reduced. At the critical coupling strength kc = 1.24,
the system is divided into two groups, marked with green and
red, respectively, shown in Figs. 1(a) and 1(b).

Figure 1(c) shows three different ways to add edge connec-
tion to the network denoted as (G-G), (G-R), and (R-R). For
the connection (G-G), there are 15 ways that edge connections
are added within the green group. For (G-R) there are 28 cases
between the green and red groups; as for (R-R) there are three
within the red group. The mean and variance of the network’s
critical coupling strength after adding an edge are shown in
Fig. 1(d). It is found that in (G-G) and (R-R), adding an edge
within the synchronous group increases the critical coupling
strength of the system, while for (G-R), adding an edge be-
tween the green and red groups reduces the critical coupling
strength of the system. Besides, the variance of the coupling
strength for the approach (G-R) is large. Even if the edge
is added between groups, the effect is different for different
pairs. Therefore, it is necessary to select an appropriate pair to
put a new edge between groups.

FIG. 1. (a) A ring network with 11 nodes; the values in the dot
represent the nodes’ natural frequencies, and the red and green color
of the node represents the clustering after the splitting. (b) The bi-
furcation of nodes average frequencies with the decrease of coupling
strength. (c) There are three different ways to add edge: (G-G) edge
is added within the green group, (G-R) edge is added between the
green and the red groups, (R-R) edge is added within the red group.
(d) The mean and variance of the network’s critical coupling strength
after adding an edge in three different ways, and the black dotted line
corresponds to the critical coupling strength of the initial network.

Let the phase of the complete synchronization be �θ∗ and
the Jacobian matrix of Eq. (1) be J:

Ji j = k

〈d〉Ai j cos(θ j − θi ), i 	= j

Jii = − k

〈d〉
N∑

j=1

Ai j cos(θ j − θi ). (3)

Let λ j and �v j be the eigenvalues and eigenvectors of the Jaco-
bian matrix. From the linear stability analysis, a disturbance
near the fixed point of the synchronization: �θ = �θ∗ + �ξ , the
evolution of which �ξ (�ξ (0) = ∑N

j=1 a j �v j) is

�ξ (t ) =
N∑

j=1

a je
λ j t �v j . (4)

When the coupling strength is k = kc − ε, 0 < ε 
 1, the
system is unstable, and the maximum eigenvalue of Jacobian
matrix J is greater than 0 [37]. The row sum of Jacobian
matrix J is 0, so the constant is the eigenvector of J corre-
sponding to the eigenvalue 0. Assuming that the eigenvalues
satisfy λ1 � λ2 � · · · � λN−1 = 0 < λN , when t is large, the
disturbance �ξ (t ) is

�ξ (t ) = aN−1�vN−1 + aN eλN t �vN ≈ aN eλN t �vN . (5)
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The phase deviation is proportional to the eigenvector �vN

corresponding to the largest eigenvalue λN . Therefore, in the
edge-adding optimization, edges should be added between the
nodes corresponding to the two components that have the
largest difference in vector �vN . To obtain �vN , we need to cal-
culate the critical coupling strength kc and the corresponding
phase �θ∗. However, an exact analysis of the critical coupling
strength in complex networks is still an unsolved problem.
An efficient iteration procedure for calculating the critical
coupling strength is given in Appendix A. In Appendix B, we
further develop an estimation method for oscillators’ phases
near the critical coupling strength, which needs less calcula-
tion than in Appendix A.

After the phase �θ∗ and the critical coupling strength kc are
obtained from Appendix A or B, according to Eq. (3), the
Jacobian matrix J can be obtained as well as all its eigen-
values and eigenvectors. Following the optimization above,
we identify the two components i and j with the largest
difference in �vN , and add an edge between i and j if there
is no edge connection between them (i.e., Ai j = 0). If there
is already an edge between nodes i and j, we will search the
two components with the second largest difference in �vN . The
optimization results obtained by the methods in Appendix A
or B are basically the same. In this paper, the method with less
calculation in Appendix B is used except for the case where
it is necessary to accurately calculate the critical coupling
strength kc.

Similar to the edge-adding optimization, one can con-
sider the edge breaking, which is also popular in recent
researches [30,31]. Following our approach, when consider-
ing edge breaking, one should find the two components with
the smallest difference in �vN . However, such components are
significantly affected by random factors such as disturbance
and thus not robust. Therefore, the edge-adding optimization
is hence used in this paper.

This paper considers the simplest edge-adding scheme on
undirected and weightless networks. In practice, there will be
different constraints. As a simple example, when there are
unconnected edges. Let B be the complement of the adjacency
matrix A (if the edges between nodes i and j cannot be
connected, Bi j = 1, otherwise Bi j = 0). After obtaining the
eigenvector �vN corresponding to the maximum eigenvalue of
Jacobian matrix J , find the node i and j corresponding to the
two components with the largest difference in �vN . If there is no
edge connection between nodes i and j (Ai j = 0) and nodes i
and j can be connected (Bi j = 0), add an edge between nodes
i and j, otherwise find the two components with the second
largest difference in �vN for judgment. The improvement of the
current method with different constraints is another research
topic for future investigation.

III. NETWORK OPTIMIZATION AND GLOBAL
OPTIMAL NETWORK

In order to test the above optimization technique, three
edges are added to the Watts-Strogatz (WS) network (N =
30, p = 0.1), the structure of which is displayed in Fig. 2(a).
Green dots are network nodes in which the numbers mark nat-
ural frequencies, while black solid lines constitute the original
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FIG. 2. (a) The network structure; (b) the critical coupling
strength kc vs the number of adding edges m; (c) the order parameter
R vs coupling strength k at m = 0, 1, 2, 3; (d) the bifurcation of nodes
average frequency. The black line is the original plot, and the mauve
line is the case after adding three edges.

WS network. The first added edge is a blue dotted line, the
second is a red dotted line, and the third is a mauve dotted
line. The variation of the critical coupling strength kc with the
number of added edges m is shown as red circles in Fig. 2(b).
The green error bars in Fig. 2(b) plot variations for randomly
supplying edges. When m = 1, all possible cases (375 kinds)
are considered. When m = 2, two edges are randomly added
and the process is repeated 100 000 times, and similarly for
m = 3. The mean and mean square deviation of the critical
coupling strength are obtained, as shown by the green error
bars. It is found that the edge adding based on desynchronous
clustering is much better than that based on random picking.
Figure 2(c) shows the variation of the order parameter R with
the coupling strength k at m = 0, 1, 2, 3. It is found that the
order parameter R increases significantly with the increase of
m, which shows that the optimal synchronization to reduce
the critical coupling strength kc is consistent with the one
of increasing R. Figure 2(d) shows the bifurcation of node
average frequency. The black line is the original plot, and the
mauve line is the case after adding three edges.

In the following, we consider the edge-adding optimizing
in sparse networks, which is exercised on an Erdős-Rényi
(ER) network [38] with the edge connection probability p =
0.04 and the node number N = 100. The natural frequencies
ωi = (i − 1)/(N − 1) are linearly and uniformly distributed
on [0, 1]. For each additional 25 edges (the average degree of
the network increases by 0.5), the critical coupling strength
is calculated by the method in Appendix A. We do the edge-
adding optimization from 100 different initial ER networks,
and the optimization results are shown in Fig. 3, in which (a)
and (b) depict the dependence of the average critical coupling
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FIG. 3. Synchronization optimization with uniform frequency
distribution on ER networks. (a) The average critical coupling
strength kc vs the average degree 〈d〉. (b) The variance δ vs mean 〈d〉.
(c)–(e) The connection probability matrix corresponding to 〈d〉 =
25.5, 〈d〉 = 50, and 〈d〉 = 67, respectively. (f) The corresponding
relationship between the frequency and degree of the connection
probability matrix with different average degrees 〈d〉.

strength kc and its variance δ on the network’s average degree.
It is found that the critical coupling strength kc decreases first
and then increases with the average degree 〈d〉. The minimum
value of kc is obtained at 〈d〉 = 25.5. It can be seen from
Fig. 3(b) that the variance δ decreases fast to near 0, indi-
cating that the networks obtained from different ER networks
tend to be consistent in the edge-adding optimization. The
adjacency matrices of 100 networks with the same number
of edges supplied are superimposed and averaged to com-
pute the connection probability. Figures 3(c)–3(e) displays the
connection probability matrix corresponding to 〈d〉 = 25.5,
〈d〉 = 50, and 〈d〉 = 67, respectively. The color of each point
in the figure represents the probability of edge connection
of the corresponding nodes. The edges added are mainly in
the yellow area far away from the diagonal corresponding to
the nodes with large frequency differences, which are pref-
erentially connected during optimization. However, it can be
seen from Figs. 3(d) and 3(e) that the boundary line of the
yellow area is not parallel to the diagonal, so the edges are
not added completely according to the frequency difference.
Figure 3(f) shows the corresponding relationship between the
frequency and degree of nodes. It is found that the absolute
frequency deviation from the average in the optimized net-
work is positively correlated with its degree. Specifically, in
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FIG. 4. Synchronization optimization with exponential fre-
quency distribution on ER networks. (a) The natural frequency value
of the node. (b) The average critical coupling strength kc vs average
degree 〈d〉. (c)–(e) The connection probability matrix corresponding
to 〈d〉 = 14, 〈d〉 = 35.5, and 〈d〉 = 67, respectively. (f) The cor-
responding relationship between the frequency and degree of the
connection probability matrix under different average degrees 〈d〉.

the low-density network with 〈d〉 � 25.5, we have a linear
relation |ωi − ω̄|/di ≈ |ω j − ω̄|/d j .

Different natural frequency distributions will have vastly
different impacts on the results. For example, in the syn-
chronous echo phenomenon [39,40], the results are highly
sensitive to the frequency distribution used. Therefore, we
need to consider different natural frequency distributions.
When the natural frequency of the node is asymmetric, fol-
lowing an exponential distribution, for example, the above
100 ER random networks with p = 0.04 and N = 100 can
also be optimized by supplying additional edges. The results
are shown in Fig. 4. Figure 4(a) shows the nodes’ natural
frequencies. The green dotted line indicates the average fre-
quency ω̄. Figure 4(b) shows the average critical coupling
strength kc vs the average degree 〈d〉. The derived average crit-
ical coupling strength decreases first and then increases. The
minimum value of kc is obtained at 〈d〉 = 14. Figures 4(c)–
4(e) shows the connection probability matrix corresponding to
〈d〉 = 14, 〈d〉 = 35.5, and 〈d〉 = 67, respectively. It is found
that the yellow area is still far from the diagonal. Affected
by the frequency asymmetry, the optimized network is no
longer as symmetrical as that in Fig. 3. Figure 4(f) shows the
relationship between the nodes’ frequencies and degrees with
different average degrees 〈d〉. It is found that when the average
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FIG. 5. The optimization results of adding edge connection with four different distributions of natural frequencies. The first column is the
frequency distribution. The second column shows the average critical coupling strength kc vs the average degree 〈d〉, the minimum of which is
marked with a green dotted line. The third column is the connection probability matrix corresponding to the minimum critical coupling strength.
The fourth column is the correspondence between the node frequency and the degree of the connection probability matrix corresponding to
the third column.

degree 〈d〉 is small, the node’s absolute frequency deviation
from the average is linear with the degree: |ωi − ω̄|/di ≈
|ω j − ω̄|/d j . With the increase of 〈d〉, the frequency of the
node with the smallest degree will shift to the left of ω̄.

From the above results, it can be seen that there is an
optimal number of edges to minimize the critical coupling.
When the natural frequency is uniformly distributed, it can be
seen from Fig. 3(d) that the network is basically close to a
bipartite network. Nodes with serial numbers less than 50 are
basically connected to nodes with serial numbers greater than
50. The slots with 1 in the adjacency matrix basically stand
together and away from the diagonal. Looking at the green
line in Fig. 3(f), we can see that the node’s absolute frequency
deviation from the average is linear with the degree. When the
natural frequency is exponentially distributed, it can be seen
from Figs. 4(c) and 4(f) that the characteristics of the optimal
network are similar.

For other distributions of natural frequencies, the results
are similar, as shown in Fig. 5. It is found that all the optimal
networks basically have similar properties: (i) The deviations
of node frequencies from the mean value are linear with the
nodes’ degrees; (ii) the oscillators form a bipartite network
where the ones with lower or higher frequencies are divided
into two groups; (iii) the region with the adjacency matrix of 1
exists as a cluster and is far away from the diagonal, meaning
that the oscillators are connected to all the other ones with
sufficiently large frequency differences.

Through the optimization, optimized networks have a
memory of the initial networks. In addition, we can di-
rectly construct the network based on the above properties.
First, consider the simplest case. The frequency is linear and
uniform: ωi = (i − 1)/(n − 1). The network constructed is
shown in Fig. 6(a). We will show that in some cases these con-
structed networks can approach the optimal networks with the
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FIG. 6. (a) When the frequency ωi = (i − 1)/(n − 1), the ad-
jacency matrix of the optimal network is constructed. (b) The
comparison between the critical coupling strength kc (red solid dot)
and the theoretical lower bound km (green solid line) at different
network sizes N . (c) The network constructed at N = 10, �ω =
[−0.5, −0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4, 0.5]T . (d) The de-
pendence of the instantaneous average frequencies on the coupling
strength k. Here, the critical coupling strength is deduced from the
synchronous state and recorded by quasistationary method.

theoretical minimum value of the critical coupling strength kc.
When the system is fully synchronized, θ̇i = ω̄, the condition
for the coupling strength k can be obtained from Eq. (1):

k = |ωi − ω̄|〈d〉∣∣∑N
j=1 Ai j sin(θ j − θi )

∣∣ � |	i|〈d〉
di

, i = 1, 2..., N,

(6)

where 	i = ωi − ω̄. At the critical point k = kc, the system
is also fully synchronized. Hence, we have kc � |	i|〈d〉/di,
which can be further simplified:

kc � max
i

( |	i|〈d〉
di

)
�

∑N
i=1 |	i|〈d〉∑N

i=1 di

=
N∑

i=1

|	i|
N

. (7)

The above expression takes the equal sign when |	i|/di =
|	 j |/d j, i, j = 1, 2..., N which corresponds to the previous
condition (i): The absolute frequency difference with respect
to the average is linear with the node’s degree. The lower
bound of kc is denoted as km,

km =
N∑

i=1

|	i|
N

, (8)

which is determined by the distributions of natural frequen-
cies and independent of the average degree of the network.
Figure 6(b) shows the comparison between the critical
coupling strength kc of the constructed network and the the-
oretical lower bound km at different network sizes N . It is

FIG. 7. (a) Frequency value. (b) Adjacency matrix of the con-
structed network. (c) The functional dependence of the frequency
on the node degree. (d) The node serial number is rescaled to [0,1]:
xi = (i − 1)/(n − 1), and the distance from the frequency to the
average is represented by the green area.

found that the difference between kc and km is very small.
Besides, with the increase of the network size N , the critical
coupling strength kc can approach the lower bound km. In
fact, kc and km cannot be equal because di must be rounded,
resulting in a small difference between |	i|/di and |	 j |/d j .
Hence, the second equal sign in the equality Eq. (7) cannot
hold. Increasing N reduces the difference between |	i|/di

and |	 j |/d j caused by rounding di. Therefore, with the in-
crease of network scale N , the critical coupling strength kc

approaches the lower bound km. It is also possible to fine
tune the value of frequency �ω to make |	i|/di and |	 j |/d j

exactly equal. Consider a simple case: N = 10, frequency �ω =
[−0.5,−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4, 0.5]T . The
network constructed in a manner similar to Fig. 6(a) is shown
in Fig. 6(c). Figure 6(d) shows the change of average fre-
quency with the coupling strength. Here, the critical coupling
strength is deduced from the synchronous state and recorded
by quasistationary method. It is found that the critical cou-
pling strength kc is equal to the lower bound km, both of which
are 0.3. It can be seen from the above analysis that the critical
coupling strength of the network constructed in Fig. 6(a) can
approach its theoretical lower bound, which corresponds to a
uniform distribution of natural frequencies.

We may construct the globally optimal network according
to the three conditions (i–iii), but not all distributions of fre-
quencies satisfy the three conditions at the same time. There
is a symmetry condition for the distributions as illustrated by
an example in Fig. 6. In Fig. 7(d), the node serial number
is rescaled to [0,1]: xi = (i − 1)/(n − 1), and the distance
to the average frequency is represented by the green area.
Because the adjacency matrix is a symmetric matrix about the
diagonal, the shapes of the two yellow regions in Fig. 7(b)
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should be the same. Since the frequency in Fig. 7(c) satisfies
a linear relationship, the two green areas in Fig. 7(d) and the
two yellow areas in Fig. 7(b) should be symmetrical, that is,
the shapes of the two green areas in Fig. 7(d) should be the
same. Let the frequency value function be G(x): ωi = G(xi ) =
G((i − 1)/(n − 1)), then the graph of G(x) in section x � a
and that in section x � a make up the profiles of a function
and its inverse. Therefore, the frequency function G(x) needs
to satisfy

G(x) =
{

g(x), x � a
g(a) + bg−1(x − a), x > a

, (9)

where b is the amplification or the reduction factor of frequen-
cies. Discomfort general order g(0) = 0. In the following,
let b = 1. Hence the frequency range is [0, 1]. Because the
average frequency reads ω̄ = G(a), the value of a shall satisfy

ω̄ = g(a) =
∫ 1

0
G(x)dx

=
∫ a

0
g(x)dx +

∫ 1

a
g(a) + b ∗ g−1(x − a)dx. (10)

The optimal network can be constructed for the distribu-
tions of frequencies satisfying the conditions Eqs. (9) and
(10). Given the node’s frequency ω, let its degree be di =
[N |ωi − ω̄|], where [x] takes the integer part of x. Then the
value of adjacency matrix A can be constructed as follows:

Ai j = 1, j � N + 1 − di, 	i � 0
Ai j = 0, j < N + 1 − di, 	i � 0
Ai j = 1, j � di, 	i > 0
Ai j = 0, j > di, 	i > 0

, i = 1, · · · , N.

(11)

Two examples are shown in Fig. 8. The first row
of Fig. 8 shows the frequency value: ωi = G(xi ) =
G((i − 1)/(N − 1)), with the case g(x) = cx, b = 1, a =
1/(c + 1) corresponding to Fig. 8(a), and the case
g(x) =

√
0.25 − (x − 0.25)2, b = 1, a = 0.5 corresponding

to Fig. 8(b). The second row of Fig. 8 shows the optimal
network constructed according to Eq. (11). The third row of
Fig. 8 shows the critical coupling strength kc and theoretical
lower bound km as a function of the network scale N . It is
found that the critical coupling strength of the constructed
network is gradually approaching the theoretical minimum,
but there is still a difference between them.

In order to verify whether the network constructed by the
above method is globally optimal, we randomly change one
edge of the network, that is, randomly disconnect one edge
and then randomly connect another. It is interesting to check
the change of critical coupling strength of the system after this
switch. For the constructed network in Fig. 8(d), we make this
random change 100 000 times, and obtain the distribution of
100 000 critical coupling strengths, as shown in Fig. 9. The
blue line in the figure corresponds to the critical coupling
strength of the network in Fig. 8(d). It is found that changing
one edge randomly will increase the critical coupling of the
system. It is numerically verified that the constructed network
structure is a global optimal network structure.
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1 N/2 N
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0.12
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0.16
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FIG. 8. Two examples of an optimal construction.
The first row shows the frequency value: ωi = G(xi ) =
G((i − 1)/(N − 1)). (a) g(x) = 0.5x, b = 1, a = 2/3.
(b) g(x) =

√
0.25 − (x − 0.25)2, b = 1, a = 0.5. The second

row shows the optimal network constructed according to Eq. (11).
The third row shows the variation of the critical coupling strength
kc (red solid line) and theoretical lower bound km (green solid line)
with the network sizes N .

When the distribution of frequencies does not satisfy
Eq. (9), the matrix constructed by Eq. (11) is not a symmetric
matrix and cannot correspond to the adjacency matrix of a net-
work. Therefore, the optimal network cannot meet the three
conditions (i), (ii), and (iii) at the same time. In this case, is
there a network whose critical coupling strength kc approaches
the lower bound km? How does one find it? A network sat-
isfying conditions (i) and (ii) can be constructed, however.
The nodal degree di = [N |ωi − ω̄|] is obtained from condition
(i). Condition (ii) requires that nodes i and j that satisfy
(ωi − ω̄)(ω j − ω̄) � 0 can be connected. Under the condi-
tion of meeting the requirements of degree and frequency of
connected nodes, the network is generated by random edge
connection.

IV. SUMMARY

In this paper, the synchronization optimization of Ku-
ramoto oscillators on a complex network is considered. For
a given frequency, we hope to obtain the optimal network
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FIG. 9. For the constructed network in Fig. 8(d), one edge is
randomly disconnected, and then another one is randomly added.
After 100 000 repetitions, the distribution of the critical coupling
strength is obtained. The blue line in the figure is the critical coupling
strength of the network in Fig. 8(d).

structure to minimize the critical coupling strength. In order
to obtain an efficient edge-adding optimization, the desyn-
chronization of the system is studied. It is found that adding
edges between different partial synchronization groups can
effectively reduce the critical coupling strength. Specifically,
an edge is added between the nodes corresponding to the two
components with the largest difference of the eigenvector cor-
responding to the maximum eigenvalue of the Jacobian matrix
near the critical coupling strength kc. In order to calculate the
Jacobian matrix J near the critical coupling strength kc, we
give two methods in the Appendix.

Using this optimization for sparse ER random networks,
we find that the critical coupling strength decreases first and
then increases with the average degree. At an intermediate
value, we get the smallest critical coupling strength together
with the optimized network. It is found that the adjacency
matrix of the optimized network depends on the distribution of
natural frequencies, but they should satisfy three conditions.
(i) The deviations of node frequencies from the mean value
are linear with the nodes’ degrees. (ii) The oscillators form
a bipartite network where the ones with lower or higher fre-
quencies are divided into two groups. (iii) The region with the
adjacency matrix of 1 exists as a cluster and is far away from
the diagonal, meaning that the oscillators are connected to all
the other ones with sufficiently large frequency differences.
When the distribution of frequencies satisfies certain condi-
tions, the network can be constructed according to condition
(i)–(iii), and the critical coupling strength of the network can
approach its theoretical lower bound, corresponding to the
globally optimal network. For more general distribution of
frequencies, optimized networks satisfying condition (i)–(ii)
can be obtained.

In general, this paper proposes an effective method of syn-
chronization optimization, and extracts characteristics of the
optimized network structure. Different optimal networks are
constructed for a class of natural frequencies’ distributions.

The construction is not affected by the network scale. How-
ever, there are still some unsolved problems. For more general
distributions of frequencies, the global optimal network struc-
ture remains elusive, which calls for further research.

APPENDIX A: METHOD FOR CALCULATING CRITICAL
COUPLING STRENGTH

When the system is synchronized, the phase is �θ = �θ∗ −
ω̄t �I , then Eq. (1) can be written as

ω̄ = ωi + k

〈d〉
N∑

j=1

Ai j sin(θ∗
j − θ∗

i ), (A1)

which becomes
N∑

j=1

Ai j sin(θ∗
j − θ∗

i ) = 〈d〉
k

(ω̄ − ωi ). (A2)

When the coupling strength becomes k + ε, assuming that the
system still maintains the synchronous state, and the phase
�θ = �θ∗ − ω̄t �I + �δ, according to Eq. (1),

ω̄ = ωi + k + ε

〈d〉
N∑

j=1

Ai j sin(θ∗
j − θ∗

i + δ j − δi ). (A3)

Make a first-order Taylor expansion of Eq. (A3):

ω̄ ≈ ωi + k + ε

〈d〉
N∑

j=1

Ai j sin(θ∗
j − θ∗

i )

+ k + ε

〈d〉
N∑

j=1

Ai j cos(θ∗
j − θ∗

i )(δ j − δi ). (A4)

Let 	i = ωi − ω̄ and substitute Eq. (A2) into Eq. (A4) to
obtain

J�δ ≈ ε

k + ε
�	. (A5)

The Jacobian matrix J is given in Eq. (3). Let λ j and �v j be the
eigenvalues and eigenvectors corresponding to the Jacobian
matrix J . When the system is in synchronous state, λ1 �
λ2 � · · · � λN−1 < λN = 0. The pseudoinverse matrix of the
symmetric matrix J is J† = ∑N−1

i=1 λ−1
i �vi�viT [41]. Equa-

tion (A5) can be converted into

�δ
ε

≈ 1

k + ε
J† �	. (A6)

When the variation ε approaches 0, Eq. (A6) is written as a
differential equation:

d�θ
dk

= 1

k
J† �	. (A7)

The variation of node phase �θ with coupling strength k can be
obtained by evolving Eq. (A7). Note that Eq. (A7) holds only
in the synchronous state, and the coupling strength descends
from a value k > kc during the iteration. The initial phase is
one corresponding to synchronization, which can be quickly
obtained by solving Eq. (1). As k decreases, the second largest
eigenvalue λN−1 of J increases from a negative value. When
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λN−1 increases to 0, if the coupling strength k continues to
decrease, the maximum eigenvalue of J will be greater than
0, and the synchronous state of the system becomes unstable.
Therefore, when the two largest eigenvalues λN and λN−1 of J
are equal to 0, the corresponding critical coupling strength kc

is reached.
The critical coupling strength of the system can be obtained

by judging the two largest eigenvalues λN and λN−1 of J upon
evolving Eq. (A7). Compared with the direct numerical calcu-
lation Eq. (1), the amount of calculation is greatly reduced.

APPENDIX B: METHOD FOR ESTIMATING CRITICAL
COUPLING STRENGTH AND PHASE

Previous studies [30,36] computed the phase of each node
when the coupling is strong, which will be used here to es-
timate phases near the critical coupling strength. When the
coupling strength k is large, |θ j − θi| 
 1, then sin(θ j − θi ) ≈
θ j − θi, and Eq. (1) can be transformed into a linearized
equation:

ω̄ ≈ ωi + k

〈d〉
N∑

j=1

Ai j (θ j − θi ). (B1)

Equation (B1) can be written in a matrix form,

�	 ≈ k

〈d〉L�θ, (B2)

where 	i = ωi − ω̄, L(Li j = −Ai j, Lii = ∑N
j=1 Ai j) is the

Laplace matrix of the network. Let γ j and �u j be the eigenval-
ues and eigenvectors of L. When the network corresponding
to adjacency matrix A is a connected network, 0 = γ1 <

γ2 � · · · � γN , the generalized inverse matrix of L is L† =∑N
j=2 γ −1

j �u j �u jT . According to Eq. (B2),

�θ ≈ 〈d〉
k

L† �	. (B3)

The estimated phase at different coupling strength can be
obtained from Eq. (B3). Below, we explain how to estimate
the critical coupling strength. Substitute the phase obtained
by Eq. (B3) into Jacobian matrix J to get the eigenvalue λ∗.
The critical coupling strength be ks when λ∗

N−1 + λ∗
N = 0,

which is then solved by dichotomy. As a result, the estimated
value ks of critical coupling strength and the estimated phase
�θ ≈ 〈d〉L† �	/ks are obtained.
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