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The M-dimensional scattering matrix S(E) which connects incoming to outgoing waves in a chaotic systyem
is always unitary, but shows complicated dependence on the energy. This is partly encoded in correlators
constructed from traces of powers of S(E + €)ST(E — €), averaged over E, and by the statistical properties
of the time delay operator, Q(E) = —ihS'dS/dE. Using a semiclassical approach for systems with broken
time-reversal symmetry, we derive two kinds of expressions for the energy correlators: one as a power series
in 1/M whose coefficients are rational functions of €, and another as a power series in € whose coefficients are
rational functions of M. From the latter we extract an explicit formula for Tr(Q™) which is valid for all m and is

in agreement with random matrix theory predictions.
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I. INTRODUCTION

Scattering of waves of energy E can be described by
the S(E) matrix, which connects incoming to outgoing am-
plitudes. We consider a finite region with chaotic classical
dynamics, characterized by a single timescale p, the dwell
time, the average amount of time spent inside the region by
a classical particle injected at random. This chaotic region is
connected to the outside world by means of M channels, so
that S is M dimensional and always unitary as a consequence
of the energy conservation.

If time-reversal symmetry is broken, one statistical ap-
proach, random matrix theory (RMT), assumes S(E) to be
uniformly distributed in the unitary group [1,2], according
to the invariant Haar measure, for every E. To understand
the correlations between S matrices at different energies has
always been a challenge. One way to quantify this is to com-
pute S at one energy and ST at another, and take the trace of
their product, Tr[S(E + %)ST(E — %)]. This will be equal
to M for € = 0, but in general a widefy fluctuating function
of E. Averaging within a local energy window produces a
well-behaved function of €. Such energy correlations have
traditionally been studied by modeling the Hamiltonian of the
system as a random Hermitian matrix coupled to scattering
channels [3-9].

A more detailed characterization of energy correlations is
the calculation of

Coi(M, €) = (Tr[S(E + €)ST(E — €)]") (1)

for integer n, where ¢ = % is a classically small energy
increment. The above quantity is expected to be universal, i.e.,
independent of the system’s details, as long as the dynamics is
fully chaotic, the particle spends enough time in the scattering
region, i.e., Tp is large compared to other classical timescales
(also compared to the Ehrenfest time tx ~ |loghl), and the
system is in the semiclassical regime. Besides M and e, it

should depend only on whether time-reversal symmetry is
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present or not. In this work we focus our attention on systems
where this symmetry is broken.

Related to energy dependence of the S matrix is the time
delay matrix [10-13]

ds
Q(E) = —ihSTE. )

Its real eigenvalues {7y, ..., Ty} are commonly referred to as
proper time delays and provide the lifetimes of metastable
states. Its normalized trace ty = ﬁTr(Q) is known as the
Wigner time delay, which provides a measure of the density of
states of the open system. Its average value equals the classical
dwell time, (Tw) = Tp. More detailed information is encoded
in higher spectral moments such as

On = (Tr(Q"). 3)

The statistical properties of time delay have been much
studied. Within RMT, perhaps the main point of departure is
the distribution of the inverse matrix Q~!, which is known
to conform to the Laguerre ensemble [14,15]. This led to
the calculation of the distribution function of 1y in different
regimes and to expressions for the above spectral moments
[16-23] (see the review [24]).

In this work we do not rely on random matrices, but instead
employ a semiclassical approach, in which the elements of §
are approximated, in the short-wavelength regime, as infinite
sums over scattering rays [25,26]. It has been very successful
in treating transport properties at fixed energy [27-33]. It
was adapted by Kuipers and Sieber [34,35] in order to take
into account the variable € and handle correlators like (1). It
has grown into an independent line of attack to this kind of
problems [36-42].

We follow recent advances in the semiclassical theory and
formulate correlation functions in terms of auxiliary matrix in-
tegrals [42—45]. These matrix integrals are related to concepts
in representation theory and combinatorics and thereby the
power of these fields can be brought to bear on the problem.
This approach leads to two explicit formulas for C,(M, €):
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one as a power series in 1/M whose coefficients are rational
functions of €, and another as a power series in € whose coef-
ficients are rational functions of M. From the latter we extract
an explicit formula for Tr(Q") which is valid for arbitrary
values of n and M and which is in agreement with random
matrix theory predictions.

In Sec. II we present the semiclassical matrix integral
which is the crux of the theory. In Secs. III and IV we use
it to compute C,(M, €) in two different ways. In Sec. V we
make the connection with Q,,. We conclude in Sec. VI.

II. SEMICLASSICAL MATRIX INTEGRALS

The semiclassical approximation to quantum scattering has
been extensively discussed in previous works [27,28,31,42].
When correlations among scattering trajectories are taken into
account, and the required integrations over phase space have
been performed, the theory has a diagrammatic formulation
which is a perturbative theory in the parameter M~'. Kuipers
and Sieber obtained the diagrammatic rules governing this
theory when applied to (1). The contribution of any given
diagram factorizes into the contributions of individual vertices
and edges: a vertex of valence 2q gives rise to —M (1 — ige);
channels of any valence give rise to M; each edge gives rise to
M —ie)] "

Recently, the semiclassical approach has been developed
in terms of appropriate matrix integrals [42-45] into which
the diagrammatic rules are built by design. For systems with
broken time-reversal symmetry, which are our focus, the result
is that G, is given by

lim | e Ze (M/q)(1—iqf)Tf(ZZ*)”Tr[sz'i'P]n d_Z 4)
N—0 Z ’
where Z is an N-dimensional complex matrix, P is an orthog-
onal projector from R" to RM, and

Z= f MU= ZZ) g7 )

is a normalization.

The way this matrix model works is that the factor
e~ MU—ieNTr(ZZ7) jq kept as a Gaussian measure while the rest of
the exponential is Taylor expanded. Each trace then becomes
a vertex in a diagram, along with the correct factor —M (1 —
ige). Then the integration is performed by invoking Wick’s
rule, and edges are produced along with the correct factor
[M(1 —ie)]~!. The term Tr[ZPZ'P]" mimics the correlator
we want to compute. Finally, the limit N — 0 is necessary to
remove spurious contributions coming from unwanted peri-
odic orbits [43].

The traditional singular value decomposition

Z=UDV", (6)
where U and V are unitary matrices, leads to Z =
G [ e MU A(X)|2d X, where the Vandermonde

AX)= ] &j-x) (7)
1<i<j<N

is the Jacobian of the change of variables, X = D? has the
same eigenvalues as 77t and G = f dU dV is the result of a
double integration over the unitary group. This integral is the

partition function of the Laguerre ensemble of random matrix
theory [46] and a particular case of the Selberg integral [47].
It is well known that it gives

N
Z=gmM i)™ [TjG - D ®

j=1

Let x,(u) be the characters of the irreducible rep-
resentations (irreps) of the permutation group S, (these
representations are labeled by integer partitions, denoted by
A nor |A] = n). They are useful in expressing the trace of a
power of a matrix in terms of Schur polynomials,

Tr(A") = ) X (n)si(A). ©)
An

Schur polynomials are characters of irreducible representa-
tions of the unitary group [48]. It follows that they satisfy

5, (A)s,(B)
s, (1)

where 1V is the identity matrix in N dimensions. The quantity
[49,50]

f dUs;, (UAU'B) = , (10)

Tau

d
s (V) = n—*,[N]*, (11)

is the dimension of the irrep of the unitary group, where d, =
x, (1), given by
1709) £

1 _ .
”’gmjl‘[aj—J_H,), (12)

=i+l

is the dimension of the irrep of the permutation group, while
[N]* is a monic polynomial in N,

L)

[N] = HM, (13)

1w

which is a generalization of the rising factorial. For future
reference, let us also define a corresponding generalization of
the falling factorial,

L) .
N+ !
N, =[] —"—. 14
[N, EW—MH)! (14)
Using (9) and (10) to perform the angular integration of the
term Tr[ZPZ"P]" in Eq. (4), we get

. M1\
Ci(M,e) = }llg}) E (W) x.() I, (15)
An

with
T, = %/6*2211 (M/Q)(lfiqe)Tr(X)‘IS)L(X)dX. (16)

It is known that x;(n) is different from zero only if
A= m—k, 1), a so-called hook partition [49,50]. In that
case, yn(n) = (—1)* and d, = (”;1) We denote by H,
the set of all hook partitions of n. For example, Hy =
{4, (3, 1), (2,1, 1), (1*)}. We also define the quantity

(n—1)!

HL=m—k—-1Dk! = 4 (17)
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III. CORRELATOR AS POWER SERIES IN 1/M

Let by be the size of the conjugacy class of the permutation
group containing permutations of cycle type f (i.e., the largest
cycle has length 8, the second largest has length 8,, and so
on) and let us define the function

gp(e) = [ 1 —ige). (18)
qep

Then it is clear that we can write the Taylor series of
e~ Lgt M/ —ige)Te(X) o

1
Zngﬁ(—M)l(ﬁ)gﬁ(e)pg(X), (19)
m BFm
where
40:3)
pﬂ(X):l_[Tr(Xﬂf) (20)

j=1
is a power sum symmetric polynomial. In the sum (19) the
term m = 1 is excluded, and the partition 8 has no parts equal
to 1.

Next, we use the relation between power sums and Schur
polynomials [49,50], pg(X) = Zp Xp(B)s,(X), and then join
s,(X) with the s, (X) with the one already in the integrand,
according to

sp(X)sa(X) =Y s, 1)

where c/‘{’ are the Littlewood-Richardson coefficients [50].
The integral to be done is then
% / e MU0 A (X)) 25, (X )dX. (22)
This is an integral of Selberg type [47], given by
%([N]”V[M(l —ie)" I, (23)

The limit N — 0 can be taken by noticing that, since A is a
hook, we have [45]

[N]* = N(=D)! ™15, + ON?). (24)

This means only partitions v that are also hooks will con-
tribute, because for more general partitions the quantity [N]"
will be at least quadratic in N for small N. This observation
leads to

X.(n) An2
¢ = S 2 v, (25)

where

— bs(—M) Bgy(e)(n+m — 1)
"= Xm:f; m!(n+ m)[M(1 — ie)]"*+m D)\ﬂ’ (26)

with
CV
Dip =D xo(B)" @7)
pv v

For a given pair of hooks, A, v, it follows from the so-
called Murnaghan-Nakayama rule [50] that there are two

different p for which ¢} o is not zero. If A = (n — k, 1¥) and
v=m+m—r1"), then py=m+k—r,1"%) and p, =
(m+k —r+1,1"%1). We thus have the sum

> X0 (B, = X0 (B) + X (B)- (28)

pEH,

It is a standard fact from representation theory that the re-
striction from S, to S, of the irreducible character x; is
the sum of irreducible characters yx, over all partitions o that
result from the Young diagram of A by removing a box [50].
Hence, the above sum equals y,(8,1) with w = (m + k —
r41,1775),

We now have to compute

n+m—1

Xo(B, 1) (n+m—r—1Dr!
;—d = ; Kol DTS T (29)
Using that

n+m—r—10"r!
(n+m)!

we end up having to compute the sum

1
= / W =uw)"™" " u (30)
0

n+m—1
> Xe(B DX, (31)
r=0
where x = u/(1 — u). Fortunately, the characters y, with
a hook have already been studied in connection with the
problem of factorizing permutations [51], and it turns out that

n+m—1
D7 Xo(B DX = xfy(x), (32)
r=0
where
S0 =[]0 = (=01, (33)

qep

Hence, we arrive at an integral representation for the sum
in Eq. (29):

Xo(B, 1)
Fomi(B) = Z L tm

v

1
_ k _ n+m—k—1 u
_/0 (1= ay (e (34)

Notice that the integral above can be done exactly for any
partition 8, as it is always a beta function.
The quantity B, is then given by

Ty bp(—M)"Pgg(e)(n+m —1)!

m\[M(1 — ie)]r+m Fumi(B)  (35)

m BEm

and we arrive at

n—1 2
(=DM = k)™]
CnZkX_; (n—k—])!zk!z Z;

by (=M Pgy(e)(n + m — 1))
x m\[M(I — i)™

where we have used that [M]* = (M — k)™,

Fn,m,k(/g)s (36)
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This expression is very explicit and easy to implement in
the computer. Even indeed, we can compute many orders in
1/M and they all agree with the generating functions pre-
sented in [37].

IV. CORRELATOR AS POWER SERIES IN €

Alternatively, we may express C,(M, €) as a power series
in €. Such a series is not convergent: its radius of convergence
cannot be finite because the integral in Eq. (16) clearly does
not exist if € has a negative imaginary part. But the series can
still be asymptotic and therefore useful, in the sense that its
first d terms give an accurate representation of the function
for small €, up to an error of order e,

After we expand

00 . m
MIETHX/1-X) _ Z (m::') Zdﬂsﬂ<£), (37)

m=0 ' ubEm

we express C,, as

. M1\ X (iMe)™
ng;X“m<WY> > o > duhy.  (38)

m=0 T

where 1, is given by

g
Z / det(1 —X)MlA(X)|2sM(1

Schur polynomials can be expressed as a ratio of determi-
nants,

p%
— )s,\(X)dX. (39)

det( N+)» l) det( N+A 1)

sX) = det () T AX) 0

In the present case this gives

() = e [(_)}; @)
Na-x/)~ (1 —x0) AEs)

It is easy to express the above Vandermonde as
A X _ A(X)
(1—-X)/)  det(1 —X)N-1"

The integral can then be computed by means of the Andreief
identity,

(42)

/det [fiCxx)]det [g;(xx)]dX = N!det [/ﬁ(x)gj(x)dx},

43)
which gives
g ! M— j—1 2N+p;—j+ri—i
L, = N!= det (1 — x)yMrti =Ly 2N =it hi=ig e ||
n Z 0
(44)
or
M—p;+j—1)!
=g l—[ ( wj+j—1)
(M 42N +1j — j)!
X det[(2N+le —Jj+r=D 45)

The above determinant can be computed as follows. First,
we write det[(2N + p; — j+A; —)!] as

o0
det [/ x2N+“f'_j+}‘f_"e_xdx]. (46)
0

Next, we use the Andreief identity in reverse to express this as
a multiple integral,

oo
i | et by den e T ax
- JO

- i/oosM(X)sA(X)|A(X)|2e_Tr(X)dX. (47)
N! Jo

The Schur polynomials can be combined by using the
Littlewood-Richardson coefficients and the resulting integral
is of Selberg type [47], leading to

| o d,
JWXV:CWM!

After the product over j cancels with an equal term coming
from the normalization Z [see (8)], we can take N — 0. From
this limit it results that all contributions come from those v
that are hooks. Moreover, in that case c; , is different from
zero, and equal to 1, if and only if w is a hook as well. We
also recognize in (45) an expression for the generalized falling
factorial, so that

N
[ -n 48)
j=1

=3 ’“t(”) [MT'B;. (49)

A€H, A
with Ex given by
o0 .
Me)" d — 1!
> 6.) Yo e )Z(;“. (50)
L ,ueHm[M]“ (n+m) . ,

When A = (n — k, 1¥) and u = (m — [, 1'), it again follows
from the so-called Murnaghan-Nakayama rule [50] that the
coefficient ¢}, = 1 if and only if v=(n+m —k -1, 14+
orv=m+m—k—1—1, 1+ Hence,

G _m+m—k—1-2)l(k+1)!

1
Z ! D
n—}—mUeHnm (n+m—1)!
or
1 c; fro
Y e (52)
n—{—mveH’Hm d, n+m—1)!
where Ao = (m+m—k—1—1, 15,
Finally,
o0 .
(iMe)"
Cn = Z TEnmv (53)
m=0
where
[M Trop
Em = Y xdu- = (54)
reH, neH, M],

This expression is of a different nature than the one obtained
in the previous section, but it is also very explicit and easy to
implement.
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V. STATISTICS OF TIME DELAY

As discussed by Berkolaiko and Kuipers [36], the time
delay moments Q,, = (Tr(Q™)) can be obtained from appro-
priate derivatives of the energy correlators,

— M‘Cg m—n m
On =20 [dem > (=1 (n)cn(e)} . (59

e=0

Using the expression we have just derived for C, as a power
series in €, Eq. (53), it is easy to see that

M d"C, [m1* * txou
— =M" . 56
m dem Z Z X)\(I’l) ! [M]M ( )
\eH, neH,,
From this we can derive
B " m m (_1)n+m
On = (M1p) ; (H>TEm (57)

When A = (n — k, 1¥) we have [M]* = (M — k)™. The
sum over n and the sum over A then become [52]

m n—l1
weg (nHm—k—1=2)!1(k 4 1)! "
ZZ(H) 1yt L M — k)™

n=1 k=0

= (D" —- D", (58)
with u = (m — 1, 1!). Therefore, we arrive at a very simple
expression,

(Mzp)" Z [M]*
! WweH,, [M],,

This coincides exactly, for any m, with the result derived from
random matrix theory [22], proving the exact equivalence be-
tween random matrix theory and semiclassical approximation
for this problem. Previously, this equivalence had only been
verified up to m = 8.

VI. CONCLUSION

Using a powerful semiclassical approach, based on matrix
integrals, we investigated energy correlations in the scattering
matrices of chaotic systems with broken time-reversal sym-
metry. We expressed the basic correlator C,(M, €), Eq. (1),
in two different ways: as a power series in 1/M and as a
power series in €. From the latter we were then able to ex-
tract average spectral moments of the time delay operator.
We found complete agreement with RMT predictions, thereby
microscopically justifying that approach.

A natural extension of this work would be to perform
analogous calculations for systems with intact time-reversal
symmetry. That remains a challenge. Moreover, nonlinear
statistics of time delay, like ([Tr(Q)]"), have been computed
within RMT, but are not accessible to the present approach.
We believe the alternative semiclassical treatment introduced
in [53] is promising in that respect.
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