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Dynamic effects on reservoir computing with a Hopf oscillator
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Limit cycle oscillators have the potential to be resourced as reservoir computers due to their rich dynamics.
Here, a Hopf oscillator is used as a physical reservoir computer by discarding the delay line and time-
multiplexing procedure. A parametric study is used to uncover computational limits imposed by the dynamics of
the oscillator using parity and chaotic time-series prediction benchmark tasks. Resonance, frequency ratios from
the Farey sequence, and Arnold tongues were found to strongly affect the computation ability of the reservoir.
These results provide insights into fabricating physical reservoir computers from limit cycle systems.
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I. INTRODUCTION

Reservoir computing (RC) is an unconventional compu-
tation technique, which utilizes the physics of a nonlinear
dynamical system for computation [1-8]. Emerging from echo
state networks [9] and liquid state machines [10], the RC
scheme differs from the Turing machine principle since the
computation performed by RCs do not rely on static memory.
The computation is obtained by mapping the transient dynam-
ics of the nonlinear physical system to a higher dimensional
space. Some of the popular applications of RC include logical
operations [11-15], spoken and handwritten digit recogni-
tion [8,16,17], wireless communications [2], complex and
chaotic time-series predictions [2,8,18-21], long-term chaotic
time-series prediction [22,23], image recognition [24], and
morphological computation [25,26]. Due to the echo state
network structure, many physical systems have been used as
reservoirs, which are commonly known as physical reservoir
computers (PRCs). Some of the classical PRCs include an
array of Duffing oscillators [11,27,28], a limit cycle-based
Hopf oscillator [29], soft robotic bodies [25,30-33], tensegrity
structures [26,34], and origami structures [35].

Besides systems from classical physics, quantum physical
systems have also been used as RCs to perform tasks from
both classical and quantum domains. The naturally disordered
quantum dynamics of an ensemble system was utilized to
emulate nonlinear time series, including a chaotic system [36].
A Kerr nonlinear oscillator was used in sine wave phase
estimation using its complex amplitudes as computational
nodes [37]. A nuclear-magnetic-resonance spin-ensemble sys-
tem was used for a nonlinear dynamics emulation task by
implementing a spatial multiplexing approach to increase
computational power [38]. Dissipative quantum dynamics was
used to build a quantum reservoir computer for nonlinear
temporal tasks [39]. Statistical physics has played an impor-
tant role in the theoretical development of neural networks,
which formed a connection between information processing
and physics [40,41].
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Popularly, delayed dynamical systems have been used as
reservoirs from a single nonlinear node [42,43]. Coupled de-
lay systems have also been used in computing by making deep
neural networks [6] and signal processors [44]. A simpler
implementation can also be achieved by excluding the delay
or feedback line [45]. Here, a reservoir computer is built by
implementing a two-state Hopf oscillator. The Hopf oscil-
lator reservoir computer was previously studied, and it was
shown that it could successfully complete several benchmark
tasks [29]. The Hopf oscillator has an inherent capability
of storing and learning information due to the presence of
stable limit cycles, which also makes it suitable for building
adaptive oscillators [46,47]. Conventionally, a binary mask is
used in a time-multiplexing procedure to create virtual nodes
for computation [8,13,48]. Besides this, noise can also be
used as a mask [49]. Previously, an eigenvalue analysis was
linked with the nonresonant condition to design a reservoir
computer operating near the stable equilibrium [50]. However,
the focus of this article is different since the Hopf reservoir is
a limit cycle-based reservoir. So the analysis from Ref. [50]
would not be applicable here. It is also noted that the popular
notion of the “edge of chaos” was not used in this article to
optimize the reservoir performance. It is supported in many
literature findings that the edge of chaos is not a necessary
condition to achieve good computational ability for a reservoir
computer [31,51]. Hence, being distant from a chaotic region
and tuning a set of network parameters can also be a route to
construct a reservoir computer with good performance.

Microwave-based magnetic forced synchronization was
implemented in a spintronic oscillator to increase the reservoir
computing performance in Ref. [52]. The spin dynamics of a
magnetic tunnel junction was also used to build a reservoir
system [53]. Additionally, a nanoscale spintronic oscillator
was optimized as a reservoir, based on the magnetization
dynamics [54]. These spintronic oscillators may further be
optimized by utilizing the relationship between the period of
input (pseudofrequency) and the forcing as described in the
current paper.
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Here, a driven Hopf oscillator is studied as a reservoir
computer with both masking function used in Ref. [29] and
the commonly used delay line excluded; the masking function
and delay lines were discarded to focus on the dynamics of
the oscillator on computation. Resonance phenomena, Arnold
tongues, and the Farey sequence all contribute to the perfor-
mance of the Hopf oscillator as a reservoir computer. Arnold
tongues refer to a phase-locked or synchronized region in
the parameter space, which has a strong effect on this Hopf
oscillator reservoir. Parity and chaotic laser time-series bench-
marks are used to perform the parametric study of this Hopf
oscillator computer. This oscillator was experimentally real-
ized as an analog electrical circuit to study the information
processing capability of the reservoir. A modified version of
Shannon’s information rate is used as the performance metric
for the parity tasks [55].

II. DESCRIPTION OF THE HOPF RESERVOIR
COMPUTER

The nonlinear system is perturbed by an input signal,
which carries the information to be processed. The input u(t)
is embedded into the reservoir dynamics using the single
nonlinear node as follows:

ut) =r(z) for(n— DT, <t < )T,
f@&) =1+u@). (1)

Here, r(z) is a discrete signal, which encodes logical values
sequentially. This discrete signal is then mapped to a con-
tinuous function as described by Eq. (1), where n,z € Z*.
Since r(z) is a random sequence of logical statements, u(t)
is a random square wave with a pseudoperiod 7}, and a pseud-
ofrequency w, = ZT—’]’

The Hopf reservoir computer is described by the following
equations of motion:

X = [f(t) — @+ y)x — woy +Af (1) sin(Q + ),
¥ =[uf@) — 2+ yH)ly + wox. )

This system is a two-state forced Hopf oscillator, where x
and y are the states, €2 is the harmonic forcing frequency, wq
is the resonance constant, and u is a parameter controlling the
limit cycle radius [46,47,56].

The governing equation of the Hopf RC in Eq. (2) is
numerically integrated, and the x state is then scaled by sub-
tracting the mean and dividing by the standard deviation.
Next, dividing each pseudoperiod equally, N virtual nodes
are collected from each pseudoperiod 7,,. The nodal states
are then nonlinearly scaled using a nonlinear activation func-
tion tanh~'x. Some 80% of the scaled nodal states are used
for the training process, and the remaining 20% are used for
testing the RC’s performance. These virtual nodes, which are
extracted by down-sampling the time histories, are similar
to the nodes found in a delay-based reservoir. Since there is
only one real node, which is the oscillator itself, the other
nodes are called virfual in keeping with the terminology of
delay-based reservoirs. However, the Hopf RC studied in this
paper does not include any delay lines nor masking functions
(time multiplexing), which simplifies the system.

The reservoir computer is trained using ridge regression
with Tikhonov regularization as shown in Eq. (3),

w=ML"(LL" + D)7,
N
o(k) = ) wiX;(k). 3)
i=1

Here, M is the target vector, which the reservoir should
match. X is the scaled nodal states. L is the matrix containing
the nodal states of the reservoir. A, which is set to 107!,
is the regularization parameter to avoid overfitting. [ is the
identity matrix. N is the number of nodes. w is the weight
vector, which is found from the training procedure. o(k) is the
reservoir’s prediction, where k € Z™.

The 6 delayed nth order parity function P, is defined by the
following equation [13]:

n—1

Pos(@) = [ Jult — (i + 8)T,), “)

i=0

where § € Z" is the delay. For the tested parity tasks here,
8 = 0 is used. For n = 2, Eq. (4) is the second order parity,
which is the exclusive or (XOR) task Y. Since this paper only
deals with parity benchmarks that are logical tasks, the input
u(t) = {—1, 41} is chosen randomly for each pseudoperiod.
Hence, the final prediction of the reservoir is also binarized,
making a high (41) or low (—1) bit. Shannon’s information
rate is used to evaluate the reservoir’s performance [11]. The
logical bits are used to calculate the information metric R as
follows:

R = H(x) — Hy(x). 5)

Here, H (x) is the Shannon entropy, which is a measure of
the encoded information in a signal; it can be defined as

H(x) == pilogy(p). (6)

pi is the probability of getting a particular bit i. H,(x) is the
conditional entropy, which measures the probability of getting
an incorrect bit in the target signal,

Hy(x) = — Z p(i, j)log,[pi(j)]. (N
ij

Here, p;(j) = p(jli) = % p(i, j) is the joint proba-
bility distribution of the two ifariables, iand j.iand j can be
valued as 1 or —1 for a logical task. i is associated with the
target signal, whereas j is the associated bit value from the
prediction signal of the RC. It should be noted that the max-
imum value of R is 1.0 for these parity tasks. Using Eq. (2),
the Hopf RC was fabricated as an analog circuit [29,46,47].
The circuit was built using TLO82 operational amplifiers and
AD633 multipliers in standard integrator network configura-
tions. National Instrument cDAQ-9174 was used as the data

acquisition device.

III. PARAMETRIC STUDIES

In this section, the dynamic limits of the Hopf reservoir
computer will be explored by studying the effects of different
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FIG. 1. Parametric study of the Hopf RC’s limit cycle radius
constant & and harmonic forcing amplitude A, based on parity tasks.
w, =207 (T, = 0.15), 2 = wy = 407 rad/s, N = 1000 nodes, ¢ =
7 /3 rad, and the simulation time is 40007}, s. (a) Second order parity,
(b) third order parity, (c) fourth order parity, and (d) fifth order parity.
The color bar denotes the information metric R.

parameters on its information processing capability. The per-
formance is quantified using the information rate for various
parameter combinations and orders of the parity tasks. The
results render a deeper understanding of the interplay of the
oscillator’s dynamics and its computational ability as a reser-
voir computer. Some of these results can be used as guiding
principles for tuning other virtual node-based reservoir com-
puters, such as those found in Refs. [8,13,48].

The input signal to the Hopf RC is embedded into the os-
cillator through the limit cycle radius w f(¢) and the harmonic
forcing amplitude A f(¢). Hence, tuning the parameters p and
A potentially controls the amount of information being sent
into the oscillator. A parametric sweep of this two-parameter
space is presented in Fig. 1. It is observed that a small limit
cycle with a low forcing amplitude is ineffective for compu-
tation as expected. However, a band is observed for higher
order tasks, which is unintuitive. This relationship could be
used to maximize the computational ability of the oscillator.
Previously, it was reported that the information processing
capacity can be changed by simply altering the input mag-
nitude of a spintronic reservoir [57]. The input magnitude was
varied to get a different limit cycle response in the spintronic
oscillator [57]. Similarly, the current Hopf RC varies the input
magnitude by varying A to optimize the RC performance.

The external forcing frequency has been found to be
important in determining a reservoir computer’s perfor-
mance [11,13,27]. Tuning the forcing frequency of an RC
created from an array of Duffing oscillators, Arnold tongue-
like structures and topological mixing were observed [11]. In
a similar manner, a parametric study is performed using the
resonance constant @, and harmonic forcing frequency 2.

A resonance condition of the Hopf oscillator is achieved
when the resonance constant and harmonic forcing frequency

1/3
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FIG. 2. Fine resolution parametric study of the Hopf RC’s res-
onance constant wy and harmonic forcing frequency €2, based on
parity tasks. w, =207 (T, =0.1s), u =5, A=0.5, N = 1000
nodes, ¢ = /3 rad, and the simulation time is 40007, s. (a) Second
order parity, (b) third order parity, (c) fourth order parity, and (d) fifth
order parity. The color bar denotes the information metric R.

are equal (wg = Q). In Figs. 2(a)-2(d), a band along a 45°
angle in each of the wy-2 parametric plots corresponds to
this resonance condition. However, if the resonance condi-
tion (wp = 2) is achieved, the reservoir’s performance jumps
suddenly from poor performance to successful computation.
Hence, the resonance phenomenon is a necessary condition
for the Hopf oscillator to function as an effective RC.
Another matching condition is met when wy is an integer
multiple of the pseudoperiod, @, (wy = zw,, where z € Z).
This can be observed for all the parity tasks presented in
Figs. 2 and 3. The w(-2 parametric space is also explored
experimentally, which is presented in Fig. 3 by building an
analog circuit that can be modeled with Eq. (2). Due to exper-
imental limitations, a comparatively coarse parametric space
is shown in Fig. 3. The experiments show a similar trend near
the resonance and at the matching conditions. From Fig. 3, the
best performance for a numerical reservoir is found for the res-

onance condition when a;z” = w” = 1/3; the best performance
=0.333 and

% = 0.344. Deviation between the experiment and the sim-
ulation are likely explained by the precision of the circuit
elements and nonlinear effects of the circuit (e.g., parasitic
effects).

Next, the effects of the frequency ratio —” and the harmonic
forcing amplitude A on the computatlonal ablhty of the Hopf
RC are shown in Fig. 4. The w—-A parametric space is stud-
ied using the second order parity and chaotic laser intensity
prediction tasks, whereas keeping the system parameters the
same. For the chaotic time-series benchmark [29], the task for
the RC was to predict one step ahead based on the previous
steps. The RMSE was used as the performance metric for this
task. To verify that frequency ratios from the Farey sequence

for the experimental reservoir 1s found when 22 o
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FIG. 3. Coarse resolution experimental and numerical parametric qualitative study of the Hopf RC’s resonance constantw, and harmonic
forcing frequency €2, based on parity tasks. w, = 207 (T, = 0.1 s), u = 5,A = 0.5, N = 1000 nodes, ¢ = 7 /3 rad, and the length of time is
40007, s. Top: analog circuit experiment; (a) second order parity; (b) third order parity; (c) fourth order parity; and (d) fifth order parity. The
color bar denotes information metric R. Bottom: numerical simulation; (e) second order parity; (f) third order parity; (g) fourth order parity;
and (h) fifth order parity. The color bar denotes information metricR.

are important to other tasks, a chaotic time-series benchmark
is also used to compare the performance with a nonbinary
task. The harmonic frequency 2 is set to 40z such that the
Hopf oscillator experiences resonance when w,/wy = % In
Fig. 4, it is observed that the Hopf reservoir can have high
computational ability even when the resonance condition is

From Fig. 4, it is observed that the Hopf RC has a
high computational ability when Z—g is a number from the
Farey sequence from number theory [58]. Using a 30th order
Farey sequence, it is observed that the reservoir’s computa-
tional ability is strongly influenced by the frequency ratio ang,
matching a number from the Farey sequence. To observe the

not met. correlation between the Farey ratio and the RC’s performance

2 1
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172 16/29
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FIG. 4. The ratio of Z" is varied along the horizontal axis with values from the Farey sequence (30th order) marked with tick marks, and
the forcing amplitude A is varied along the vertical axis. Top: second order parity task where the color bar denotes the information metric.
Bottom: Chaotic laser time-series prediction where the color bar denotes performance based on the root mean square error (RMSE), which has
been binarized to be high (logical 1) if RMSE > 0.3 and low (logical 0) for RMSE < 0.3. For these tasks, u = 5, Q = 40x rad/s, N = 1000
nodes, ¢ = 0 rad, w, = 207 rad/s (T, = 0.1 s), and the simulation time is 30007}, s. In both cases, the computational ability of the Hopf RC
is strongly predicted by allgnlng with a Farey sequence number.
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FIG. 5. Synchronization plays an important role in the RC’s computational ability, which is observed as an Arnold tongue around the
resonance region where % = % (a) Simulation showing an Arnold tongue region for the second order parity task for the RC. The color bar
denotes the information metric R. (b) Simulation showing an Arnold tongue region in the second order parity task for the Hopf oscillator. The
color bar denotes the phase lag (degrees) between the Hopf oscillator responsex and the external forcing (sin Q2 + ¢). (¢) Simulation showing
an Arnold tongue region in the chaotic time-series task for the RC. The color bar denotes the RMSE. (d) Simulation showing an Arnold tongue
region in the chaotic time-series task for the Hopf oscillator. The color bar denotes the phase lag (o). (¢) Experiment showing an Arnold tongue
region in the chaotic time-series task for the RC. The color bar denotes the RMSE. (f) Experiment showing an Arnold tongue region in the
chaotic time-series task for the Hopf oscillator. The color bar denotes the phase lag (o). In (c) and (e), RMSE has been binarized to be high

(logical 1) if RMSE > 0.1 and low (logical 0) for RMSE < 0.1. For these tasks, w, = 207 rad/s (I, = 0.1 s), u =5, A = 0.5, N = 1000

nodes, ¢ = 0 rad.

for the chaotic time-series task, the RMSE was binarized to
be high (logical 1) if RMSE > 0.3 and low (logical 0) for
RMSE < 0.3. The Farey sequence is found in many natural
phenomena, such as in the auditory system [59], the resonance
diagrams of accelerators [60], mode locking in quantum ac-
celerators [61], and cardiac dysrhythmias [62]. However, this
is when the Farey sequence has been reported in the context
of reservoir computing.

Figures 5(b), 5(d) and 5(f) show the phase difference
between the Hopf oscillator’s x state and the harmonic forc-
ing sin(€2t + ¢) for parity and chaotic time-series prediction
tasks. When % is near 5, @ resonance relationship forms an

Arnold tongue in the Z—’;—A space. These tongues are formed
both in the reservoir’s performance metric space and in the
oscillator’s phase deviation space. It is noted that the phase
difference is not constant throughout the time history. Hence,
the maximum phase difference is taken into consideration by
binning the response, taking fast Fourier transforms, and then
plotting the maximum phase difference. Arnold tonguelike
regions were also found in a reservoir computer composed
of a Duffing oscillator array [11]. The Hopf RC performs
best when this resonance condition holds. In Figs. 5(a), 5(c)
and 5(e), an Arnold tongue is observed in the performance
space of the reservoir when the Hopf RC operates near the

resonance frequency. Here, Figs. 5(e) and 5(f) depict Arnold
tongues for the experimental Hopf RC, and Figs. 5(a)-5(d)
are found from numerical simulations. Figure 6 shows the
time history of the oscillator’s response when it is locked
with the forcing and when it is not phase locked. The tongue
region could be particularly important in experimental design.
For this tongue region, there is a range of frequency ratios
centering on the resonance frequency, which can result in
better computation. Hence, this is the only region found where
the reservoir has some tolerance to mistuning. This implies
that the synchronization in the Arnold tongue region causes
robust computing. There is also a comparatively broader range
of amplitudes and frequency ratios available for which the
resonance constant can be tuned such that the Hopf RC has
high computational ability whereas staying inside the Arnold
tongue. It is noted that the studies presented in this paper
are performed considering no masking in the system. The
presence of robust computational ability despite the absence
of a masking function suggests that a single nonlinear node
based reservoir can also be reliably constructed discarding the
conventional periodic or nonperiodic mask.

To understand the effect of resonance on computation, the
memory capacity of the Hopf oscillator reservoir is calculated.
For a § delayed nth order parity function given in Eq. (4),
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FIG. 6. The time series of the x state of the Hopf RC is shown for a portion of the chaotic time-series task. Top: The Hopf RC is at

resonance (wy =

and the oscillations are not locked with external forcing. Here, wy = 807, w, = 207 rad/s (I, =0.1s), u =5,A=0.5,N =

¢ = /3 rad.

the memory capacity of a system can be calculated as fol-
lows [13]:

MIn,S = DPns logz(zpn,ﬁ) + (1 - Pn,a)logz[z(l - pn,ﬁ)]v

o0
MC, = ZMIM.
§=0

®)

The memory capacity (bits) is plotted against w,/wy in Fig. 7,
which shows that the reservoir - possesses highest memory at
the resonance condition when 22 = ; Hence, with sufficient
nonlinearity being present at this condition, the Hopf oscilla-
tor should conduct better computation than at other parametric
combinations. This explains the superior computing perfor-
mance of the resonance condition as seen in Figs. 2-5.

The effect of the nonlinear activation function (tanh~! X)
on the performance of the Hopf oscillator RC is also studied,
and the results are presented in Fig. 8. It is found that in the
absence of nonlinear activation, the Hopf oscillator RC shows
similar performance for lower order tasks (e.g., second and
third order parity tasks). However, the nonlinear activation

2), and the oscillations are locked with the external forcing. Bottom: The Hopf RC is not at resonance (wy = 1.7391 * €2),

1000 nodes,

function becomes important in performing higher order tasks.
Hence, the base Hopf oscillator dynamics has some level
of computing ability. Furthermore, a linear oscillator is also
tested as a reservoir computer in the presence of a nonlin-
ear activation function. In this case, the nonlinear activation
function cannot make the linear oscillator act as a reservoir
computer. This is similar to the effect of nonlinearity in the
acoustic transformation for a digit recognition task [64].

The ESP is one of the basic properties found in a suc-
cessful reservoir computing framework [9]. Limit cycle-based
systems were not found to satisfy ESP requirements in
Refs. [65,66]. However, the Hopf RC formulation described
in this paper is different since the limit cycle radius keeps
changing depending on the forcing used to encode the infor-
mation. Additionally, the resonance phenomenon was taken
into consideration to build the reservoir system. In the lit-
erature, generalized synchronization [67] or common signal
induced synchronization [65,66,68] were used to verify the
existence of ESP in a reservoir. ESP was empirically studied
in Ref. [63] to measure the stability of input-driven reservoir
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FIG. 7. Memory capacity calculations of the Hopf RC with § delayed first, second, third, and fourth order parity tasks (§ = O to 10).

w, =207 (T, =0.15), @ =40m,A =0.5, 4 =5,N =

1000 nodes, ¢ = 7 /3 rad, and the simulation time is 40007, s.
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FIG. 8. Effects of nonlinear activation function on the Hopf RC’s
performance. w, = 207 (T, = 0.1 8), wg =407, @ =407, u =5,
N = 1000 nodes, ¢ = 7 /3 rad, and the simulation time is 40007}, s.
(a) Second order parity, (b) third order parity, (c) fourth order parity,
and (d) chaotic time series

dynamics. It is implied that a reservoir possesses the echo
state property if the asymptotic trajectory of the reservoir state
relies distinctively on the inputs and is independent of the
initial conditions. Hence, to obtain the echo state property,
the effect of the initial conditions on the reservoir dynamics
should fade as the time progresses.

The echo state property of the Hopf reservoir is studied
when the reservoir is encoded with the inputs of the chaotic
laser time-series task and a parity task. Following the algo-
rithm of estimating ESP of a reservoir from Ref. [63], an
ESP index was calculated for the two benchmarks, which is
averaged over 20 randomly generated initial conditions in the
range of {—3, 3}. The deviation of the reservoir state trajec-
tories for different initial conditions was calculated using the
same input sequence for all of the different initial conditions.
To calculate the deviation, initial conditions of (xg, yo) =
(0, 0) were used as the common trajectory whereas the other
trajectory came from each of the different initial conditions,
whereas discarding the initial transients. Finally, an average
of the deviation is calculated to find the ESP index. If the ESP
index goes to zero for a reservoir’s dynamics, the reservoir is
said to possess the echo state property. These results are given
in Fig. 9 where it is observed that the reservoir has the echo
state property for the resonance condition (wy = €2), whereas
it does not possess this property when the resonance is not met
(wo # €2). This can also explain why the resonance helps in
computation. It is also important to note that a reservoir may
still have information processing capability when the ESP is
not met [65].
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FIG. 9. The echo state property (ESP) index calculation [63] for
the Hopf RC for the chaotic laser time-series task and the parity
task. (a) ESP index for resonance and nonresonance conditions for
the chaotic time-series task. (b) One set of random initial conditions
(xo and yy chosen from {—3, 3}) for the chaotic time-series task.
(c) ESP index for resonance and nonresonance conditions for the
parity task. (d) One set of random initial conditions (xy and y, chosen
from {—3, 3}) for the parity task. w, = 207 (T, = 0.1 s), wy = 807,
¢ =m/3 rad, A=0.5 and the simulation time is 30007, s. For
the resonance condition 2 = w, and for the nonresonance condition
Q = 1.7391wy.

IV. CONCLUDING REMARKS

In this paper, the Hopf oscillator is constructed as a reser-
voir computer to gain insights into the relationship between
the oscillator’s dynamics and the RC’s computational abil-
ity. This implementation of a Hopf reservoir computer offers
a simpler design by discarding the popularly used delayed
feedback line and masking function. An analog electrical
circuit is used as a physical realization of the reservoir. The
reservoir demonstrates high computational ability when the
ratio of the pseudofrequency of the input w, and the natural
frequency of the oscillator wy are taken from the Farey se-
quence. Additionally, a resonance phenomenon happens when
the harmonic forcing frequency and natural frequency of the
oscillator are equal, which provides a favorable condition
to construct the reservoir computer. Enhanced computational
ability is achieved when the limit cycle radius is relatively
small whereas the forcing amplitude is relatively large. An
Arnold tongue structure is observed in the reservoir’s in-
formation metric space near the resonance location, which
is correlated with a Arnold tongue exhibited in the phase
deviation space. The reservoir is also found to possess both
maximum memory capacity and the echo state property when
the resonance condition is met, which is indicative of better
computing performance in principal. Finally, the results also
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suggest that a reservoir computer can be constructed with
only a single nonlinear node and neither a time-multiplexing
process nor a delayed feedback. By harnessing some of the
underlying dynamics of the system, limit cycle reservoir com-
puters can be constructed that are both simple and robust.
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