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Neural echo state network using oscillations of gas bubbles in water
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In the framework of physical reservoir computing (RC), machine learning algorithms designed for digital
computers are executed using analog computerlike nonlinear physical systems that can provide energy-efficient
computational power for predicting time-dependent quantities that can be found using nonlinear differential
equations. We suggest a bubble-based RC (BRC) system that combines the nonlinearity of an acoustic response
of a cluster of oscillating gas bubbles in water with a standard echo state network (ESN) algorithm that is
well suited to forecast chaotic time series. We confirm the plausibility of the BRC system by numerically
demonstrating its ability to forecast certain chaotic time series similarly to or even more accurately than ESN.
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I. INTRODUCTION

Forecasting the time evolution of dynamical systems is
important for understanding many natural phenomena such
as the behavior of living organisms and the variation of the
Earth’s climate, for predicting stock markets, and for control-
ling autonomous vehicles [1]. However, the nonlinearity of
such systems considerably complicates the task of prediction,
which forces the modern machine learning (ML) algorithms
to rely on longer observation times. Substantial computational
resources are needed to process such big data sets.

Reservoir computing (RC) [2–5] and its foundation con-
cepts of echo state networks (ESNs) [2,6] and liquid state
machines (LSMs) [7,8] underpin an emergent approach to ML
that is especially well suited for forecasting the response of
nonlinear dynamical systems that exhibit chaotic or complex
spatiotemporal behavior [4,6,9–11], the problem that is diffi-
cult to resolve using traditional ML algorithms [12]. In an RC
system [Fig. 1(a)], an artificial neural network is structured as
a combination of a fast output layer and a much slower body
of the network called the reservoir [13]. Such an arrangement
helps to resolve especially challenging forecasting problems,
including free-running generation of time series, where a
trained RC system is presented with previously unseen data
and is tasked with making a forecast using its own output from
the previous time steps [4,14,15].

The standard ESN algorithm laying a foundation of RC
uses the following nonlinear update equation [2,6,14]:

�xn = (1 − α)�xn−1 + α tanh(Win�un + W�xn−1), (1)

where n is the index denoting entries corresponding to equally
spaced discrete time instances tn, �un is the vector of Nu input
values, �xn is a vector of Nx neural activations of the reservoir,
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the operator tanh(·) applied elementwise to its arguments is
a typical sigmoid activation function used in the nonlinear
model of a neuron [16], Win is the input matrix consisting
of Nx × Nu elements, W is the recurrent weight matrix con-
taining Nx × Nx elements, and α ∈ (0, 1] is the leaking rate
that controls the update speed of the reservoir’s temporal
dynamics.

To train the linear readout of ESN, one calculates the output
weights Wout by solving a system of linear equations, Ytarget =
WoutX, where the state matrix X and the target matrix Ytarget

are constructed using, respectively, �xn and the vector of target
outputs �ytarget

n as columns for each time instant tn. The solution
is often obtained in the form Wout = YtargetX�(XX� + βI)−1,
where I is the identity matrix, β = 10−8 is a regularization
coefficient, and X� is the transpose of X [14]. Then, one
uses the trained ESN, solves Eq. (1) for new input data �un,
and computes the output vector �yn = Wout�xn (in our case, a
more common form �yn = Wout[1; �un; �xn] optimized to forecast
complex nonlinear time series using a constant bias and the
concatenation [�un; �xn] [2,14], produced qualitatively similar
results). We note that ESN needs to know the target data only
when it is trained since for forecasting it uses its own output
from the previous time step, i.e., �xn is calculated using Eq. (1)
with �un = �yn−1. However, the target data may still be needed
to assess the accuracy of the forecast made by ESN.

The performance tests of ESN are conducted using target
chaotic Mackey-Glass time series (MGTS) [14] that are pro-
duced by the delay differential equation [17]

ẋMG (t ) = βMG

xMG (τMG − t )

1 + xq
MG

(τMG − t )
− γMG xMG (t ), (2)

where one typically chooses τMG = 17 and sets q = 10, βMG =
0.2, and γMG = 0.1 [14]. MGTS with these parameters is
uniquely suited for a demonstration of the abilities of ESN
to forecast chaotic time series [18].
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FIG. 1. (a) ESN algorithm. The reservoir is a network of inter-
connected dynamical components (shown by dashed arrows); only
the linear readout is trained to produce the output. (b) The approach
proposed in this work. Complex interactions between the oscillating
gas bubbles in water play the role of a reservoir, but the readout is
trained using the ESN algorithm. (c) Schematic of simulations used
to demonstrate the plausibility of the BRC system.

However, ESN is essentially a program for a digital com-
puter and its ability to forecast is limited by the available
computational resources. Therefore, it has been suggested
that the ESN algorithm can be implemented using certain
nondigital nonlinear physical systems [5,19,20], which at the
conceptual model level means that Eq. (1) is replaced with
the respective nonlinear differential equation describing the
dynamics of a particular physical system. Similarly to analog
computers that can solve certain problems more efficiently
than their digital counterparts [21–24], physical RC systems
may provide energy efficiency in practical situations, where
the relationship between time-dependent physical quantities
that needs to be predicted can be expressed using solutions
of nonlinear differential equations. A number of physical RC
networks have been demonstrated using spintronic systems
[25–27], liquids [28,29], quantum ensembles [30], and elec-
tronic [5], photonic [5,31], and mechanical devices [5,32].

II. GAS BUBBLE-BASED RC SYSTEM

Here, we propose [Fig. 1(b)] and computationally validate
[Fig. 1(c)] an approach to RC, where the nonlinear dynamics
of a reservoir is represented by weakly nonlinear oscillations
of a cluster of gas bubbles in water driven by an acoustic
pressure wave [33]. Previously, we demonstrated that in a
cluster of mm-sized bubbles with randomly chosen equilib-
rium radii and initial spatial positions, each bubble emits a
unique acoustic signal that reflects a complex nature of its
interaction with the neighboring bubbles [34]. Furthermore,
we suggested an acoustic frequency comb technique that can
be used to reliably detect such signals [34,35]. Thus, a cluster
consisting of Nb randomly sized and positioned bubbles can be
used as a reservoir network of Nb × Nb random connections,

where the acoustic response of individual bubbles can serve as
a physical counterpart of the neural activation states of ESN
[2,6].

We replace Eq. (1) by the Rayleigh-Plesset equation of
nonlinear dynamics of spherical gas bubble oscillations
[33,34] in a cluster consisting of Nb bubbles not undergoing
translational motion [33,34],

RpR̈p + 3

2
Ṙ2

p = 1

ρ
[Pp − P∞(t )] − Psp, (3)

where overdots denote differentiation with respect to time and,
for the pth bubble in the cluster,

Pp =
(

P0 − Pv + 2σ

Rp0

)(
Rp0

Rp

)3κ

− 4μ

Rp
Ṙp − 2σ

Rp
. (4)

The term accounting for the pressure acting on of the pth
bubble due to scattering of the incoming pressure wave by
the neighboring bubbles in a cluster is given by

Psp =
Nb∑

l=1,l �=p

1

dnl

(
R2

l R̈l + 2Rl Ṙ
2
l

)
, (5)

where dpl is the interbubble distance and parameters Rp0 and
Rp(t ) are the equilibrium and instantaneous radii of the pth
bubble in the cluster. The term P∞(t ) = P0 − Pv + αsus(t )
represents the time-dependent pressure in the liquid far from
the bubble, where αs and us(t ) are the amplitude and temporal
profile of the sound wave driving oscillations of the bubbles.
The acoustic power scattered by the pth bubble in the cluster
in the far-field zone at the distance h is [34]

Pscat (Rp, t ) = ρRp

h

(
RpR̈p + 2Ṙ2

p

)
. (6)

To incorporate Eq. (3) into the linear readout of ESN, we
sample Pscat (Rp, t ) and us(t ) at equidistant time instances and
obtain their discrete analogs that we treat as the vectors of neu-
ral activations �xn and of input values �un of ESN, respectively.
To train the bubble-based RC (BRC) system, we use MGTS
xMG (t ) obtained from Eq. (2) as the driving sound signal us(t ).
However, when the BRC system makes a forecast, it does not
know the target series because us(t ) is defined by the discrete
network output �yn.

III. RESULTS AND DISCUSSION

The signal amplitude us(t ) is chosen to be small (αs =
0.1 − 1 kPa, i.e., αs � P0) so that both the nonlinearity of
bubble oscillations and Bjerknes forces acting between bub-
bles in the cluster [33] remain weak. Such physical conditions
allow a cluster of mm-sized bubbles to remain stable over a
time sufficient to train and exploit the BRC system before the
configuration of the cluster changes due to the translational
motion of bubbles [34]. The cluster stability is important
because the topology of a reservoir must not change during
its training and use [14]. The operation of the BRC system
in a weakly nonlinear regime also helps to satisfy the echo
state condition that implies that dynamics of the neural acti-
vations �xn is uniquely defined by a given input signal �un [6].
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FIG. 2. (a) Size and (b) spatial distribution of bubbles in a repre-
sentative cluster used as the physical reservoir.

Physically, this means that the phase space of Eq. (3) does not
contain multiple periodic or chaotic attractors or fixed points.

For our simulations, we generate a cluster consisting of 125
bubbles with equilibrium radii randomly chosen in the 0.1 to
1 mm range (Fig. 2). We use the following model parame-
ters corresponding to water at 20◦ C: μ = 10−3 kg m/s, σ =
7.25 × 10−2 N/m, ρ = 103 kg/m3, Pv = 2330 Pa, P0 = 105

Pa, and κ = 4/3 [34]. Relevant computational details can also
be found in [34].

The dynamics of a cluster of oscillating bubbles also has to
match the speed of the temporal evolution of the training time
series. In ESN, this is achieved using the leaking rate α in
Eq. (1) [14]. In our BRC system, the dynamics of the network
is controlled by ensuring that the frequency of the major
peak fMG in the Fourier spectrum of the time series xMG (t )
is close to the frequency of natural oscillations of individual
bubbles, with the most representative equilibrium radius in
Fig. 2(a) (using the well-known Minnaert formula [33], we
obtain fMG ≈ 6.5 kHz). To tune fMG , it is convenient to change
the timescale of previously tabulated xMG (t ), for example, by
using an auxiliary discrete time instant in a computer program
that solves Eq. (3). Once the trained network has produced an
output signal, the original timescale is restored.

The advantage of such a rescaling procedure is that a
cluster of mm-sized bubbles can be used to forecast time
series with disparate timescales. Indeed, the dynamics of the
BRC system could also be accelerated by decreasing the equi-
librium radius of bubbles (and thus increasing their natural
frequency). However, the generation of microscopic bubbles
requires special techniques [36]. In addition, microscopic bub-
bles are effectively stiffer than mm-sized ones [33] so that
measurements involving them require special high-frequency

and high-power ultrasonic equipment compared with a tech-
nically simple acoustic setup sufficient for studying mm-sized
bubbles [35].

In Fig. 3(a), we demonstrate the ability of a trained BRC
system to forecast MGTS. We also compare the accuracy
of its forecast with that of ESN with Nx = 125, which is
equivalent to the size of the BRC reservoir. In the time interval
0–1 ms, the BRC system correctly reproduces both the pattern
and the timeline of MGTS. The mean-square error (MSE)—a
standard measure of the accuracy of ESNs [14]—is approxi-
mately 5 × 10−2 for the BRC system, which is two orders of
magnitude larger than that for ESN, thereby indicating that in
a short-term perspective, ESN performs better. However, over
the full test interval 0–2 ms, the MSE of both RC systems is
approximately 0.5 × 10−2, which indicates that the long-term
behavior of the BRC system may be closer to the target than
that of ESN.

Nevertheless, the observed behavior of ESN is widely
regarded as a positive outcome for chaotic systems with lim-
ited availability of information [2,4,6]. Indeed, many other
competitive neural network architectures either fail to deliver
similar results using small data sets or can produce acceptable
results only using much bigger data sets (and therefore re-
quiring substantial computational resources) [2,12,13]. These
features make ESN the best-in-class ML algorithm designed
to forecast highly nonlinear and chaotic time series [4]. Given
this, the ability of a much simpler BRC system to predict
MGTS similarly to, and in some aspects matching the target
better than ESN is a significant result. While without any
optimization attempted so far the accuracy of the BRC system
may not be as high as that of ESN in a short term, it can be ad-
vantageously used in applications tolerating a lower accuracy
of the forecast [37] or if a long-term reliability of a forecast is
the priority.

Results quantitatively similar to those in Fig. 3(a) were
obtained for other clusters that were randomly generated us-
ing the same set of equilibrium bubble radii. Significantly,
all forecast time series had a phase lag with respect to the
target signal. The existence of a phase shift between the
driving sound pressure and acoustic power scattered by a
single gas bubble is a well-established fact [33]. This effect
is also present in the bubble-cluster reservoir, where bubble
oscillations are driven by a continuous acoustic signal pro-
duced using the discrete output of the network. The phase
lag was essentially the same for all random cluster configu-
ration of similarly sized bubbles. This is because the bubble
response delay is caused by the inertia of liquid surround-
ing them that depends only on their sizes. Subsequently,
this phase lag was removed from all relevant results during
postprocessing.

To forecast time series that exhibit a more chaotic behavior
than MGTS, ESNs require a larger reservoir and a delicate
case-by-case tuning of its algorithmic parameters [14]. On the
other hand, the BRC system could solve specific classes of
problems more efficiently than ESN without the need to mod-
ify the configuration of the gas bubble cluster. In particular,
similarly to certain analog computational systems [21,38], the
use of our BRC system could help avoid limitations imposed
by time-step discretization needed to numerically solve differ-
ential equations arising in practice [22–24].
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FIG. 3. The BRC (dotted lines) and ESN (dashed lines) forecasts compared with the target (a) MGTS, (b) LA, and (c) RA (solid lines).
The target data, which are plotted here for reference only, are not used by the RC systems. In ESN, the leaking rate α equals 0.3, 0.1, and 0.01
for MGTS, LA, and RA, respectively.

To verify this assertion, we compare the performance and
implementation cost of ESN and the BRC system to forecast
the behavior of Lorenz (LA) [39] and Rössler (RA) [40]
attractors. We keep the same parameters for both RC systems
as in the tests with MGTS, but allow variations of the leaking
rate α of ESN. The implementation details and discussion of
the system performance can be found in the Supplemental
Material [41]. As seen in Fig. 3(b), neither the BRC system
nor ESN can follow the long-term behavior of LA. ESN
may be able to mimic the behavior of LA somewhat better
initially, but overall it suffers from an apparent negative bias
underpredicting the LA output over most of the test interval.
In contrast, the BRC system produces values that are, on
average, much closer to the target, but it misses some of
fine details of the LA behavior. Indeed, in the time interval
0–2 ms, the BRC system has MSE = 0.33 compared with
0.55 for ESN, which speaks in favor of the BRC system.
At the same time, the BRC system has a clear advantage
in terms of the implementation cost. For example, to obtain
the ESN prediction of LA presented in Fig. 3(b), a lengthy
procedure of tuning the value of the leaking rate α had to be
followed to avoid numerical instabilities caused by artifacts of
the time-step discretization of Eq. (1) and by the fact that the
size of the chosen reservoir had to be kept small to enable a
meaningful comparison (in general, to produce a qualitatively
accurate output, ESN requires a reservoir with a much larger
size than that used here).

Whereas significant tuning was also needed to enable ESN
to forecast RA, the BRC system could forecast RA without
any optimization [Fig. 3(c)]. Significantly, MSE of the BRC

system for the interval 0–2 ms is approximately 0.06 com-
pared with 0.31 for ESN. This result strongly speaks in favor
of the proposition that the BRC system could outperform
ESN in some practical situations. We established that the
BRC system can predict RA because, similarly to MGTS, the
Fourier spectrum of RA has well-defined frequency peaks (see
the Supplemental Material [41]). As a result, the oscillating
bubbles of the BRC reservoir can match the frequencies of
the peaks. In contrast, the spectrum of LA is continuous and
has no well-defined discrete peaks. This is the reason why the
BRC system inherently possessing a discrete spectrum cannot
accurately forecast LA or any other continuous-spectrum sig-
nal. Several potential approaches to resolving this challenge
are discussed in the Supplemental Material [41].

IV. CONCLUSIONS

In conclusion, we have demonstrated through numerical
simulations that an RC system employing a cluster of os-
cillating gas bubbles in water as the reservoir can forecast
certain chaotic time series similarly to ESN. Although the cur-
rently achievable accuracy of the proposed RC system may be
lower than that of highly optimized ESN, it can be increased
using, for example, novel techniques of gas bubble-cluster
manipulation [34,35]. In certain practically important cases
(e.g., when the spectrum of the target signal has well-defined
peaks), the size of the BRC reservoir required to achieve
comparable accuracy may be significantly smaller than that
of ESN, and it may require no or little tuning compared to
that needed for ESN. Moreover, since its prototype can be
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built using energy-efficient integrated electronic circuits and
piezoelectric transducers, BRC holds the promise of being
less expensive to build and, at the same time, more computa-
tionally and energy efficient to run than an ESN implemented
on a workstation computer.
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[2] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).

[3] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt,
An experimental unification of reservoir computing methods,
Neural Netw. 20, 391 (2007).

[4] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa,
Next generation reservoir computing, Nat. Commun. 12, 5564
(2021).

[5] K. Nakajima and I. Fisher, Reservoir Computing (Springer,
Berlin, 2021).

[6] H. Jaeger, A tutorial on training recurrent neural networks, cov-
ering BPPT, RTRL, EKF and the echo state network approach,
GMD Report No. 159 (German National Research Center for
Information Technology, Sankt Augustin, Germany, 2005).

[7] W. Maass, T. Natschläger, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).

[8] W. Maass and H. Markram, On the computational power of
recurrent circuits of spiking neurons, J. Comput. Syst. Sci. 69,
593 (2004).

[9] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Using
machine learning to replicate chaotic attractors and calculate
Lyapunov exponents from data, Chaos 27, 121102 (2017).

[10] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[11] A. Chattopadhyay, P. Hassanzadeh, and D. Subramanian, Data-
driven predictions of a multiscale Lorenz 96 chaotic system
using machine-learning methods: Reservoir computing, arti-
ficial neural network, and long short-term memory network,
Nonlin. Proc. Geophys. 27, 373 (2020).

[12] P. Chen, R. Liu, K. Aihara, and L. Chen, Autoreservoir comput-
ing for multistep ahead prediction based on the spatiotemporal
information transformation, Nat. Commun. 11, 4568 (2020).

[13] U. D. Schiller and J. J. Steil, Analyzing the weight dynamics of
recurrent learning algorithms, Neurocomputing 63, 5 (2005).
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