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Recurrent neural networks for partially observed dynamical systems
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Complex nonlinear dynamics are ubiquitous in many fields. Moreover, we rarely have access to all of
the relevant state variables governing the dynamics. Delay embedding allows us, in principle, to account for
unobserved state variables. Here we provide an algebraic approach to delay embedding that permits explicit
approximation of error. We also provide the asymptotic dependence of the first-order approximation error on
the system size. More importantly, this formulation of delay embedding can be directly implemented using a
recurrent neural network (RNN). This observation expands the interpretability of both delay embedding and the
RNN and facilitates principled incorporation of structure and other constraints into these approaches.
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I. INTRODUCTION

Forecasting dynamical systems is important in many disci-
plines. Weather and climate [1], ecology [2,3], biology [4,5],
fluid dynamics [6], etc., are generally modeled with nonlin-
ear, discrete time equations or continuous time differential
equations. In many cases, these nonlinear systems are chaotic
and subject to stochastic drivers. However, the empirical data
available are often incomplete; It is common to observe only
a subset of the state variables or measure some coarse-grained
statistic of the underlying state. In such a situation, all hope
is not lost; Takens embedding theorem [7] shows that time-
delayed versions of a single observable can be used in place
of the unobserved dimensions to reconstruct the attractor man-
ifold permitting accurate short- and midterm forecasts [8].

Takens theorem shows that any universal function approxi-
mator (given enough data) would be able to infer the function
mapping the delay state vector to its future value. However,
the proof of Takens’ theorem is topological and nonconstruc-
tive. Therefore, one approach to reconstruct dynamics using
partial state variables is accomplished by using off-the-shelf
function approximation methods to infer the function map-
ping the delay vector to its future values from time-series data.

Due to the recent developments in machine learning, there
are abundant choices for tools to perform nonlinear regres-
sion. The common candidates are local linear regressions,
neural networks, and Gaussian processes [9–13]. Recurrent
neural networks (RNN) and its variants are some of the most
widely used tools for time-series prediction. Although the
RNNs have been successfully applied to forecasting in a wide
range of problems, literature on the mathematical reasons why
they work so well is largely lacking [14,15]. Early justifica-
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tions for using a recurrent architecture include: (1) being able
to store temporal information [16], (2) neural networks with
feedback capture time dependencies better, (3) are natural
candidates for nonlinear autoregressive models [17], and (4)
leads to reduced number of parameters due to weight sharing
[18]. The RNNs were also used for time-series prediction due
to their ability to be continually trained [19].

Neural network architectures for nonlinear dynamics are
generally benchmarked on large data applications. Although
there are asymptotic results proving the efficacy of some of
these architectures, these results are not useful in many real
world use cases where data can be limiting. Neural networks
are also known to require a high degree of application-specific
hyperparameter tuning [18]. This makes it hard to use neural
networks where there is not sufficient data for a dedicated vali-
dation dataset. Progress can be made by assuming smoothness
of the underlying functions to obtain less stringent require-
ments on the size of data needed to embed high-dimensional
dynamics [20,21].

Here we present an approach to delay embedding through
simple algebraic manipulation of the dynamical equations. We
derive an approximation to the delay dynamics in terms of the
original dynamics. We hypothesize that this approximation
allows us to infer the delay map more efficiently with less data
due to two reasons: (1) the original dynamics will be smoother
than the delay function due to the distortions introduced by
folding of the attractor manifold [22], and (2) the original
dynamics are generally of smaller dimensionality than the
delay function. We also discuss how our approximation is
amenable to mechanistic interpretation unlike traditional de-
lay embedding and nonlinear autoregressive models.

We use this approximation to encode a RNN to accomplish
forecasting chaotic dynamics. Connections between the dy-
namical system and the RNN have been performed in the past
[23–25]. However, these connections do not take advantage of
the recurrent nature of partially observed dynamics.
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In general data-driven function approximation methods
work well when the time-series data has a wide coverage
across the domains of the functions. This is truly achieved
when the dynamics are ergodic. In a practic setting, chaos or
stochasticity too can be sufficient to achieve this.

In the next section, we calculate the first-order error due to
partial observation of a system. We then develop a recursive
approximation of the dynamics using only the observed states,
and calculate the first-order expansion of the covariance of
the recursion error. In Sec. III, we develop a recurrent neural
network architecture that uses the recursive structure of the
dynamics of the observed states. In Sec. IV, we illustrate the
effects of partial observation on the delay dynamics using both
an analytically solvable example and more complex dynamics
commonly used in biophysical systems. We use short sim-
ulated time series as the effectiveness of the RNN structure
over feedforward neural network (FNN) is most evident when
the number of training points is less than 100. Finally, we
discuss the potential for using other function approximators to
take advantage of the general structure of dynamics to achieve
more efficient representations of data.

II. RECURSIVE EXPANSION OF DYNAMICS

Assume the dynamics are completely represented with a
system of M state variables, say zt = {z1,t , z2,t , . . . , zM,t }T ,
and the dynamics are given by

dz1

dt
= f1(zt )

...

dzM

dt
= fM (zt ). (1)

However, the subsequent arguments are more transparent
in discrete time, so we work with the corresponding flow
map integrated on a unit time step z1,t = F1(zt−1),...zM,t =
FM (zt−1) which we write compactly as zt = F(zt−1).

Since our focus is on partially observed systems,
we split the state variables zt into two subsets: xt =
{z1,t , z2,t , . . . , zn,t }T representing the observed state variables
and yt = {zn+1,t , . . . , zM,t }T containing the remaining, unob-
served state variables. We rewrite the dynamics as

xt = F(xt−1, yt−1)

yt = G(xt−1, yt−1), (2)

where F represents the maps for the n observed states and G
represents the maps for the M − n unobserved states.

There are several ways to proceed, including: (i) implic-
itly accounting for the unobserved states using time lags
(Refs. [26,27]), or (ii) modeling the complete dynamics and
imputing the unobserved states using a hidden Markov ap-
proach (e.g., Ref. [28]). However, (ii) requires that we have a
reasonable model for the complete state dynamics and signif-
icant problems arise when the model is inaccurate. Since we
assume the complete dynamics are unknown, we focus on (i).

As a first step to doing this, we shift the map for the
unobserved states back by one time step and substitute this

into the dynamics for the observed states,

xt = F(xt−1, yt−1)

= F(xt−1, G[xt−2, yt−2])

= Eyt−2 [F(xt−1, G[xt−2, yt−2])|xt−1, xt−2] + εt

≈ F(xt−1, G[xt−2, ȳt−2]) + εt , (3)

where ȳt−2 = E [y|xt−1, xt−2] is the conditional expecta-
tion for y given the current and previous observation
for x. The apparent process noise εt is given by εt =
F[xt−1, G(xt−2, yt−2)] − F[xt−1, G(xt−2, ȳt−2)]. The approx-
imation in line 4 of Eq. (3) assumes F and G are almost linear
for simplicity.

We can continue along this path an arbitrary number of
times, each iteration adding another lag of x and pushing back
the dependence on y. Doing so d times we get

xt = F(xt−1, G[xt−2, . . . G{xt−d , ȳt−d} · · · ]) + εt (4)

= F̃d (xt−1, . . . , xt−d ) + εt , (5)

where in keeping with the previous no-
tation ȳt−d = E [yt−d |xt−1, . . . , xt−d ] and
εt = F(xt−1, G[xt−2, . . . G{xt−d , yt−d} · · · ]) −
F(xt−1, G[xt−2, . . . G{xt−d , ȳt−d} · · · ]). As we show in
the illustrative example in Sec. IV, we expect the dependence
of function F̂ on F and G to be complicated. Therefore,
it is hard to connect the function F̂ with the parameters
of the generators of the dynamics, F and G. With our
recursive approximation (4), we can retain the identity of the
ground-truth dynamics F and G using our approximation (4).

To provide a benchmark for our approximation, we es-
timate ε in the limit of large data. We simulate the exact
dynamics for 30 000 time steps with sampling intervals
matching the data generated in the next section. We discard
the first 10 000 points to remove transients. We use the next
10 000 points to fit ȳt−d = E [yt−n|xt−1, . . . , xt−d ]. We calcu-
late the recursion error,

εt = xt − F(xt−1, G[xt−2, . . . G{xt−d , ȳt−d} · · · ]). (6)

We can also use a first-order approximation to estimate the
covariance, �t of the apparent process noise εt ,

�t ≈ Pt−1Qt−2 · · · Qt−d Ct−d QT
t−d · · · QT

t−2PT
t−1, (7)

where Pt−1 is the matrix of partial derivatives of F with
respect to y evaluated at xt−1 and ȳt−1, Qt−n is the matrix
of partial derivatives of G with respect to y evaluated at
xt−n and E [yt−n|xt−1, . . . , xt−d ], and Ct−d is the covariance
matrix for the yt−d conditional on xt−1, . . . , xt−d , i.e., Ct−d =
E [(y − ȳt−d )(y − ȳt−d )T |xt−1, . . . , xt−d ].

Similar to the numerical estimation of the recursion er-
ror above, we can evaluate the first-order approximation
numerically from time-series data by fitting Ct−d = E [(y −
ȳt−d )(y − ȳt−d )T |xt−1, . . . , xt−d ] from time-series data. The
first-order approximation is accurate for maps that are almost
linear. For continuous time nonlinear dynamics, this would
correspond to short sampling intervals.

Note that neither of these should be treated as strict bounds
on practical accuracy. However, these can provide a baseline
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for the expected performance independent of the specifics of
the forecast model.

III. RECURRENT NEURAL NETWORK

In a practical setting, the dynamics given by Eq. (2) can
be learned from time-series data using delay vectors by fitting
the function,

xt = F̂(xt−1, . . . , xt−d ). (8)

This can be implemented directly using standard machine
learning methods [16,21]. We implement a FNN to approxi-
mate F̂ as a benchmark. The recursive form of Eq. (4) suggests
that the function approximator should be restricted among the
space of functions that can be written as a recursive compo-
sition of lower-dimensional functions F and G. This can be
achieved by constructing a RNN that imitates the recursive
form in Eq. (4),

x̂t = Wxft + bx,

ft = af [Wf (xt−1 ⊕ ŷt−1) + bf ],

ŷt−1 = Wygt−1 + by,

gt−1 = ag[Wg(xt−2 ⊕ ŷt−2) + bg],

...

ŷt−d+1 = Wygt−d+1 + by,

gt−d+1 = ag[Wg(xt−d ⊕ ŷt−d ) + bg], (9)

where the functions F and G are approximated as single layer
neural networks with hidden-layers f and g. af and ag are the
nonlinear activation functions. In this paper, af = ag = tanh .
As ŷt is just a linear function of gt , it can be absorbed into
the parameters Wf , bf , Wg, and bg to obtain a simpler neural
network,

x̂t = Wxft + bx,

ft = af [Wf (xt−1 ⊕ gt−1) + bf ],

gt−1 = ag[Wg(xt−2 ⊕ gt−2) + bg],

...

gt−d+1 = ag[Wg(xt−d ⊕ gt−d ) + bg]. (10)

The model parameters Wα and bα are chosen to minimize the
loss function,

L =
∑

t

‖x̂t − xt
(data)‖2. (11)

Note, since we do not observe y, we cannot compute gt−d .
In this paper, we choose gt−d randomly for simplicity of
setting up the backpropagation step. Alternatively, gt−d can be
included in the training parameters. We train the parameters
using backpropagation with the RMSprop optimizer [29] and
use early stopping [30] to avoid overfitting the training data.
Note, since this is a proof-of-concept demonstration, we did
not regularize using a penalty term in the loss function as this
would make it difficult to explicitly compare the FNN and
RNN in terms of the NN complexity. In the following sections,
we use simulated time series from popular nonlinear dynam-
ics models, namely, (A) discrete Lotka-Volterra model (two

dimensional), (B) Lorenz 63 model [31] (three dimensional),
(C) the Duffing oscillator [32] (four dimensional), and (D) the
Lorenz 96 model [33] (5D). In each of these cases, we use
just the first variable to train the RNN (i.e., we only observe
one variable). We train the RNN using training time series of
lengths 30, 50, and 100 data points. We specifically focus on
small training datasets as the advantage of the RNN over a
FNN is larger in the data-poor regime. We expect this to be
the case as the data rich cases will be equivalently fit with any
function approximator, and systematic differences in perfor-
mance would be hard to detect due to stochastic differences
in training performance. We divide the training data further
into train and validation sets that contain 75% and 25% of
the data, respectively, for the datasets of sizes 50 and 100.
The early stopping parameter is chosen to minimize validation
loss. The errors reported are measured on out-of-sample “test”
data of the same size as the training datasets. The errors were
averaged across 100 different realizations of the model in each
case.

IV. NUMERICAL EXAMPLES

A. Discrete Lotka-Volterra model

To illustrate the effectiveness of the recursive approxima-
tion Eq. (4), we first examine a simple two-species system,
where the state variables xt (observed) and yt (unobserved)
are quadratic functions of xt−1 and yt−1. This is also known as
a discrete Lotka-Volterra model in ecology literature [34],

xt = rxxt−1(1 − xt−1) + Axyxt−1yt−1, (12a)

yt = ryyt−1(1 − yt−1) + Ayxxt−1yt−1. (12b)

Solving for yt−1 using (12a) and substituting in (12b), we get
the evolution of yt as a function of x alone,

yt = ryY (x)[1 − Y (x)] + Ayxxt−1Y (x), (13)

where

Y (x) =
(

xt − rxxt−1(1 − xt−1)

Axyxt−1

)
.

Substituting (13) back in (12a), we obtain the dynamical equa-
tion only in terms of x,

xt = rxxt−1(1 − xt−1) +
[

ry

(
x2

t−1

xt−2
− rxxt−1(1 − xt−2)

)

×
(

1 − xt−1 − rxxt−2(1 − xt−2)

Axyxt−2

)

+ Ayxxt−1[xt−1 − rxxt−2(1 − xt−2)]

]
, (14)

which is highly nonlinear. Note the resulting single-variable
dynamics is no longer quadratic and has arbitrarily higher-
order nonzero derivatives. However, the recursive approxima-
tion (4) has a simpler functional form and ensures that higher
derivatives are bounded. Specifically,

xt ≈ rxxt−1(1 − xt−1) + Axyxt−1

× [ryyt−2(1 − y∗
t−2) + Ayxxt−2y∗

t−2] (15)
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FIG. 1. Normalized RMSE as a function of number of delays from a FNN (blue) vs a RNN (orange) for the discrete Lotka-Volterra model
(12). The top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast error from a model trained on one-step
ahead data. The left, middle, and right panels correspond to neural networks with hidden layers with two, five, and ten neurons each. The green
dashed (dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion error (4) [and its first-order approximation (7)].
Dark (light) colors represent results for training size of 50 (100) data points.

has nonzero derivatives only up to second order in x (and,
in general, up to order d) considering yt s are constants, thus,
requiring less data to reconstruct the approximate dynamics.
We calculate the theoretical recursion error ε given by Eq. (6)
and its first-order approximation, Eq. (7) in the limit of large
data. We see that the errors go to zero when the number of
delays is two or greater consistent with Eq. (14). We gen-
erate the time series of length 50 and 100 data points and
compare the performance of the RNN architecture (10) vs
the FNN across different hidden-layer sizes. The hidden-layer
size limits the expressivity of a neural network. For example,
a neural network with one-dimensional input and two hidden
neurons can only fit a function with a single peak. We see
a significant improvement in the performance of the RNN
over the FNN for small hidden-layer sizes as expected due
to the simpler functions F and G required to be fit by the
RNN (see Fig. 1) as against the more complex delay function
F̃. The small number of hidden neurons forces the neural
networks to fit a function with less features, thereby making
it difficult to fit the highly nonlinear function in (14). We also
see that the difference in performance between the RNN and
the FNN widens with increasing number of delays due to the

increasing complexity F̃. We also compare multistep ahead
predictions using the single-step neural networks and itera-
tively applying the function on the delay vector to produce
the next state. We hypothesize that the RNN functions f and
g should be better in producing the multistep forecast. This
is because the iteration of the more complex F̂ can lead to
a larger variance at the locations in state space not seen by
the one-step training data, compared to iterating the lower-
dimensional function f . We see that the RNN indeed performs
better than the FNN in two- and three-step ahead prediction.
The FNN errors increase significantly more than the RNN as
we increase the number of steps hinting at the robustness of
the recurrent structure of the RNN for the dynamical systems
prediction.

We next look at some popular continuous chaotic dynamics
in higher dimensions.

B. Lorenz 63 model

Lorenz 63 is one of the most popular chaotic models. It is a
first-order differential equation modeling a simplified version
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TABLE I. Descriptions of the datasets. (a) Autocorrelation at the time step used for predictions of the observed variable b. Normalized root
mean square error (RMSE) values from predicting using the previous value. Normalized such that using mean of the time series leads to an
RMSE = 1.

Model Parameters LE Autocorrelation at dt a RMSE “previous-value” Predictorb

Lotka-Volterra r = [0.933, 1.293], A = [0.758, 1.420] 0.15 0.632 0.858
Lorenz63 ρ = 28, σ = 10, β = 8/3 0.91 0.869 0.512
Duffing oscillator [1.0, −1.0, 0.3, 0.5, 1.2] 0.17 0.667 0.816
Lorenz 96 N = 5, F = 8 0.47 0.866 0.518

of atmospheric convection [31],

ẋ = σ (y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz. (16)

We chose a sampling rate of 10 Hz so that the prediction
problem was sufficiently nontrivial but not impossible (see
Table I for details). The observed variable is x. We compute
training and validation loss for the neural networks with 2–20
hidden neurons (same number of hidden neurons for both f
and g in the case of the RNN) and choose the one with the
minimum validation loss. We also use the validation loss for
early stopping the training. The recursion error (6) and its
approximation (7) tend to zero with three or more delays.

The optimal number of delays for both the FNN and the
RNN is three (see Fig. 2). The optimal RMSE is statistically
indistinguishable between the FNN and the RNN. However,
the RNN has a robust performance across all numbers of
delays (especially for the smaller dataset), which may be
desirable for automated applications.

We also plot the hidden-layer size-specific results (see
Fig. 3). We see a similar trend as the discrete Lotka-Volterra
model for the smallest hidden-layer size (h = 2), but there is
no systematic advantage to the RNN with larger hidden layers.

C. Duffing oscillator

The Duffing oscillator is a second-order differential equa-
tion with periodic forcing,

ẍ + δẋ + βx + αx3 = γ cos (ωt ). (17)

This can be rewritten as a first-order autonomous system
by introducing the variables y = ẋ, v = cos (ωt ), and z =
sin (ωt ),

ẋ = y,

ẏ = γ v − δy − βx − αx3,

v̇ = −ωz,

ż = ωv. (18)

We chose a sampling rate of 1 Hz as this model has a Lya-
punov horizon that is roughly an order of magnitude larger

FIG. 2. (Top) The normalized RMSE as a function of number of delays from a FNN (blue) vs a RNN (orange) for the Lorenz 63 model
(left), Duffing (middle), and the Lorenz 96 model in 5D (right) with parameters in Table I. The black dashed (dotted) lines are benchmark
predictions using the time-series mean (previous value). The green dashed (dotted) lines are numerical evaluations of the recursion error (4)
[and its first-order approximation (7)]. (Bottom) The average number of optimal hidden neurons. Dark (light) colors represent results for
training size of 50 (100) data points.
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FIG. 3. Normalized RMSE as a function of number of delays from a FNN (blue) vs RNN (orange) for the Lorenz 63 model (16). The top,
middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast errors from a model trained on one-step ahead data. The
left, middle, and right panels correspond to neural networks with hidden layers with two, five, and ten neurons each. The green dashed (dotted)
lines in the top panel are numerical evaluations of the one-step ahead recursion error (4) [and its first-order approximation (7)]. Dark (light)
colors represent results for training size of 50 (100) data points.

than the Lorenz 63 model (see Table I). The observed variable
is x. The recursion error (6) and approximation (7) go to zero
with four or more delays. The optimal number of delays in
this case is four (see Fig. 2). The results for this model are
qualitatively similar to the Lorenz 63 model, that is, at optimal
number of delays, the performance is indistinguishable for the
two neural networks, but the RNN is more robust across the
number of delays. This trend is similar even when we restrict
the neural networks to have small hidden layers (see Fig. 4).

D. Lorenz 96 model

Lorenz 96 is a popular model to test tools for chaotic
time-series prediction in a high-dimensional setting [35,36].
We generated time-series data using the Lorenz 96 model [33],

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, 1 � i � N, (19)

where it is assumed that x−1 = xN−1, x0 = xN , and xN+1 =
x1. We use the parameters N = 5, F = 8. The dynamics are
chaotic with Lyapunov exponent =0.472 ± 0.002. The sam-
pling rate is 10 Hz. The observed variable is x1. The recursion
error (6) and approximation (7) tend to zero with roughly six

or more delays. The optimal number of delays is six and eight
for the RNN and the FNN, respectively (see Fig. 2).

The RNN shows significantly better performance as mea-
sured by the average RMSE in the case of the smaller dataset.
There is also a significant difference between the optimal
number of hidden neurons between the two NNs with the
RNN opting for a lower number of hidden neurons indicating
that the function to be fit is of a lower complexity. However,
there is no significant difference in performance when the
neural networks are restricted to small sizes (see Fig. 5).

V. DISCUSSION

In this paper, we showed that choosing the neural network
architecture that is derived from the structure of generating
dynamics can lead to more efficient recovery of the dynam-
ics from data. This is demonstrated by a significantly better
prediction performance by the recurrent neural network as
compared to the feedforward neural network in the small-data
regime. We also see that the RNN increasingly outperforms
the FNN in multistep prediction tasks when the dynamics
are trained on single-step data. The systematic advantage the
RNN has over the FNN when trained with small hidden layers
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FIG. 4. Normalized RMSE as a function of number of delays from a FNN (blue) vs a RNN (orange) for the Lorenz 63 model (18). The
top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast errors from a model trained on one-step ahead data.
The left, middle, and right panels correspond to neural networks with hidden layers with two, five, and ten neurons each. The green dashed
(dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion error (4) [and its first-order approximation (7)]. Dark
(light) colors represent results for training size of 50 (100) data points.

suggest that the smoothness of F and G functions compared
to the delay vector F̃ can be leveraged by manipulating the
structure of neural networks.

In this paper, we see that the structural advantage of the
RNN comes into play when the attractor dimension is small,
and the manifold is smooth. The advantage of the RNN seems
to systematically diminish with increasing dimensionality of
dynamics. This is consistent with the interpretation that the
RNN is exposed to smoother functional forms than the FNN
which is directly fit to the more nonlinear delay map. More
work needs to be performed to fully characterize the regime
where incorporating the dynamical structure in the neural
network will yield better predictions.

Having dynamically meaningful units within the neural
networks is useful in applications where it is important to
learn the mechanistic relationships between variables. It also
makes incorporating auxiliary information straightforward.
For example, information about interactions between states
can be implemented by conditioning the model to constrain
the partial derivatives ∂Hi/∂z j = 0 (where H ∈ {F, G} and
z ∈ {x, y}) that correspond to noninteracting states. This can
be achieved through regularization or constraint optimization

of neural networks. Our methods can be extended to take ad-
vantage of the structure of spatial dynamics as well. Since we
expect the spatial interaction structure to be sparse, we expect
F and G to have a much lower dimensionality compared to
fitting the full delay-embedding function.

In the field of statistical mechanics, the problem of un-
observed states has been addressed by the Mori-Zwanzig
formulation where the Zwanzig operator is used to project the
dynamics onto the linear subspace of the observed dynamics
where the ignored degrees of freedom appear as a memory
term and a noise term. Calculating the memory term for
nonlinear dynamics is nontrivial and requires the expansion
of the basis to lift the dynamics to a linear space. This can
lead to an unbounded expansion of the state space in chaotic
systems. In contrast, our approximation provides a straight-
forward way to incorporate the induced memory from partial
observations.

To summarize, we address the gap in the theoretical liter-
ature on the efficacy of recurrent neural networks. We show
how partially observed dynamics can be restructured to reveal
a recurrent structure, which can be learned by fitting recur-
rent neural networks on time-series data. We also provide a
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FIG. 5. Normalized RMSE as a function of number of delays from a FNN (blue) vs a RNN (orange) for the Lorenz 63 model (19). The
top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast errors from a model trained on one-step ahead data.
The left, middle, and right panels correspond to neural networks with hidden layers with two, five, and ten neurons each. The green dashed
(dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion error (4) [and its first-order approximation (7)]. Dark
(light) colors represent results for training size of 50 (100) data points.

connection to time-delay embedding and discuss the potential
applications of this methodology.
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