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Contour dynamics of two-dimensional dark solitons
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Equations for contour dynamics of trough-shaped dark solitons are obtained for the general form of the
nonlinearity function. Their self-similar solution which describes the nonlinear stage of the bending instability
of dark solitons is studied in detail.
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I. INTRODUCTION

Dynamics of dark solitons plays an important role in
nonlinear optics and physics of Bose-Einstein condensates
(BECs) (see, e.g., [1,2] and references therein). In particu-
lar, if the condensate is confined in a quasi-one-dimensional
(quasi-1D) harmonic trap, such a soliton oscillates with a
frequency different from the trap frequency, contrary to the
behavior of bright solitons [3–6]. Dynamics of dark solitons
becomes even more complicated for solitons with two spatial
dimensions, which are typical, for example, in physics of
polariton condensates formed in planar microresonators (see,
e.g., [7]). Such solitons have the form of troughs or dips in the
distributions of the polaritons’ density. Such dips are localized
along some curves in the plane with two space coordinates: the
density changes slowly along such a curve and at each point
the density has a minimum in the transverse (normal to the
curve) direction. We shall call such a soliton a 2D dark soliton
and the curve of its localization will be called the soliton’s
position. Of course, such solitons should not be mixed with
solitons or other nonlinear structures localized in both spatial
directions. As was shown in Refs. [8–10], 2D dark solitons
are unstable with respect to the bending (“snake”) instability.
As a result, a dark soliton breaks down with formation of
vortices, and this phenomenon was observed experimentally
in Refs. [11–14].

Theoretical description of the transition from the exponen-
tial growth of the unstable “snake” modes at the linear stage
of their evolution to the nonlinear stage leading eventually to
formation of vortices is a difficult task, and several possible
scenarios were identified depending on the soliton’s amplitude
[15] (see also review article [16] and references therein). An
interesting approach to the description of the nonlinear evolu-
tion of instability of deep enough dark solitons was suggested
in Refs. [17,18] on the basis of the contour dynamics [19].
Mironov et al [17,18] assumed that the local radius of curva-
ture of a dark soliton is much greater than its local width, so
that the position of this soliton can be represented with high
accuracy by a curved line: the soliton’s “contour.” Then the
bending dynamics of such a contour is determined by two
variables: the local velocity of the soliton and its local cur-
vature. Mironov et al [17,18] derived the equations governing
this dynamics in the framework of perturbation theory for the

case of BEC dynamics obeying the standard Gross-Pitaevskii
equation, and studied the nonlinear stage of development of
instability of dark solitons. Later this theory was generalized
in Ref. [20] to the instability dynamics of dark solitons in a
polariton condensate. To avoid any confusion, we would like
to stress that the contour dynamics of Mironov et al [17,18]
differs from dynamics of contours around 2D vortex patches
developed by Zabusky et al. [21] (see also review article [22]
and references therein).

In this paper, we derive the equations of contour dynamics
of dark solitons for media whose evolution obeys the gen-
eralized Gross-Pitaevskii equation [or generalized nonlinear
Schrödinger (NLS) equation]

iψt + 1
2 (ψxx + ψyy) − f (|ψ |2)ψ = 0 (1)

with general form of the positive nonlinearity function f > 0.
Our derivation is based on physical reasoning rather than on
the formal application of the perturbation theory. After that we
study analytically in some detail the self-similar solutions of
these equations. These solutions describe the nonlinear stage
of the bending instability of dark solitons and considerably
extend the results obtained in Refs. [17,18].

II. DARK SOLITON SOLUTION OF THE
GENERALIZED NLS EQUATION

First, we shall present here the basic results of the dark
soliton theory. For definiteness, we shall interpret Eq. (1) as
the Gross-Pitaevskii equation for dynamics of BEC, so that
ρ = |ψ |2 has the meaning of the condensate’s density and the
gradient of the phase u = ∇φ has the meaning of the conden-
sate’s flow velocity. These definitions imply the representation
of the condensate wave function ψ in the form

ψ =
√

ρ(r, t ) exp[iφ(r, t ) − iμt], (2)

where

μ = f (ρ0) (3)

is the chemical potential of the condensate with a uniform
density ρ0 far from the dark soliton. Substitution of Eq. (2)
into Eq. (1) and standard calculations yield the equations of
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BEC dynamics in the hydrodynamic-like form

ρt + ∇(ρu) = 0,

ut + (u∇)u + ∇ f (ρ) + ∇
(

(∇ρ)2

8ρ2
− �ρ

4ρ

)
= 0.

(4)

Linearization of these equations with respect to a uniform qui-
escent BEC with ρ = ρ0, u = u0 = 0 gives the Bogoliubov
dispersion relation

ω = k
√

c2
0 + k2/4 (5)

for linear waves ∝ exp[i(k · r − ωt )], where c0 is the sound
velocity

c0 =
√

ρ0 f ′(ρ0) (6)

of waves in the long wavelength limit.
It is not difficult to find the soliton solution of Eqs. (4) for

which the variables ρ and u depend only on the distance ξ =
(v/v) · (r − vt ) from the straight line normal to vector v of the
soliton velocity (v = |v|). Substitution of the ansatz ρ = ρ(ξ ),
u = (v/v)u(ξ ) gives with account of the boundary conditions
ρ → ρ0, u → 0 as |ξ | → ∞ the relationship

u(ξ ) = v

(
1 − ρ0

ρ

)
(7)

and the equation for ρ(ξ ) (see Ref. [6])

ρ2
ξ = Q(ρ), (8)

where

Q(ρ) = 8ρ

∫ ρ0

ρ

[ f (ρ0) − f (ρ ′)]dρ ′ − 4v2(ρ0 − ρ)2. (9)

Integration of Eq. (8) gives at once

ξ =
∫ ρ

ρm

dρ√
Q(ρ)

, (10)

where ρm is the minimal density at the center ξ = 0 of the
soliton. The function Q(ρ) has a double zero at ρ = ρ0, hence
dQ/dρ|ρ=ρ0 = 0, and this equation yields the relationship
between ρm and the soliton velocity v,

v2 = Q0(ρm)

4(ρ0 − ρm)2
, (11)

where

Q0(ρ) = 8ρ

∫ ρ0

ρ

[ f (ρ0) − f (ρ ′)]dρ ′. (12)

The inverse of the function ξ = ξ (ρ) defined by Eq. (10)
gives the profile ρ = ρ(ξ ) of density of the condensate with
the soliton propagating through it, and substitution of this
expression for ρ(ξ ) into Eq. (7) provides the profile of the
corresponding flow velocity u = u(ξ ).

The soliton’s energy per unit length can be calculated by
the method of Ref. [5] and it is given by the expression (see
Ref. [6])

ε = 1

2

∫ ρ0

ρm

Q0(ρ)dρ

ρ
√

Q(ρ)
. (13)

Here ρm is a function of v according to Eq. (11) and the same
is true for functions Q0(ρ) and Q(ρ), so we can consider the
soliton’s energy as a known function of its velocity v:

ε = ε(v). (14)

For example, in case of standard “Kerr-like” nonlinearity
f (ρ) = ρ our formula reduces to the well-known expression

ε(v) = 4
3 (ρ0 − v2)3/2. (15)

In all above formulas the background condensate density ρ0

is a constant parameter.
Now we can proceed to derivation of equations of the

contour dynamics.

III. EQUATIONS OF CONTOUR DYNAMICS

As was indicated in the Introduction, the density of a 2D
dark soliton is localized along a curve called the soliton’s
position. We assume that the instant position of such a soliton
in the (x, y) plane is given in a parametric form,

r(s) = (x(s), y(s)), (16)

where s is the length of the curve’s arc starting from its “zero”
point to the point (16). Following the rules of elementary dif-
ferential geometry (see, e.g., [23]), we introduce the tangent
vector t(s) = dr/ds, |t| = 1, and the unit normal vector n(s),
|n| = 1, which obey the Frenet-Serret equations

∂t
∂s

= κn,
∂n
∂s

= −κt (17)

for plane curves, where κ is the curvature of the curve at the
point r. We use the partial derivatives here to indicate that they
are taken for an instant position of the curve (16) (the soliton’s
contour). Now we take into account that the soliton moves and
deforms, so that its point with the coordinate s at the moment
of time t has velocity

∂r
∂t

= vn + wt, (18)

where the first term corresponds to the motion of the curve in
the normal direction and the second term corresponds to its
stretching with change of the length s. The condition rts = rst

yields

ws = κv, tt = (vs + κw)n; (19)

that is,

w =
∫ s

0
κv ds′. (20)

If we differentiate the second equation (19) with respect to s
and replace ts and w with the use of (17) and (20), then we get

κt n + κnt =
[
vss +

(∫ s

0
κv ds′

)
κs + κ2v

]
n − κ (vs + κw)t;

that is, with account of (n · t)t = 0 and the second Eq. (19),
we obtain

κt −
(∫ s

0
κv ds′

)
κs = vss + κ2v. (21)
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This is a kinematic equation of the contour dynamics which
follows from purely geometric consideration (see also discus-
sions of the contour dynamics in Refs. [17–19]). The second
term in its left-hand side has the meaning of change of the
curvature κ due to transfer of the soliton’s points along the
arc with velocity w: ds = −w dt . This means that if we mark
some point on the soliton’s location curve, then the length of
the arc from the zero point on the curve to this marked point
changes during the evolution of the curve, hence the parameter
s is not attached to the marked point and changes with time. In
other words, the contour’s motion leads to the reparametriza-
tion of its points, and the derivative in the left-hand side of
Eq. (21) is interpreted as a “substantial derivative” of the
curvature at the “marked” points of the curve:

dκ

dt
=

(
∂

∂t
+ ds

dt

∂

∂s

)
κ =

[
∂

∂t
−

(∫ s

0
κv ds′

)
∂

∂s

]
κ. (22)

Now we turn to derivation of the dynamical equation for
the soliton’s contour motion. The energy of a dark soliton de-
creases with increase of its velocity. Actually, this is the reason
for its bending instability [24,25]. Indeed, if some segment of
the curve bends forward by getting greater velocity, then it
acquires greater length and, hence, smaller energy per unit of
length. Consequently, the velocity of this segment increases
further and it bends even more. This reasoning implies the
trough-like shape of the dark soliton only and it cannot be ap-
plied to other two-dimensional structures where one can meet
an opposite condition for their stability; see, e.g., Ref. [26].
If a straight soliton moving along the x axis with velocity v0

undergoes a small bending disturbance x′(y, t ), then its instant
position is described by the function x = v0t + x′(y, t ) and its
local velocity

v = v0 + x′
t (y, t ) (23)

becomes a function of the coordinate y along the soliton. For
small x′ the velocity v can still be considered as the velocity
component vn normal to the soliton’s contour at the point y:
vn ≈ v. Then the energy per unit length is equal to ε(v) and it
is different from ε(v0) due to the local disturbance, that is due
to the growth of the length l with the rate dl/dt = κvn ≈ κv

(see, e.g., formula (61,2) in Ref. [27]). Consequently, we get

dε

dt
= dε

dv

dv

dt

on one hand and

dε

dt
= ε

dl

dt
= εκv

on the other hand, so that equality of these two expressions
yields

dv

dt
= vε

dε/dv
κ = ε

m∗
κ, (24)

where m∗ = 2dε/dv2 < 0 is an “effective soliton mass” per
unit length. Now we take into account the stretching of the
contour with the local velocity −w and replace dv/dt by the
substantial derivative (22):

vt −
(∫ s

0
κv ds′

)
vs = ε

m∗
κ. (25)

Equations (21) and (25) comprise the system of the contour
dynamics equations. For the case of the nonlinearity f (ρ) = ρ

they were derived in Ref. [17,18] from the Gross-Pitaevskii
equation (1) by means of the regular perturbation theory.

As a simple application of these equations, let us con-
sider a linear approximation when a straight soliton (κ0 = 0)
moving with velocity v0 is slightly disturbed and the above
equations reduce to (κ = κ0 + κ ′, v = v0 + v′)

κ ′
t ≈ v′

yy, v′
t ≈ ε

m∗
κ ′. (26)

Looking for the solution in the form κ ′, v′ ∝ exp(iky + �t )
we find

� = − ε

m∗
k2; (27)

that is, we have reproduced the result of Ref. [25].
Now we can turn to more interesting self-similar solutions

of the obtained equations.

IV. SELF-SIMILAR SOLUTION

As was noticed in Ref. [17,18], Eqs. (21) and (25) are in-
variant with respect to the scaling transformation s = αs̃, t =
αt̃, κ = κ̃/α, v = ṽ. Therefore this system has the solution in
the form

v = V (ζ ), κ = K (ζ )

t
, ζ = s

t
, (28)

where ζ is a self-similar variable. Such a form of the solu-
tion implies that in the limit t → −0 the solution becomes
singular; that is, the contour dynamics approach loses its ap-
plicability when the radius of curvature t/K becomes smaller
than the soliton’s width. At the same time, the solution de-
scribes curved moving solitons which can greatly deviate from
their standard straight-line form.

Substitution of (28) into (21) and (25) yields

d (ζK )

dζ
+ d

dζ

(
K

∫ ζ

0
V K dζ ′

)
= −d2V

dζ 2
,

(
ζ +

∫ ζ

0
V K dζ ′

)
dV

dζ
= − ε

m∗
κ.

(29)

Following [17,18], we introduce the function

�(ζ ) = ζ +
∫ ζ

0
V K dζ ′, K = 1

V

(
d�

dζ
− 1

)
, (30)

and integrate the first equation (29) to obtain

K� = −dV

dζ
+ A, (31)

where the integration constant A is determined by the condi-
tion

A = dV

dζ

∣∣∣∣
ζ=0

. (32)

The second equation (29) and (31) give the system of ordinary
differential equations

dV

dζ
= (ε/m∗)A

ε/m∗ − �2
,

d�

dζ
= 1 − AV �

ε/m∗ − �2
. (33)
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We suppose that at the origin s = ζ = 0 the soliton is black,
that is v(0) = 0, but the gradient of velocity A is not equal to
zero here. Then the system (33) must be solved with the initial
conditions

V (0) = 0, �(0) = 0. (34)

For small ζ 
 1 we get � ≈ ζ , V ≈ Aζ , K ≈ − A
ε/m∗

ζ ,
whereas for large ζ � 1 we obtain the estimates � ∼ ζ , V ≈
Vm = const, K ∼ A/ζ . Consequently, the transition from one
asymptotic regime to the other one occurs at ζ ∼ (|ε/m∗|)1/2

and for small A the solution has the order of magnitude
V ∼ (|ε/m∗|)1/2A and K ∼ A/(|ε/m∗|)1/2. Hence, in case of
small A 
 1 in the leading approximation with respect to this
small parameter we can put V = 0 in the function ε/m∗ and
consider this function as a constant parameter. Then the first
equation (33) with � ≈ ζ becomes

dV

dζ
= A

1 + ζ 2/(ε/|m∗|) (35)

with the obvious solution

V (ζ ) = A
√

ε

|m∗| arctan

(
ζ√

ε/|m∗|
)

. (36)

With the same accuracy we obtain from (31)

K (ζ ) = Aζ

ε/|m∗| + ζ 2
. (37)

In the limit ζ → ∞ we find

V ≈ Vm = π

2

√
ε

|m∗| A, K ≈ A

ζ
, A 
 1. (38)

In case of large A the system (33) is to be solved nu-
merically. For example, if we take in Eq. (1) the Kerr-like
nonlinearity f (ρ) = ρ, then we get

ε

m∗
= −1

3
(1 − V 2), (39)

where we have assumed ρ0 = 1, and the system (33) takes the
form

dV

dζ
= A(1 − V 2)

1 − V 2 + 3�2
,

d�

dζ
= 1 + 3AV �

1 − V 2 + 3�2
. (40)

Plots of its solutions for two different values of A are depicted
in Fig. 1 (see also [17,18]). These solutions confirm the above
estimates. The dependence of the limiting value Vm on A is
shown in Fig. 2, where the red dashed line corresponds to
the formula Vm ≈ (π/2

√
3)A which is a particular case of

Eq. (38) for the Kerr-like nonlinearity. As we see, the agree-
ment with the limit of small A is good enough for A � 0.5. In
the asymptotic region ζ � 1 the first equation (40) reduces to

dV

dζ
= A(1 − V 2)

3ζ 2
(41)

and it can be easily integrated to give

V (ζ ) ≈ Vm − A(1 + Vm)2

3ζ
, ζ � 1, (42)

ζ

V
A = 1.0

A = 0.2

0 1 2 3 4 5

0.1

0.2
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0.5

0.6

(a)

ζ

K

A = 1.0

A = 0.2

0 1 2 3 4 5

0.2

0.4

0.6

0.8

(b)

FIG. 1. (a) Plot of the function V (ζ ) for f (ρ ) = ρ and two values
of the parameter A. (b) Plot of the function K (ζ ) for f (ρ ) = ρ and
two values of the parameter A.

where the integration constant is chosen according to the
condition V (ζ ) → Vm as ζ → ∞. This formula agrees with
the asymptotic expression

V (ζ ) ≈ π

2
√

3
A − A

3ζ
, A 
 1, (43)

obtained from (36) in the limit ζ → ∞.
To find the form of the soliton at the moment t , we choose

for definiteness (x, y) coordinates in such a way that the tan-
gent vector t can be written in the form

t = (cos θ, sin θ ) or
dx

ds
= cos θ,

dy

ds
= sin θ, (44)

A

Vm

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

FIG. 2. The dependence of the limiting velocity Vm on the pa-
rameter A. The red dashed line corresponds to Eq. (38) applicable
for A 
 1.
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and θ = 0 at s = 0. Then from the first equation (17) we find
at once

κ =
∣∣∣∣dt
ds

∣∣∣∣ = dθ

ds
. (45)

In case of small A we obtain with the use of (37) the expres-
sion for the curvature,

κ = K

t
= As

(ε/m∗)t2 + s2
. (46)

Consequently, integration of Eq. (45) gives

θ (s) = A

2
ln

[
1 + s2

(ε/|m∗|)t2

]
. (47)

At last, integration of Eqs. (44) yields the soliton’s contour in
a parametric form,

x(s, t ) =
∫ s

0
cos

{
A

2
ln

[
1 + s2

(ε/|m∗|)t2

]}
ds,

y(s, t ) =
∫ s

0
sin

{
A

2
ln

[
1 + s2

(ε/|m∗|)t2

]}
ds.

(48)

The integrals here can be expressed in terms of the hypergeo-
metric function (see, e.g., [28])

x(s, t ) + iy(s, t ) = sF

(
1

2
,− iA

2
,

3

2
,− s2

(ε/|m∗|)t2

)
. (49)

For small |s| 
 |t | we get

x(s, t ) ≈ s, y(s, t ) ≈ As3

6(ε/|m∗|)t2
; (50)

that is, the soliton has the form of a cubic parabola here,

y(x, t ) ≈ Ax3

6(ε/|m∗|)t2
, |x| 
 |t |. (51)

The entire contour has the form of a spiral shown in Fig. 3 for
different values of t . These curves have the maximal curvature

|κmax| =
√

ε/|m∗|A
2|t | (52)

at s = ±√
ε/|m∗| t and the coordinates of the points with the

maximal curvature are to be found from the equation

x + iy = ±
√

ε

|m∗| tF

(
1

2
,− iA

2
,

3

2
,−1

)
. (53)

The minimal radius of the curvature 1/|κmax| ∝ |t | decreases
as t → −0 and, when it reaches the order of magnitude
of the soliton’s width, the contour dynamics approach loses
its applicability. Numerical solution of the Gross-Pitaevskii

x

y

1
2

3

4

5
678

9

10

−5 −4 −3 −2 −1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

FIG. 3. Dark soliton contours at different moments of time: (1)
t = −10; (2) t = −5; (3) t = −2; (4) t = −1; (5) t = −0.5; (6) t =
−0.3; (7) t = −0.2; (8) t = −0.1; (9) t = −0.05; (10) t = −0.02.
All of the curves correspond to A = 0.5.

equation performed in Refs. [17,18,29] shows that at this
stage of evolution the dark soliton breaks with formation of
vortex-antivortex pairs. The theory developed here describes
the soliton’s evolution before this breaking moment.

V. CONCLUSION

We developed further the method of contour dynamics
of dark solitons suggested first in Refs. [17,18]. A simpli-
fied derivation of equations of contour dynamics is given for
the general form of the nonlinearity function in the Gross-
Pitaevskii equation. The self-similar solution of the obtained
equations is studied in detail. The results of this paper provide
estimates for typical characteristics of dark solitons and the
time of their breaking to vortex-antivortex pairs. We have con-
sidered evolution of solitons evolving in a uniform quiescent
background, but the simple method used here can be applied
to situations with nonuniform flowing condensates.
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