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Dynamics of nondegenerate vector solitons in a long-wave–short-wave
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In this paper, we study the dynamics of an interesting class of vector solitons in the long-wave–short-wave
resonance interaction (LSRI) system. The model that we consider here describes the nonlinear interaction of
long wave and two short waves and it generically appears in several physical settings. To derive this class
of nondegenerate vector soliton solutions we adopt the Hirota bilinear method with the more general form of
admissible seed solutions with nonidentical distinct propagation constants. We express the resultant fundamental
as well as multisoliton solutions in a compact way using Gram-determinants. The general fundamental vector
soliton solution possesses several interesting properties. For instance, the double-hump or a single-hump profile
structure including a special flattop profile form results in when the soliton propagates in all the components
with identical velocities. Interestingly, in the case of nonidentical velocities, the soliton number is increased
to two in the long-wave component, while a single-humped soliton propagates in the two short-wave compo-
nents. We establish through a detailed analysis that the nondegenerate multisolitons in contrast to the already
known vector solitons (with identical wave numbers) can undergo three types of elastic collision scenarios:
(i) shape-preserving, (ii) shape-altering, and (iii) a shape-changing collision, depending on the choice of the
soliton parameters. Here, by shape-altering we mean that the structure of the nondegenerate soliton gets modified
slightly during the collision process, whereas if the changes occur appreciably then we call such a collision as
shape-changing collision. We distinguish each of the collision scenarios, by deriving a zero phase shift criterion
with the help of phase constants. Very importantly, the shape-changing behavior of the nondegenerate vector
solitons is observed in the long-wave mode also, along with corresponding changes in the short-wave modes,
and this nonlinear phenomenon has not been observed in the already known vector solitons. In addition, we point
out the coexistence of nondegenerate and degenerate solitons simultaneously along with the associated physical
consequences. We also indicate the physical realizations of these general vector solitons in nonlinear optics,
hydrodynamics, and Bose-Einstein condensates. Our results are generic and they will be useful in these physical
systems and other closely related systems including plasma physics when the long-wave–short-wave resonance
interaction is taken into account.
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I. INTRODUCTION

Resonance is a natural phenomenon which occurs in both
linear and nonlinear dynamical systems under special con-
ditions on the frequencies [1]. This parametric process has
been widely observed ranging from simple harmonic motion
in mechanical systems to more complicated ultrashort pulse
dynamics in optical systems. In this sequence, the interaction
among the nonlinear waves induces one such fascinating res-
onance phenomenon called the long-wave (LW)–short-wave
(SW) resonance interaction modelled by a set of coupled non-
linear Schrödinger type equations. In this paper, we intend to
derive a more general form of bright soliton solutions for the
following LSRI model, namely, two-component long-wave–
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short-wave resonance interaction system,

iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0,

Lt =
2∑

l=1

(|S(l )|2)x. (1)

In Eq. (1), L is the long wave and S(l )’s, l = 1, 2, are the
short waves. The suffixes x and t denote partial derivatives
with respect to the spatial and temporal coordinates, re-
spectively. Soliton formation essentially takes place in the
evolution equations of SWs, that is the first two of the
equations in Eq. (1), due to the interplay between the
nonlinearities and their corresponding dispersions, namely,
second-order spatial derivative terms. The nonlinearities arise
in these equations while the long wave interacts with the
short waves. At the same time, the self interaction of the
SWs defines the soliton formation in the long-wave evolution
equation as specified by the last of the equations in Eq. (1).
Physically the system Eq. (1) appears whenever the phase
velocity of the long wave (vp,LW = ω

k ) almost matches with
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the group velocity of the short waves (vg,SW = dω
dk ). This res-

onance condition was originally derived by Zakharov in the
study on Langmuir waves in plasma [2] and it was also derived
by Benney during the investigation on the interaction between
capillary gravity waves and gravity waves in deep water [3].

The long-wave–short-wave resonance phenomenon was
identified in several physical situations. For instance, in
plasma physics, the LSRI process was observed during the
nonlinear resonance interaction of an electron-plasma wave
and an ion-sound wave [4]. In Ref. [5], Yajima and Oikawa
have shown that the unidirectional propagation of Langmuir
waves coupled with ion-sound waves is modelled by the sin-
gle component LSRI system, where they have established
the integrability of the system by obtaining the soliton solu-
tions using a more sophisticated inverse scattering transform
method [6]. Due to this, the system (1) is also referred as
Yajima-Oikawa (YO) system in the literature. In the context of
the fluid dynamics, the LSRI was noticed during the evolution
of the short and long capillary gravity waves in deep water
[3], in uniform water depth [7], and in finite-depth water
[8]. Such a fascinating resonance phenomenon was verified
experimentally in three layer fluid flow [9]. In addition to
this, the phenomenon was discussed in Ref. [10] when ul-
tralong equatorial Rossby waves get coupled with the short
gravity waves. The LSRI process has been reported in the
nonlinear optics context also, especially in an optical fiber,
where a single component YO system is reduced from the
coupled nonlinear Schrödinger equations describing the inter-
action of two optical modes under small amplitude asymptotic
expansion [11]. In negative refractive index media [12], the
three-wave mixing process leads to the formation of LSRI,
where two degenerate short-waves propagate in the negative
index branch while a long wave stays in the positive index
branch. It should be noted that several evolution equations and
their solutions have been obtained in nonresonant quadratic
nonlinear media [13]. The dynamics of quasi-resonant two-
frequency short pulses and a long-wave is described by Eq. (1)
[14] and multicomponent version of Eq. (1) finds potential ap-
plications in spinor Bose-Einstein condensates (BECs) [15].
By employing a multiscale expansion procedure, the higher
dimensional LSRI system has been derived for describing the
dynamics of binary disk-shaped BECs [16], and also to study
the dynamics of bright-dark soliton complexes in spinor BECs
the YO system has been derived in Ref. [17]. Multicomponent
YO type equations have been derived in the study of magon-
phonon interaction [18]. Therefore, the system considered in
the present paper is physically very important and analyzing
its solutions is useful for studying this peculiar resonance
property in the above described nonlinear media. Apart from
the above, in general, soliton collisions in coupled systems
are extremely important from the point of view of physical
applications, see for instance Ref. [19] for an experimental
realization of collisions of three-component vector solitons
in Bose-Einstein condensates. We note that the parametric
solitons have been identified in the three-wave resonance in-
teraction system [20].

It is important to point out that there are several non-
linear wave solutions which have been reported in the
literature for the integrable long-wave–short-wave resonance
interaction model and its variants [21–31,33–40]. For the

one-dimensional single component YO system, both bright
and dark soliton solutions were derived in Ref. [21]. Inter-
estingly energy-sharing collisions among the single-humped
bright solitons of the (1 + 1)-dimensional multicomponent
LSRI system have been brought out in Ref. [22]. For this
system, such shape-changing collision scenario is demon-
strated in Ref. [23] by deriving the mixed bright-dark soliton
solutions. In this case, the authors set up bright solitons in
the two SW components to observe the shape-changing col-
lision. In contrast to this, the dark soliton solutions of the
multicomponent LSRI system always exhibit elastic collision
[24]. It is noted that for the two layer fluid flow the one
and two-dimensional versions of LSRI systems were obtained
and bright and dark type soliton solutions were derived [25].
Ohta et al. have deduced the two-component analog of the
two-dimensional LSRI system by considering the nonlinear
interactions of dispersive waves on three channels and they
have obtained soliton solutions in Wronskian form for the
corresponding two-dimensional model [26]. This system is
shown to be integrable through Painlevé analysis and the
dromion solutions were obtained using Painlevé truncation
method [27]. Very interestingly, one of the present authors
(M.L.) and his collaborators demonstrated the energy-sharing
collisions of bright solitons in the two-dimensional integrable
versions of the multicomponent LSRI system by deriving
their explicit solutions through the Hirota bilinear method
[28,29] and they have also shown that the formation of res-
onant solitons in this higher-dimensional system [29]. Mixed
bright-dark soliton solutions and their collision dynamics
for this (2 + 1)-dimensional system have been studied in
Refs. [30,31]. For this system, multidark soliton solutions and
their elastic collision have also been studied [24]. Apart from
the above studies, rogue waves, a wave which is localized
both in space and in time and appearing from nowhere and
disappearing without a trace modelled by simple lowest-order
rational solution [32] and its various interesting dynamical
patterns, have been reported for the LSRI system ranging
from (1 + 1)- and (2 + 1)-dimensional single component to
multicomponent cases [33–39].

From the above studies, we carefully identify that the
fundamental bright solitons reported so far in the literature
for the two-component YO system (1) correspond to vector
solitons with identical wave numbers in all the components,
as we have pointed out recently in Refs. [41,42] for the
case of Manakov system and in Eq. (30) of Sec. V of the
present paper. By introducing nonidentical propagation con-
stants appropriately we have removed the degeneracy in the
structure of the fundamental bright soliton solutions of the
Manakov system. For the first time, we have shown that
such an inclusion of additional distinct propagation constants
brings out a new class of fundamental bright solitons, namely,
nondegenerate fundamental solitons, characterized by non-
identical wave numbers in all the modes [41]. As we have
demonstrated in Refs. [41,42], this new class of fundamental
solitons for the Manakov system undergoes novel collision
properties. To the best of our knowledge, such nondegener-
ate solitons have not been predicted so far in the literature
for the (1 + 1)-dimensional long-wave–short-wave resonance
interaction system Eq. (1) and their fascinating dynamics re-
mains to be unravelled. With this motivation, in this paper, we
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aim to derive the nondegenerate multisoliton solutions with
the general forms of admissible seed solutions through the
Hirota bilinear method. We find that the obtained nondegen-
erate solitons possess remarkable collisional properties for an
appropriate choice of soliton parameters. In particular, they
exhibit shape-preserving collision with a zero phase shift, and
shape-altering and shape-changing collisions with finite phase
shifts. During the shape-altering collision, the structure of
the nondegenerate soliton gets modified only slightly whereas
appreciable changes occur during shape-changing collision.
To distinguish each of the collision scenarios, we deduce a
zero phase shift criterion with the help of phase constants.
However, in all the three cases, the total energies of each
of the solitons are always conserved. Very interestingly, the
shape-changing collision property appears in the nondegen-
erate soliton case in a new way, where this shape-changing
behavior of the nondegenerate vector solitons is observed in
the long-wave mode also along with corresponding changes
in the short-wave modes. However, by taking the time shift in
the asymptotic expressions, we show that all the three cases
belong to elastic collision only. This special nonlinear phe-
nomenon is not observed earlier in the degenerate counterpart.
Further, we deduce another special type of two-soliton solu-
tion from the obtained completely nondegenerate two-soliton
solution. This new type of partially nondegenerate soliton so-
lution displays an interesting coexistence phenomenon, where
the degenerate soliton coexists with a nondegenerate soli-
ton. This class of soliton solution undergoes two types of
shape-changing collision scenarios. Finally, we point out the
degenerate fundamental and multibright soliton solutions can
be captured from the nondegenerate fundamental and multi-
soliton solutions, respectively, under restrictions on the wave
numbers. We note that the existence of nondegenerate funda-
mental soliton solution for other integrable coupled nonlinear
Schrödinger systems has also been reported recently by us us-
ing the Hirota bilinear method [43,44] and in Refs. [45,46] the
nondegenerate bright and dark solitons have been discussed
in the context of BEC using Darboux transformation method.
Very recently, we have shown that the nondegenerate soliton
solution exhibits multihump profile structures in N-coupled
nonlinear Schrödinger system [47] as well. Further, we have
also shown that the PT -symmetric nonlocal two coupled
NLS system also admits both nondegenerate and degenerate
soliton solutions [48]. It is interesting to note that the non-
degenerate solitons also have been reported in the coupled
Fokas-Lenells system [49] using Darboux transformation and
in the two-component AB system [50], by following our
work [41].

The paper is organized as follows: In Sec. II, we present
the nondegenerate one and two-soliton solutions of the
system Eq. (1) apart from pointing out the existence of
partially nondegenerate soliton solution. In this section, we
also discuss the various properties associated with the non-
degenerate fundamental soliton. Section III deals with the
investigation of the three types of elastic collision scenarios
with appropriate asymptotic analysis and suitable graphi-
cal demonstrations. The degenerate soliton collision-induced
novel shape-changing properties of the nondegenerate soliton
is analyzed in Sec. IV. In Sec. V, we point out that the
degenerate one- and two-soliton solutions can be captured

as a limiting case of the nondegenerate one- and two-soliton
solutions under appropriate wave-number restrictions. In
Sec. VI, we summarize the results. For completeness, in
Appendix A, we provide the nondegenerate three-soliton so-
lution in Gram determinant forms. In Appendix B, we present
the explicit forms of constants appearing in the asymptotic
analysis of collision dynamics between degenerate and non-
degenerate solitons.

II. NONDEGENERATE SOLITON SOLUTIONS

We construct the nondegenerate multisoliton solution by
bilinearizing Eq. (1) through the dependent variable trans-
formations, S(l )(x, t ) = g(l ) (x,t )

f (x,t ) , l = 1, 2, L = 2 ∂2

∂x2 ln f (x, t ).
This action yields the following bilinear forms of Eq. (1):

D1g(l ) f = 0, l = 1, 2, D2 f f =
2∑

n=1

|g(n)|2, (2)

where D1 ≡ iDt + D2
x and D2 ≡ DxDt . Here Dt and Dx

are the Hirota bilinear operators defined by Dm
x Dn

t (ab) =
( ∂
∂x − ∂

∂x′ )
m

( ∂
∂t − ∂

∂t ′ )
n

a(x, t )b(x′, t ′)|x=x′, t=t ′ [51]. In princi-

ple, the soliton solutions (with vanishing boundary condition
S(l ) → 0, l = 1, 2, and L → 0 as x → ±∞) of Eq. (1) can
be derived by solving a system of linear partial differen-
tial equations (PDEs), which appear at various orders of ε

while substituting the series expansions g(l ) = εg(l )
1 + ε3g(l )

3 +
..., l = 1, 2, f = 1 + ε2 f2 + ε4 f4 + .... in the bilinear forms
Eq. (2). The explicit forms of the functions g(l )’s and f lead
to various soliton solutions to the underlying LSRI system
Eq. (1).

A. Nondegenerate one-soliton solution

To derive the nondegenerate fundamental soliton solution
we start with the more general form of seed solutions,

g(1)
1 = α

(1)
1 eη1 ,

g(2)
1 = α

(2)
1 eξ1 , η1 = k1x + ik2

1t, ξ1 = l1x + il2
1 t, (3)

where α
(l )
1 ’s, k1, and l1 are arbitrary complex constants, for the

lowest-order linear PDEs,

ig(1)
1,t + g(1)

1,xx = 0, ig(2)
1,t + g(2)

1,xx = 0. (4)

From the above, one can notice that the functions g(1) and
g(2) considered in Eq. (3) are two distinct solutions. This is
because of the independent nature of the two linear PDEs
specified above in Eq. (4) and so their solutions should be
expressed in general in terms of two independent functions
as given in Eq. (3) above with arbitrary wave numbers k1,
l1, where in general k1 �= l1. The general forms of the seed
solutions with distinct propagation constants will bring out
a physically meaningful class of fundamental soliton solu-
tions as we describe below. Such a possibility has not been
considered so far in the literature for the (1 + 1)-dimensional
integrable two-component LSRI system as far as our knowl-
edge goes except in our earlier papers [41–44,47]. What has
been considered so far is only the restricted class of seed
solutions, that is the wave-number restricted seed solutions,

044203-3



STALIN, RAMAKRISHNAN, AND LAKSHMANAN PHYSICAL REVIEW E 105, 044203 (2022)

namely, g(1)
1 = α

(1)
1 eη1 , g(2)

1 = α
(2)
1 eη1 , η1 = k1x + ik2

1t [one
can get this set of seed solutions straightforwardly by setting
the condition k1 = l1 in Eq. (3)]. Even such restricted seed
solutions have been shown to yield interesting energy-sharing
collision properties of solitons [22]. So what we emphasize

here is that the vector bright solitons reported so far in the
literature are achieved by considering such a limited class of
seed solutions only. With the general forms of seed solutions
Eq. (3), we solve the following system of linear inhomoge-
neous partial differential equations:

O(ε0) : 0 = 0, O(ε2) : D2(1 f2 + f21) = g(1)
1 g(1)∗

1 + g(2)
1 g(2)∗

1 , (5a)

O(ε3) : D1g(l )
3 1 = −D1g(l )

1 f2, (5b)

O(ε4) : D2(1 f4 + f41) = −D2 f2 f2 + g(1)
1 g(1)∗

3 + g(1)
3 g(1)∗

1 + g(2)
1 g(2)∗

3 + g(2)
3 g(2)∗

1 , (5c)

O(ε5) : D1g(l )
5 1 = −D1(g(l )

1 f4 + g(l )
3 f2), l = 1, 2, (5d)

O(ε6) : D2(1 f6 + f61) = −D2( f4 f2 + f2 f4) + g(1)
1 g(1)∗

5 + g(1)
3 g(1)∗

3 + g(1)
5 g(1)∗

1

+g(2)
1 g(2)∗

5 + g(2)
3 g(2)∗

3 + g(2)
5 g(2)∗

1 , (5e)

etc. By doing so, we find the explicit forms of the unknown functions f2, g(l )
3 , l = 1, 2, and f4 as f2 =

eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 , g(1)
3 = eη1+ξ1+ξ∗

1 +�1 , g(2)
3 = eξ1+η1+η∗

1+�2 , f4 = eη1+η∗
1+ξ1+ξ∗

1 +R3 , where eR1 = |α(1)
1 |2

2i(k1+k∗
1 )2(k1−k∗

1 ) , eR2 =
|α(2)

1 |2
2i(l1+l∗1 )2(l1−l∗1 ) , e�1 = iα(1)

1 |α(2)
1 |2(l1−k1 )

2(k1+l∗1 )(l1−l∗1 )(l1+l∗1 )2 , e�2 = iα(2)
1 |α(1)

1 |2(k1−l1 )
2(k∗

1 +l1 )(k1−k∗
1 )(k1+k∗

1 )2 , eR3 = − |α(1)
1 |2|α(2)

1 |2|k1−l1|2
4|k1+l∗1 |2(k1−k∗

1 )(l1−l∗1 )(k1+k∗
1 )2(l1+l∗1 )2 . We note that the

right hand sides of all the remaining linear PDEs identically vanish upon substitution of the obtained functions g(l )
1 , g(l )

3 , l = 1, 2,
f2, and f4. Consequently, one can take g(l )

5 = g(l )
7 = ... = 0, l = 1, 2, and f6 = f8 = ... = 0. Thus in the series all g(l )

i = 0 for
i � 5 and all f j = 0, j � 6. Therefore, ultimately the series converges at the O(ε3) in the function g(l )(x, t ) while the series
terminates at the O(ε4) in f (x, t ): g(l ) = εg(l )

1 + ε3g(l )
3 , l = 1, 2, f = 1 + ε2 f2 + ε4 f4. We also note that the small parameter ε

can be fixed as 1 (as it can be subsumed with the parameters α
(1)
1 and α

(2)
1 ), without loss of generality. Thus the above procedure

makes the infinite expansion to terminate with a finite number of terms only and hence the solution can be summed up into
an exact one. Finally, the resultant explicit forms of the unknown functions constitute the nondegenerate fundamental soliton
solution for the system Eq. (1), which reads as

S(1)(x, t ) = g(1)
1 + g(1)

3

1 + f2 + f4
= α

(1)
1 eη1 + eη1+ξ1+ξ∗

1 +�1

1 + eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 + eη1+η∗
1+ξ1+ξ∗

1 +R3
, (6a)

S(2)(x, t ) = g(2)
1 + g(2)

3

1 + f2 + f4
= α

(2)
1 eξ1 + eξ1+η1+η∗

1+�2

1 + eη1+η∗
1+R1 + eξ1+ξ∗

1 +R2 + eη1+η∗
1+ξ1+ξ∗

1 +R3
, (6b)

L(x, t ) = 2
∂2

∂x2
ln(1 + eη1+η∗

1+R1 + eξ1+ξ∗
1 +R2 + eη1+η∗

1+ξ1+ξ∗
1 +R3 ). (6c)

Using Gram determinants [52,53], we can rewrite the above soliton solution in a more compact form as S(1) = g(1)

f , S(2) = g(2)

f ,

L = 2 ∂2

∂x2 ln f , where

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

2i(k2
1−k∗2

1 )
0 0

0 −1 0 |α(2)
1 |2

2i(l2
1 −l∗2

1 )
0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

2i(k2
1−k∗2

1 )
0 0

0 −1 0 |α(2)
1 |2

2i(l2
1 −l∗2

1 )
0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7b)
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f =

∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1

−1 0 |α(1)
1 |2

2i(k2
1−k∗2

1 )
0

0 −1 0 |α(2)
1 |2

2i(l2
1 −l∗2

1 )

∣∣∣∣∣∣∣∣∣∣∣∣
. (7c)

We find that the above forms of Gram determinants satisfy the two-component LSRI system Eq. (1) as well as the bilinear
Eq. (2). To analyze the various special properties of the nondegenerate one-soliton solution of Eq. (1), we obtain the following
expression for the one-soliton solution by rewriting Eqs. (6a)–(6c) in hyperbolic forms,

S(1) = 4k1R
√

k1I A1ei(η1I + π
2 )[cosh(ξ1R + ϕ1R) cos ϕ1I + i sinh(ξ1R + ϕ1R) sin ϕ1I ][

a11 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + 1
a∗

11
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)

] , (8a)

S(2) = 4l1R
√

l1I A2ei(ξ1I + π
2 )[cosh(η1R + ϕ2R) cos ϕ2I + i sinh(η1R + ϕ2R) sin ϕ2I ][

a12 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + 1
a∗

12
cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)

] , (8b)

L = 4k2
1R cosh(2ξ1R + 2ϕ1 + c4) + 4l2

1R cosh(2η1R + 2ϕ2 + c3) + 1
2 eR′

3−( R1+R2+R3
2 )

[� cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + �−1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2
,

eR′
3 = 4(k1R + l1R)2eR3 + 4(k1R − l1R)2eR1+R2 , (8c)

where a11 = (k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

, a12 = (k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

, � = 1
2 log |k1−l1|

|k1+l∗1 | , c1 = 1
2 log (k∗

1 −l∗1 )
(l1−k1 ) , c2 = 1

2 log (k1−l1 )(k∗
1 +l1 )

(l1−k1 )(k1+l∗1 ) , c3 = 1
2 log (l∗1 −k∗

1 )(k∗
1 +l1 )

(k1+l∗1 )(l1−k1 ) ,

c4 = 1
2 log (k∗

1 −l∗1 )(k1+l∗1 )
(k∗

1 +l1 )(k1−l1 ) , η1R = k1R(x − 2k1I t ), η1I = k1I x + (k2
1R − k2

1I )t , ξ1R = l1R(x − 2l1I t ), ξ1I = l1I x + (l2
1R − l2

1I )t , A1 =
[α(1)

1 /α
(1)∗
1 ]1/2, A2 = i[α(2)

1 /α
(2)∗
1 ]1/2, and the other constants can be calculated using the constants that are defined below

Eqs. (6a)–(6c). Here, ϕ1R, ϕ2R, ϕ1I and ϕ2I are real and imaginary parts of ϕ1 = �1−ρ1

2 and ϕ2 = �2−ρ2

2 , eρl = α
(l )
1 , l = 1, 2,

respectively, and k1R, l1R, k1I and l1I denote the real and imaginary parts of k1 and l1, respectively. The four arbitrary complex
parameters, α

(l )
1 ’s, l = 1, 2, k1 and l1, determine the structure of the nondegenerate fundamental soliton solution Eqs. (8a)–(8c)

of the two-component LSRI system Eq. (1).
In general, the amplitudes of the soliton in the short-wave components are 4k1R

√
k1I A1 and 4l1R

√
l1I A2, respectively, and

their velocities in their respective SW components are 2k1I and 2l1I . However, the amplitude and the velocity of the soliton in
the LW component mainly depend on the real and imaginary parts of both the wave numbers k1 and l1, respectively. From the
above, one can easily notice that the amplitudes of the SW components explicitly depend on the velocity of the soliton. This
interesting amplitude dependent velocity property is analogous to the property of the Korteweg-de Vries (KdV) soliton of the
form u(x, t ) = c

2 sech2
√

c
2 (x − ct ). Here c is the velocity of the KdV soliton [1,54]. Consequently, like the degenerate bright

solitons, the taller nondegenerate solitons also travel faster than the smaller ones, as pointed out in Sec. V and in Ref. [22].
We note that the nondegenerate fundamental soliton in the Manakov system does not possess this velocity-dependent amplitude
property [41,42]. The solution Eqs. (8a)–(8c) show both regular and singular behavior. The singularity property of the solution
is determined by the quantities eR1 , eR2 , and eR3 . The regular soliton solution arises for the case when both k1I and l1I < 0. In this
case, the quantities, eR1 , eR2 and eR3 > 0 whereas the solution Eqs. (8a)–(8c) displays singularity for k1I and/or l1I > 0.

The nondegenerate one-soliton solution Eqs. (8a)–(8c) is classified as follows depending on the choice of the velocity
conditions:

(i) For k1I = l1I , we designate the one-soliton solution as (1,1,1)-soliton solution, where all the components (S(1), S(2), L)
consist of only one soliton with double-hump or flattop or single-hump structured profile.

(ii) However, we refer the solution Eqs. (8a)–(8c) with k1I �= l1I as (1,1,2)-soliton solution, where both the short-wave
components S(1) and S(2) possess one humped localized structures only while the long-wave component contains two single-
hump structured profiles like the 2-soliton solution of the NLS equation. We will discuss each one of these cases separately in
the following.

In the equal velocity case, the soliton in the SW components propagates with identical velocities but with different amplitudes.
For this case, the imaginary parts of ϕ j’s are equal to zero. That is, ϕ jI = 0, j = 1, 2. This property reduces the solution Eqs. (8a)–
(8c) into the following form of (1,1,1)-soliton solution,

S(1) = 4k1R
√

k1I A1ei(η1I + π
2 ) cosh(ξ1R + ϕ1R)[

b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + 1
b1

cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)
] , (9a)

S(2) = 4l1R
√

k1I A2ei(ξ1I + π
2 ) cosh(η1R + ϕ2R)[

b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + 1
b1

cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)
] , (9b)
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FIG. 1. Five types of symmetric profiles of the nondegenerate fundamental soliton solution Eqs. (8a)–(8c) with k1I = l1I or Eqs. (9a)–(9c):
While panel (a) represents double-hump profiles in all the components, panel (b) denotes double-hump profiles in S(1) and L components
and a flattop profile in S(2) component. Panel (c) indicates double-hump profiles in S(1) and L components and a single-hump profile in
S(2) component. Panel (d) represents double-hump in S(1) component, single-hump in S(2) component and a flattop profile in L component.
Panel (e) denotes double-hump profile in S(1) and single-hump profiles in both S(2) and L components. The parameter values of each one of the
cases are as follows: (a) k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i, α(1)

1 = 0.5 + 0.5i, and α
(2)
1 = 0.45 + 0.5i; (b) k1 = 0.3 − 0.5i, l1 = 0.425 − 0.5i,

α
(1)
1 = 0.43 + 0.55i, and α

(2)
1 = 0.45 + 0.45i; (c) k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, α

(1)
1 = 0.5 + 0.5i, and α

(2)
1 = 0.45 + 0.45i; (d) k1 =

0.315 − 0.5i, l1 = 0.545 − 0.5i, α
(1)
1 = 0.5 + 0.5i, and α

(2)
1 = 0.45 + 0.5i; (e) k1 = 0.315 − 0.5i, l1 = 0.65 − 0.5i, α

(1)
1 = 0.5 + 0.5i, and

α
(2)
1 = 0.45 + 0.5i.

L = 4k2
1R cosh(2ξ1R + 2ϕ1 + c4) + 4l2

1R cosh(2η1R + 2ϕ2 + c3) + 4(k2
1R − l2

1R)

[b1 cosh(η1R + ξ1R + ϕ1 + ϕ2 + c1) + b−1
1 cosh(η1R − ξ1R + ϕ2 − ϕ1 + c2)]2

, (9c)

where b1 = (k1R−l1R )
1
2

(k1R+l1R )
1
2

, η1R = k1R(x − 2k1I t ), η1I = k1I x +
(k2

1R − k2
1I )t , ξ1R = l1R(x − 2k1I t ), ξ1I = k1I x + (l2

1R − k2
1I )t .

From the above solution, we find a relation between the
short-wave components and the long-wave component and it
turns out to be

|S(1)|2 + |S(2)|2 = −2k1I L. (10)

The latter relation confirms that the above type of linear
superposition of intensities of the two short-wave com-
ponents accounts for the formation of interesting soliton
structure in the long-wave component. The special solutions

Eqs. (9a)–(9c) with the condition k1R < l1R admits five types
of symmetric profiles which we have displayed in Fig. 1.
The symmetric profiles are classified as follows: (i) Double-
humps in all the components, (ii) double-humps in S(1) and
long-wave components and a flattop in the S(2) component,
(iii) double-humps in S(1) and long-wave components and
a single-hump in the S(2) component, (iv) double-hump in
S(1) component, single-hump in S(2) component and a flattop
profile in the long-wave component, and (v) double-hump in
S(1) component and single-humps in both the S(2) and long-
wave components. To demonstrate all the above five cases
we fix k1I = l1I = −0.5 < 0 in Fig. 1. From Fig. 1, one can
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FIG. 2. Panels (a), (b), (c), (d), and (e) denote asymmetric profiles corresponding to the symmetric profiles of Figs. 1(a)– 1(e), respectively,
with k1I = l1I . The parameter values of each of the cases are as follows: (a) k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i, α

(1)
1 = 0.5 + i, and α

(2)
1 =

0.45 + 0.5i; (b) k1 = 0.3 − 0.5i, l1 = 0.425 − 0.5i, α(1)
1 = 0.3 + 0.55i, and α

(2)
1 = 0.45 + 0.45i; (c) k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i, α(1)

1 =
0.15 + 0.5i, and α

(2)
1 = 0.45 + 0.45i; (d) k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, α

(1)
1 = 0.38 + 0.5i, and α

(2)
1 = 0.45 + 0.5i; (e) k1 = 0.315 −

0.5i, l1 = 0.65 − 0.5i, α
(1)
1 = 0.25 + 0.5i, and α

(2)
1 = 0.45 + 0.5i.

observe that the transition which occurs from double-hump to
single-hump or from single-hump to double-hump is through
a special flattop profile. The corresponding asymmetric pro-
files are illustrated in Fig. 2 for the parameter values as
specified there. This can be achieved by tuning either the real
parts of the wave numbers k1 and l1 or by tuning the complex
parameters α

(l )
1 ’s. One can also bring out a double-hump and

a flattop profile in the S(1) (S(2) and L as well) component
by considering another possibility, namely, k1I = l1I < 0 and
k1R > l1R.

Further, one can confirm the symmetric and asymmetric
nature of the (1,1,1) solution Eqs. (9a)–(9c), by finding the
extremum points as we have analyzed the profile nature of
the nondegenerate soliton solution in the Manakov system
[42]. In the following, we explain this analysis for the sym-
metric double-hump soliton profile, displayed in Fig. 1(a),
of the LSRI system Eq. (1): First, we find the local max-
imum and minimum points by applying the first derivative
test ({|S( j)|2}x = 0, {|L|}x = 0) and the second derivative test
({|S( j)|2}xx, {|L|}xx < 0 or >0) to the expressions of |S( j)|2,

j = 1, 2, and |L|, at t = 0. As a result, for the first SW
component, three extremal points are identified, namely, x1 =
−1.4, x2 = 4.3, and x3 = 9.99. Then we found another set
of three extremal points, x4 = 0.6, x5 = 4.3, and x6 = 8.09,
for the second SW component. We also identified another
set of three extremal points, x7 = −0.6, x8 = 4.29 and x9 =
9.2, for the LW component by setting {|L|}x = 0. While the
points x2, x5 and x8 correspond to minima, the points, (x1,
x3), (x4, x6), and (x7, x9) correspond to maximum points. In
all the components, the minimum points x2, x5 and x8 are
located at equal distances from the two maximum points (x1,
x3), (x4, x6), and (x7, x9), respectively. This can be easily
confirmed by finding their differences. For instance, in the
S(1)-component, x1 − x2 = −5.7 = x2 − x3. This is true for
both the SW component S(2) and the LW component L also.
That is for S(2): x4 − x5 = −3.7 ≈ x5 − x6 = −3.79 and for
L: x7 − x8 = −4.89 ≈ x8 − x9 = −4.91. Then the intensity,
|S(1)|2, of each hump, of the double-hump soliton, correspond-
ing to maxima x1 and x3 are equal to 0.078. Similarly, in
the second SW component, the magnitude of the intensity
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FIG. 3. Nondegenerate one soliton (1,1,2) with unequal velocities. The parameter values are k1 = 0.25 − 0.5i, l1 = 0.2 − 2i, α(1)
1 = 0.45 +

0.5i, and α
(2)
1 = 0.5 + 0.5i.

corresponding to the maximum points x4 and x6 are equal to
0.086. We also obtain the magnitudes corresponding to the
maxima x7 and x8 are equal to 0.154. The above analysis
confirms that the double-hump soliton profiles displayed in
Fig. 1(a) are symmetric. In addition, one can also verify the
symmetric nature of the single-hump soliton about the local
maximum point and checking the half widths as well. For the
flat-top soliton case, we have confirmed that the first derivative
{|S(l )|2}x, l = 1, 2, and {|L|}x, very slowly tends to zero, for a
certain number of x values, near the corresponding maximum.
This also confirms that the presence of almost flatness and
symmetric nature of the one soliton. By following the above
procedure, one can also verify the asymmetric nature of the
solution Eqs. (9a)–(9c).

Next, we consider the (1,1,2)-soliton solution, that is
the solution Eqs. (8a)–(8c) with k1I �= l1I . In this situation,
the soliton in the two short-wave components (as well as
in the long-wave component) propagate with distinct veloc-
ities as we have displayed in Fig. 3. As it is evident from this
figure that distinct single-humped one-soliton structures al-
ways occur in each of the short-wave components and
they propagate from +x to −x direction (but with differ-
ent localizations). However, surprisingly the two single-hump
structured solitons of the SW component emerge in the LW
component and they interact like the two-soliton solution of
the scalar NLS case. Each of the single-humped structures
of the soliton in the SW components S(1) and S(2) interact
through the LW component as dictated by the nonlinearity
of the LW component. This special nonlinear phenomenon
occurs because of the nondegeneracy property of the funda-
mental soliton solution Eqs. (8a)–(8c) of the LSRI system
Eq. (1). To the best of our knowledge, this special kind of
phenomenon has not been observed earlier in the present (1 +
1)-dimensional two-component LSRI system and its multi-
component version. A similar kind of soliton nature is also

observed in the Wronskian solutions, derived by Ohta et al.,
for the two-component (2 + 1)-dimensional LSRI system
[26]. Although the authors have graphically demonstrated the
(1,1,2) and (2,2,4) soliton solutions in Ref. [26], the complete
analysis of such soliton solutions and their associated many
novel results are still missing in the literature. We have sys-
tematically analyzed the (1,1,2) and (2,2,4) soliton solutions
of the (2 + 1)-dimensional multicomponent LSRI system by
expressing their exact analytical forms in terms of Gram de-
terminants and the results will be published elsewhere [55].
Moreover, it is shown in Ref. [28] that the Wronskian so-
lutions (N, M, N + M) reported in Ref. [26] have also been
deduced from the degenerate soliton solutions (m, m, m).
However, the dynamical properties of the Wronskian solu-
tions, as graphically illustrated in Ref. [26], are distinct from
the degenerate soliton solutions as explained in Ref. [28]. We
point out that the double-hump soliton profile emerges in all
the components when the relative velocity 2(l1I − k1I ) tends
to zero. In other words, the double-hump formation will occur
if l1I ≈ k1I .

To experimentally generate the nondegenerate vector soli-
tons one may consider three channels of nonlinear dispersive
medium or triple mode nonlinear optical fiber [26], where
the two light pulses are in the anomalous dispersion regime
and the remaining pulse is in the normal dispersion regime.
By introducing the intermodal interactions in such a way
one can make the short-wave modes (anomalous dispersion
regime) to interact with the long-wave mode (normal dis-
persion regime). In this situation, it is essential to consider
two laser sources of different characters so that the frequency
of the first laser beam is different from the second one. By
sending the extraordinary mutual incoherent optical beam,
coming out from both the sources, to the short-wave channels
along with the appropriate coupling on the long-wave channel,
it is possible to create the nondegenerate solitons. In this
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situation, the group velocities vg = dω
dk of the optical beam in

the short-wave channels should be equal to the phase velocity
vp of the long-wave channel. Under this resonance condi-
tion, the nondegenerate solitons in the short-wave optical
modes can be created and made to interact with the soliton
in the long-wave mode. In the fluid dynamics context also
one can observe the nondegenerate solitons by considering a
three-layer system [9] of homogeneous fluids having different
densities. In this circumstance, it is possible to achieve the
problem of resonance interaction of a long interfacial wave
and a short surface waves. By a proper choice of the various
densities and layer thicknesses, one may tune the three-layer
system to a resonant condition whereby the group velocity of
the shorter surface waves and the phase velocity of the longer
interfacial wave are nearly equal. Thus, all of the physics
relevant to the nondegenerate solitons can be identified from
this simple three-layer fluid system. On the other hand, it is
also possible to create the nondegenerate solitons in spinor
BECs by tuning the hyperfine states of the 87Rb atoms [19,57]
whenever the group velocities of the short-waves are equal to
the phase velocity of the long-wave.

B. Completely nondegenerate two-soliton solution

To construct the completely nondegenerate two-soliton so-
lution, we consider the seed solutions of the following forms:

g(1)
1 = α

(1)
1 eη1 + α

(1)
2 eη2 , η1 = k1x + ik2

1t, η2 = k2x + ik2
2t,

g(2)
1 = α

(2)
1 eξ1 + α

(2)
2 eξ2 , ξ1 = l1x + il2

1 t, ξ2 = l2x + il2
2 t,

(11)

for Eq. (4). Here we treat the four arbitrary constants k1, k2, l1,
and l2 as distinct from one another, in general, apart from the
other four distinct complex constants α

(l )
1 and α

(l )
2 , l = 1, 2.

For the two-soliton solution, we find that the above seed solu-
tions terminate the series expansions as g(l ) = εg(l )

1 + ε3g(l )
3 +

ε5g(l )
5 + ε7g(l )

7 , l = 1, 2, f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8,
while solving the resulting inhomogeneous linear partial dif-
ferential equations recursively. The explicit Gram determinant
forms of g(l )’s and f can be written as

g(1) =

∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣
,

f =

∣∣∣∣∣∣∣
Amm′ Amn I 0
Anm Ann′ 0 I
−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣
, (12a)

g(2) =

∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣
. (12b)

The various elements are defined as

Amm′ = eηm+η∗
m′

(km + k∗
m′ )

, Amn = eηm+ξ∗
n

(km + l∗
n )

, Ann′ = eξn+ξ∗
n′

(ln + l∗
n′ )

,

Anm = eη∗
n+ξm

(k∗
n + lm)

,

κmm′ = ψ†
mσψm′

2i
(
k2

m − k∗2
m′

) , κmn = ψ†
mσψ ′

n

2i
(
l2
m − k∗2

n

) ,

κnm = ψ ′†
n σψm

2i
(
k2

n − l∗2
m

) ,

κnn′ = ψ ′†
n σψ ′

n′

2i
(
l2
n − l∗2

n′
) , m, m′, n, n′ = 1, 2.

The other elements are defined as follows:
φ1 = (eη1 eη2 )T , φ2 = (eξ1 eξ2 )

T
, ψ j = (α(1)

j 0)
T

,

ψ ′
j = (0 α

(2)
j )

T
, 0′ = (0 0), I = σ = (1 0

0 1), 0 = (0 0
0 0),

and CN = −(α(N )
1 α

(N )
2 ), j, N = 1, 2. Note that in the above

the g( j)’s are (9 × 9) determinants and f is a (8 × 8) de-
terminant. The collision dynamics and the structure of the
nondegenerate two solitons are characterized by eight arbi-
trary complex constants, α

( j)
1 , α

( j)
2 , k j , and l j , j = 1, 2. The

singularity of the two-soliton solution mainly depends on
the function f . To get the nonsingluar solution, the func-
tion f should be positive definite ( f > 0). This restricts
the imaginary parts of the wave numbers, k jI and l jI , j =
1, 2 as negative. That is k jI , l jI < 0. Further, the complete
nondegenerate two-soliton solution Eqs. (12a) and (12b) is
classified as (2,2,2)-soliton solution (k jI = l jI , j = 1, 2) and
(2,2,4)-soliton solution (k jI �= l jI , j = 1, 2). We have also
given the completely nondegenerate three-soliton solution in
Appendix A for the system Eq. (1) using the Gram-
determinants.

C. Partially nondegenerate soliton solution

We next deduce partially nondegenerate soliton solution
from the complete nondegenerate two-soliton solution by
imposing the wave-number restriction k1 = l1 (or k2 = l2)
in Eqs. (12a) and (12b). Due to this restriction, the wave
variables ξ1 and η1 are no longer independent and they get
restricted as ξ1 = η1, while ξ2 and η2 continue to be distinct
and independent. The Gram determinant forms of g(l )’s and f
are the same both for the partially nondegenerate soliton solu-
tion and for the complete nondegenerate two-soliton solution
except that they differ in the following constituents, Amn, Anm,
Ann′ , κmn, κnm, κnn′ , and φ2. Their explicit forms for the present
case are given as follows:

Amn : A11 = eη1+η∗
1

(k1 + k∗
1 )

, A12 = eη1+ξ∗
2

(k1 + l∗
2 )

,

A21 = eη2+η∗
1

(k2 + k∗
1 )

, A22 = eη2+ξ∗
2

(k2 + l∗
2 )

,

Anm : A11 = eη1+η∗
1

(k1 + k∗
1 )

, A12 = eη∗
1+ξ2

(k∗
1 + l2)

,

A21 = eη∗
2+η1

(k∗
2 + k1)

, A22 = eη∗
2+ξ2

(k∗
2 + l2)

,
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Ann′ : A11 = eη1+η∗
1

(k1 + k∗
1 )

, A12 = eξ1+ξ∗
2

(l1 + l∗
2 )

,

A21 = eξ2+η∗
1

(l2 + k∗
1 )

, A22 = eξ2+ξ∗
2

(l2 + l∗
2 )

,

κmn : κ11 = ψ
†
1 σψ ′

1

2i
(
k2

1 − k∗2
1

) , κ12 = ψ
†
1 σψ ′

2

2i
(
k2

1 − k∗2
2

) ,

κ21 = ψ
†
2 σψ ′

1

2i
(
l2
2 − k∗2

1

) , κ22 = ψ
†
2 σψ ′

2

2i
(
l2
2 − k∗2

2

) ,

κnm : κ11 = ψ
′†
1 σψ1

2i
(
k2

1 − k∗2
1

) , κ12 = ψ
′†
1 σψ2

2i(k2
1 − l∗2

2 )
,

κ21 = ψ
′†
2 σψ1

2i
(
k2

2 − k∗2
1

) , κ22 = ψ
′†
2 σψ2

2i
(
k2

2 − l∗2
2

) ,

κnn′ : κ11 = ψ
′†
1 σψ ′

1

2i
(
k2

1 − k∗2
1

) , κ12 = ψ
′†
1 σψ ′

2

2i
(
k2

1 − l∗2
2

) ,

κ21 = ψ
′†
2 σψ ′

1

2i
(
l2
2 − k∗2

1

) , κ22 = ψ
′†
2 σψ ′

2

2i
(
l2
2 − l∗2

2

) , (13)

and φ2 = (eη1 eξ2 )
T

. The above new class of solution
permits both degenerate and nondegenerate solitons, simulta-
neously leading to the formation of coexistence phenomenon
in the present LSRI system Eq. (1). It is interesting to note that
the coexistence phenomenon has also been discussed in the
context of rogue waves [56]. The above partially nondegen-
erate soliton solution is described by seven arbitrary complex
parameters, α

(l )
1 , α

(l )
2 , k j , l, j = 1, 2, and l2. Further, to get

the regular (nonsingular) solution one has to fix the condition
k jI < 0, j = 1, 2, and l2I < 0.

III. VARIOUS TYPES OF COLLISION DYNAMICS OF
NONDEGENERATE SOLITONS

In this section, we analyze several interesting collision
properties of the nondegenerate solitons of the system Eq. (1).
To study the collision dynamics, it is essential to analyze the
form of each of the solitons in the two-soliton solution in
the long-time limits t → ±∞. It can be done by performing
appropriate asymptotic analysis of the completely nondegen-
erate two-soliton solution Eqs. (12a) and (12b). From the

analysis, we find that the nondegenerate solitons exhibit three
types of collisions, namely, shape-preserving, shape-altering,
and a novel shape-changing collision dynamics for the cases
of (i) equal velocities k jI = l jI , j = 1, 2 and (ii) unequal ve-
locities k jI �= l jI , j = 1, 2. As we pointed out earlier, during
the shape-altering collision the structure of the nondegener-
ate soliton gets modified only slightly, while drastic changes
occur in the shape-changing scenario. Very interestingly, we
find that the shape-altering and shape-changing collision sce-
narios belong to elastic collision which is confirmed through
the following asymptotic analysis. Additionally, we observe
a shape-changing collision for the partially equal velocities
(k1I = l1I , k2I �= l2I ) case also. In this section, we describe the
asymptotic analysis for equal velocities case only and it can
be extended to unequal velocities cases as well in a similar
manner. We note that the singularity condition, k jI < 0 and
l jI < 0, enforces the two nondegenerate solitons to propagate
in the same direction. Thus, the nondegenerate solitons in
the system Eq. (1) always undergo overtaking collision. From
this, it can be understood that the positive type of nonlinearity
of the system Eq. (1) does not permit any head-on collision
among the nondegenerate solitons.

A. Asymptotic analysis

We carry out an asymptotic analysis of the two-soliton
solution Eqs. (12a) and (12b) by considering the parametric
choices, k jI = l jI < 0, k jR, l jR > 0, j = 1, 2, k1I > k2I , and
l1I > l2I , which corresponds to the overtaking collision of
two symmetric double-hump solitons. For other choice of
parameters, similar analysis can be carried out without much
difficulty. To deduce the asymptotic forms of nondegenerate
solitons in the long-time regimes, we incorporate the asymp-
totic behavior of the wave variables η jR = k jR(x − 2k jIt ) and
ξ jR = l jR(x − 2l jI t ), j = 1, 2, in the solution Eqs. (12a) and
(12b). For the above parametric choices corresponding to
overtaking collision, the wave variables behave asymptoti-
cally as (i) Soliton 1 (S1): η1R, ξ1R 
 0, η2R, ξ2R → ±∞ as
t ± ∞ and (ii) Soliton 2 (S2): η2R, ξ2R 
 0, η1R, ξ1R → ±∞
as t ∓ ∞. Substituting these results in Eqs. (12a) and (12b),
we derive the following asymptotic forms of nondegenerate
individual solitons.

(a) Before collision: t → −∞
Soliton 1: For soliton 1, we obtain the asymptotic forms of

S(l ), l = 1, 2 and L from the two-soliton solution Eqs. (12a)
and 12b) as

S(1) 
 4A1−
1 k1R

√
k1I eiη1I cosh(ξ1R + φ−

1 )[
a11 cosh(η1R + ξ1R + φ−

1 + φ−
2 + c1) + 1

a∗
11

cosh(η1R − ξ1R + φ−
2 − φ−

1 + c2)
] ,

S(2) 
 4A1−
2 l1R

√
l1I eiξ1I cosh(η1R + φ−

2 )[
a12 cosh(η1R + ξ1R + φ−

1 + φ−
2 + c1) + 1

a∗
12

cosh(η1R − ξ1R + φ−
2 − φ−

1 + c2)
] ,

L 
 4

f 2

((
k2

1R − l2
1R

) + l2
1R cosh(2η1R + 2φ−

2 + c3) + k2
1R cosh(2ξ1R + 2φ−

1 + c4)
)
,

f = b1 cosh(η1R + ξ1R + φ−
1 + φ−

2 + c1) + b−1
1 cosh(η1R − ξ1R + φ−

2 − φ−
1 + c2). (14)

Here, A1−
1 = i[α(1)

1 /α
(1)∗
1 ]1/2 and A1−

2 = i[α(2)
1 /α

(2)∗
1 ]1/2. In the latter, superscript (1−) represents soliton S1 before collision and

subscripts (1,2) denote the two short-wave components S(1) and S(2), respectively.
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Soliton 2: In this limit, the asymptotic expressions for soliton 2 in the two SW components and the long-wave component turn
out to be

S(1) 
 4k2RA2−
1

√
k2I ei(η2I +θ−

1 ) cosh(ξ2R + ϕ−
1 )[

a21 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) + 1
a∗

21
cosh(η2R − ξ2R + ϕ−

2 − ϕ−
1 + d2)

] ,

S(2) 
 4l2RA2−
2

√
l2I ei(ξ2I +θ−

2 ) cosh(η2R + ϕ−
2 )[

a22 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) + 1
a∗

22
cosh(η2R − ξ2R + ϕ−

2 − ϕ−
1 + d2)

] ,

L 
 4

f 2

((
k2

2R − l2
2R

) + l2
1R cosh(2η2R + 2ϕ−

1 + d3) + k2
2R cosh(2ξ2R + 2ϕ−

2 + d4)
)
,

f = b2 cosh(η2R + ξ2R + ϕ−
1 + ϕ−

2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ−

2 − ϕ−
1 + d2). (15)

In the above, a21 = (k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

, 1
a∗

21
= (k2+l∗2 )

1
2

(k2−l2 )
1
2

, a22 = (k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

, 1
a∗

22
= (k∗

2 +l2 )
1
2

(k2−l2 )
1
2

, eiθ−
1 = (k1−k2 )(k1+k2 )

1
2 (k1+k∗

2 )(k2−l1 )
1
2 (k1−k∗

2 )(k∗
2 +l1 )

1
2

(k∗
1 −k∗

2 )(k∗
1 +k2 )(k∗

1 +k∗
2 )

1
2 (k∗

2 −l∗1 )
1
2 (k∗

1 −k2 )
1
2 (k2+l∗1 )

1
2

,

eiθ−
2 = (l1−l2 )(k1−l2 )

1
2 (k1+l∗2 )

1
2 (l1+l∗2 )(l1+l2 )

1
2 (l1−l∗2 )

1
2

(k∗
1 −l∗2 )

1
2 (l∗1 −l∗2 )(k∗

1 +l2 )
1
2 (l∗1 +l2 )(l∗1 +l∗2 )

1
2 (l∗1 −l2 )

1
2

, A2−
1 = [α(1)

2 /α
(1)∗
2 ]1/2, A2−

2 = [α(2)
2 /α

(2)∗
2 ]1/2, b2 = (k2R−l2R )

1
2

(k2R+l2R )
1
2

, d1 = 1
2 log (k∗

2 −l∗2 )
(k2−l2 ) ,

d2 = 1
2 log (k∗

2 +l2 )
(k2+l∗2 ) , d3 = 1

2 log (k∗
2 −l∗2 )(k2+l∗2 )

(k∗
2 +l2 )(k2−l2 ) , and d4 = 1

2 log (k∗
2 −l∗2 )(k∗

2 +l2 )
(k2+l∗2 )(k2−l2 ) . Here, superscript (2−) refers to soliton 2 (S2) before

collision.
(b) After collision: t → +∞
Soliton 1: We have deduced the following asymptotic forms of for soliton 1 in S(l ), l = 1, 2 and L from the two-soliton

solution Eqs. (12a) and 12b) after collision as follows:

S(1) 
 4A1+
1 k1R

√
k1I ei(η1I +θ+

1 ) cosh(ξ1R + φ+
1 )[

a11 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) + 1
a∗

11
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] ,

S(2) 
 4A1+
2 l1R

√
l1I ei(ξ1I +θ+

2 ) cosh(η1R + φ+
2 )[

a12 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) + 1
a∗

12
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] ,

L 
 4

f 2

((
k2

1R − l2
1R

) + l2
1R cosh(2η1R + 2φ+

2 + c3) + k2
1R cosh(2ξ1R + 2φ+

1 + c4)
)
,

f = b1 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) + b−1
1 cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2). (16)

Here, eiθ+
1 = (k1−k2 )(k1−l2 )

1
2 (k∗

1 +k2 )(k∗
1 +l2 )

1
2 (k1+k2 )

1
2 (k∗

1 −k2 )
1
2

(k∗
1 −k∗

2 )(k∗
1 −l∗2 )

1
2 (k1+k∗

2 )(k1+l∗2 )
1
2 (k∗

1 +k∗
2 )

1
2 (k1−k∗

2 )
1
2

, A1+
1 = i[α(1)

1 /α
(1)∗
1 ]1/2, A1+

2 = i[α(2)
1 /α

(2)∗
1 ]1/2 and eiθ+

2 =
(l1−l2 )(k2−l1 )

1
2 (k2+l∗1 )

1
2 (l∗1 +l2 )(l1+l2 )

1
2 (l∗1 −l2 )

1
2

(k∗
2 −l∗1 )

1
2 (l∗1 −l∗2 )(k∗

2 +l1 )
1
2 (l1+l∗2 )(l∗1 +l∗2 )

1
2 (l1−l∗2 )

1
2

. In the latter, superscript (1+) represents soliton S1 after collision and subscripts

(1,2) denote the two SW components S(1) and S(2), respectively.
Soliton 2: The asymptotic expressions for soliton 2 in S(l ), l = 1, 2, and L after collision turn out to be

S(1) 
 4k2RA2+
1

√
k2I eiη2I cosh(ξ2R + ϕ+

1 )[
a21 cosh(η2R + ξ2R + ϕ+

1 + ϕ+
2 + d1) + 1

a∗
21

cosh(η2R − ξ2R + ϕ+
2 − ϕ+

1 + d2)
] ,

S(2) 
 4l2RA2+
2

√
l2I eiξ2I cosh(η2R + ϕ+

2 )[
a22 cosh(η2R + ξ2R + ϕ+

1 + ϕ+
2 + d1) + 1

a∗
22

cosh(η2R − ξ2R + ϕ+
2 − ϕ+

1 + d2)
] ,

L 
 4

f 2

((
k2

2R − l2
2R

) + l2
1R cosh(2η2R + 2ϕ+

1 + d3) + k2
2R cosh(2ξ2R + 2ϕ+

2 + d4)
)
,

f = b2 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + d1) + b−1
2 cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + d2). (17)

Here, A2+
1 = i[α(1)

2 /α
(1)∗
2 ]1/2, A2+

2 = i[α(2)
2 /α

(2)∗
2 ]1/2. The phase constants, φ−

j , φ+
j , ϕ−

j , ϕ+
j , j = 1, 2, appearing above are related

as follows:

φ+
1 = φ−

1 + ψ1, φ+
2 = φ−

2 + ψ2, ϕ+
1 = ϕ−

1 − �1, ϕ+
2 = ϕ−

2 − �2, (18a)

where

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗

1 ||l1 + l∗
2 |2|l1 − l∗

2 | , ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗

2 |2|k1 − k∗
2 ||k1 + l∗

2 | ,
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�1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗

2 ||l1 + l∗
2 |2|l1 − l∗

2 | , �2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗

1 ||k1 + k∗
2 |2|k1 − k∗

2 | ,

φ−
1 = 1

2
ln

(k1 − l1)|α(2)
1 |2

2i(k1 + l∗
1 )(l1 + l∗

1 )2(l1 − l∗
1 )

, φ−
2 = 1

2
ln

(l1 − k1)|α(1)
1 |2

2i(k∗
1 + l1)(k1 + k∗

1 )2(k1 − k∗
1 )

,

ϕ+
1 = 1

2
ln

(k2 − l2)|α(2)
2 |2

2i(k2 + l∗
2 )(l2 + l∗

2 )2(l2 − l∗
2 )

, ϕ+
2 = 1

2
ln

(k2 − l2)|α(1)
2 |2

2i(k∗
2 + l2)(k2 + k∗

2 )2(k2 − k∗
2 )

. (18b)

From the above, one can easily observe that the phase terms only get changed during the collision process. As we have pointed
above, the phases of each of the solitons also get changed during the collision dynamics. The total phase shift of soliton S1 in
both the SW components is calculated as

��1 = φ+
1 + φ+

2 − (φ−
1 + φ−

2 )

= log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗

1 ||l1 + l∗
2 |2|l1 − l∗

2 ||k1 + l∗
2 ||k1 + k∗

2 |2|k1 − k∗
2 | . (19a)

Similarly the total phase shift experienced by soliton S2 in the SW components are given by

��2 = ϕ+
1 + ϕ+

2 − (ϕ−
1 + ϕ−

2 )

= − log
|k2 − l1||l1 − l2|2|l1 + l2||k1 − l2||k1 − k2|2|k1 + k2|
|k2 + l∗

1 ||l1 + l∗
2 |2|l1 − l∗

2 ||k1 + l∗
2 ||k1 + k∗

2 |2|k1 − k∗
2 | = −��1. (19b)

Here, the subscript 1 and 2 in �� denote the soliton number. The total phase shifts obtained for the SW components are the
same for the LW component.

B. Elastic collision: Shape-preserving, shape-altering, and shape-changing collisions

The asymptotic analysis of equal velocities case (k1I = l1I and k2I = l2I ) reveals that the transition intensities,

∣∣T l
j

∣∣2 = |Al+
j |2

|Al−
j |2 = 1, l, j = 1, 2, (20)

where Al±
j ’s are defined in the above asymptotic analysis, always remain unimodular. Consequently, the corresponding collision

among the nondegenerate solitons is always elastic in the equal velocities case. Thus, the expressions of the individual solitons
should be invariant in the asymptotic time limits t → ±∞ leading to the preservation of shapes of the nondegenerate solitons.
As a result, the asymptotic Eq. (14) of soliton 1 before collision should coincide with the form Eq. (16). Further, to hold the
elastic collision nature, the asymptotic form Eq. (15) of soliton 2 must also agree with Eq. (17). However, in view of Eq. (18a),
this is not true. Since the phase terms dramatically get varied during this collision scenario. This phase variation significantly
influences the structure of the nondegenerate solitons. Therefore, to maintain the structure, the phase terms should obey the
following condition:

φ+
j = φ−

j , ϕ+
j = ϕ−

j , j = 1, 2. (21)

The above implies that the additional phase terms, ψ j and � j , j = 1, 2, are equal to zero. That is

ψ1 = ln
|k2 − l1||l1 − l2|2|l1 + l2|
|k2 + l∗

1 ||l1 + l∗
2 |2|l1 − l∗

2 | = 0, ψ2 = ln
|k1 − k2|2|k1 + k2||k1 − l2|
|k1 + k∗

2 |2|k1 − k∗
2 ||k1 + l∗

2 | = 0, (22a)

�1 = ln
|k1 − l2||l1 − l2|2|l1 + l2|
|k1 + l∗

2 ||l1 + l∗
2 |2|l1 − l∗

2 | = 0, �2 = ln
|k2 − l1||k1 − k2|2|k1 + k2|
|k2 + l∗

1 ||k1 + k∗
2 |2|k1 − k∗

2 | = 0. (22b)

Physically this indicates that the nondegenerate fundamental solitons undergo shape-preserving collision (or elastic collision)
without a phase shift. Such a zero phase shift criterion is calculated from Eqs. (22a) and (22b) as

|k2 + l∗
1 |

|k2 − l1| − |k1 + l∗
2 |

|k1 − l2| = 0. (23)

From the above, we infer that the two nondegenerate solitons pass through one another with zero phase shift whenever the
criterion Eq. (23) [or equivalently from the phase condition Eq. (21)], is fulfilled by the wave numbers. This remarkable new
property is not possible in the degenerate counterpart and even in the scalar nonlinear Schrödinger equation. A typical shape-
preserving collision with zero phase shift is demonstrated in Fig. 4. From Fig. 4, one can easily recognize that that the two
symmetric double-hump solitons S1 and S2 are located along the lines η1R = k1R(x − 2k1I t ) 
 0, ξ1R = k1R(x − 2k1I t ) 
 0
and η2R = k2R(x − 2k2I t ) 
 0, ξ2R = k2R(x − 2k2I t ) 
 0, respectively. Around x = 0 they start to interact and pass through one
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FIG. 4. Elastic collision: Shape-preserving collision with zero phase shift among the two symmetric double-hump solitons for the
parameter values k1 = 0.333 − 0.5i, l1 = 0.32 − 0.5i, k2 = 0.333 − 1.2i, l2 = 0.32 − 1.2i, α

(1)
1 = 0.45 + 0.5i, α

(2)
1 = 0.45 + 0.55i, α

(1)
2 =

0.45 + 0.45i, and α
(2)
2 = 0.45 + 0.515i.

another with almost zero phase shift. We have numerically verified this from Eq. (23) by calculating the value as −0.0006. It
ensures that the structures (as well as phases) of the nondegenerate solitons remain constant throughout this collision process. A
similar shape-preserving collision scenario between the symmetric and asymmetric double-hump solitons is illustrated in Fig. 5
for the parameter values k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i, k2 = 0.25 − 1.2i, l2 = 0.315 − 1.2i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 =

0.45 + 0.5i, α
(1)
2 = 1 + i, and α

(2)
2 = 0.45 + 0.5i.

In general, the phase constants φ+
j , φ−

j , ϕ+
j , and ϕ−

j , j = 1, 2, do not agree with the condition Eq. (21) in the equal velocities
case. Under this circumstance, the nondegenerate solitons undergo either shape-altering collision or shape-changing collision
without infringing the unimodular transition intensities condition. Therefore, depending on the nature of the changes in the
phase terms, the nondegenerate solitons experience slight alteration or drastic reshaping during the collision process. However,
these collisions can be grouped into an elastic collision by restoring the shapes of the nondegenerate solitons, as explained
below. A typical shape-altering collision is depicted in Figs. 6(a1)–6(a3). To draw the Figs. 6(a1)–6(a3), we fix the soliton
parameters as k1 = 0.25 − 0.5i, l1 = 0.315 − 0.5i, k2 = 0.31 − 1.5i, l2 = 0.28 − 1.5i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.5i,

α
(1)
2 = 0.45 + 0.5i, and α

(2)
2 = 0.55 + 0.55i. Then these figures show that the symmetric nature of double-hump solitons in all

the three components get altered slightly into asymmetric forms after collision. Therefore, to realize the shape-altering (and also

FIG. 5. Elastic collision: Shape-preserving collision with zero phase shift between the symmetric and asymmetric double-hump solitons.
The parameter values are given in the main text.
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FIG. 6. The column Figs. (a1)–(a3) represent the shape-altering collision of two symmetric double-hump solitons S1 and S2. The column
Figs. (b1)–(b3) denote their corresponding shape-preserving nature which is brought out after taking appropriate time shifts. The dotted black
curves in Eqs. (b1)–(b3) refer to the solitons before collision at t = −20, and the solitons after incorporating the appropriate finite time shifts
are represented by the solid red curves. To bring back the shape-preserving nature of solitons after collision we have taken the following time
shifts based on Eq. (22): For solitons S1 and S2 the time shifts are performed respectively as (short wave S(1): t ′ = 18.6525, short wave S(2):
t ′ = 18.5791) and (S(1): t ′ = 20.4559, S(2): t ′ = 20.4266). As far as the LW component is concerned one has to combinedly take the shifts for
soliton S+

1 (t ′ = 18.6525, t ′ = 18.5791) and soliton S+
2 (t ′ = 20.4559, t ′ = 20.4266) in the LW component expressions Eqs. (16) and (17),

respectively.

shape-changing) collision belong to elastic collision we take a pair of time shifts so that the asymptotic expressions of both the
nondegenerate solitons before collision coincides with the ones after collision. By doing so, the shape alteration can be undone,
without loss of generality, by making appropriate shifts in time,(

t ′ = t − ψ1

2l1Rk1I
, t ′ = t − ψ2

2k1Rk1I

)
and

(
t ′ = t + �1

2l2Rk2I
, t ′ = t + �2

2k2Rk2I

)
, (24)

in the wave variables ξ1R and η1R for soliton 1 and ξ2R and η2R for soliton 2 in Eqs. (16) and (17), respectively. After effecting these
time shifts in the respective asymptotic expressions, we find that the asymptotic expressions of the two nondegenerate solitons
becomes identical except for unit phase factors. As a consequence, the shapes of the nondegenerate solitons are conserved
asymptotically with zero phase shift thereby confirming the elastic nature of the collision. This shape-preserving nature is
graphically illustrated in Figs. 6(b1)–6(b3).

Moreover, for k1I = l1I and k2I = l2I , the nondegenerate solitons also exhibit a novel shape-changing interaction again without
violating the unity condition of the transition intensities. Very interestingly, as it is evident from Eq. (18a), the shape-changing
occurs not only in the two short-wave components but it is also observed in the long-wave component as well. We display such
nontrivial shape-changing collision in Figs. 7(a1)–7(a3) as an example, where the symmetric structure of the flattop soliton S2 in
the S(1) component and symmetric double-hump solitons in both the S(2) and L components are altered drastically as indicated by
the red curves at t = 25. To display this Figs. 9(a1)–9(a3), the parameter values are fixed as k1 = 0.315 − 0.5i, l1 = 0.5 − 0.5i,
k2 = 0.45 − 1.2i, l2 = 0.315 − 1.2i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.45i, α

(1)
2 = 0.45 + 0.4i, and α

(2)
2 = 0.65 + 0.65i. This
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FIG. 7. The column figures corresponding to panels (a1)–(a3) demonstrate shape-changing collisions among the nondegenerate solitons.
Panels (b1)–(b3) illustrate their corresponding shape-preserving nature which is brought out after effecting the time shifts (S(1): t ′ = 22.5772,
S(2): t ′ = 21.962) and (S(1): t ′ = 26.3074, S(2): t ′ = 26.0926) in Eqs. (16) and (17) of both the solitons S1 and S2, respectively. For solitons
in the LW component, one has to take the time shifts (t ′ = 22.5772, t ′ = 21.962) and (t ′ = 26.3074, t ′ = 26.0926) combinedly in Eqs. (16)
and (17), respectively. In panels (b1)–(b3) black dotted curves denote the solitons before collision at t = −25 and the red solid line curves
represent the solitons after collision with time shifts t ′.

FIG. 8. Shape-changing collision of nondegenerate solitons in the partially equal velocity case (k1I = l1I and k2I �= l2I ): The values are
k1 = 0.315 − 0.5i, l1 = 0.545 − 0.5i, k2 = 0.315 − i, l2 = 0.545 − 1.5i, α(1)

1 = 0.5 + 0.5i, α(2)
1 = 0.45 + 0.45i, α(1)

2 = 0.5 + 0.5i, and α
(2)
2 =

0.45 + 0.45i.
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FIG. 9. Elastic collision among the two nondegenerate soliton in the unequal velocities case, k1I �= l1I and k2I �= l2I . The parameter values
are k1 = 0.315 − 0.5i, l1 = 0.545 − i, k2 = 0.315 − 1.8i, l2 = 0.545 − 2.5i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.45 + 0.45i, α

(1)
2 = 0.5 + 0.5i, and

α
(2)
2 = 0.45 + 0.45i.

type of shape-changing collision has not been observed earlier in the degenerate case [22]. However, as we have performed the
analysis in the above case of shape-altering collision, the present shape-changing collision also belongs to the case of elastic
collision. Thus the shape-preserving nature can be retrieved by shifting the time as per Eq. (24). This elastic collision scenario
after taking the time shifts is demonstrated in Figs. 7(b1)–7(b3). Therefore, what we emphasize here is that the collision scenario
among the nondegenerate solitons is always elastic regardless of the zero phase shift criterion Eq. (23). In all the three types of
collisions the transition intensities are always unity, as given in Eq. (20), thereby ensuring the elastic nature of the collisions. The
Hamiltonian nature of the system Eq. (1) also demands that the total energies of each of the nondegenerate solitons are conserved
during the entire shape-altering and shape-changing collisions. Further, we also demonstrate the shape-changing collision in the
partial velocity case k1I = l1I and k2I �= l2I in Fig. 8 for the parameter values as given in the figure caption. We wish to note that
the energy-sharing collision have also been observed in the three-component Manakov system [58,59].

In addition to the above, the elastic collision does occur in the case of (2,2,4)-soliton solution (unequal velocities: k1I �= l1I

and k2I �= l2I ) for the general choice of wave parameters. We illustrate such a collision process in Fig. 9 for the parameters given
in the figure caption. From Fig. 9, it is clear that each interaction picture of the two single-humped solitons in both the SW
components S(1) and S(2) reappears through the LW component. The interesting fact of this collision scenario is the structures of
all the solitons do not get altered throughout the collision process thereby confirming the elastic collision.

IV. COLLISION BETWEEN NONDEGENERATE AND DEGENERATE SOLITONS: TWO TYPES OF SHAPE-CHANGING
COLLISIONS

Here, we discuss the collision dynamics of nondegenerate two-soliton solution Eqs. (12a) and (12b) under the partially
nondegenerate limit k1 = l1 and k2 �= l2. The resultant solution of the LSRI system Eq. (1) describes the coexistence of
nondegenerate and degenerate solitons. It is of interest to study the dynamics of nondegenerate soliton in the presence of
degenerate soliton and vice versa. To explore the underlying collision dynamics we perform an asymptotic analysis for the
two-soliton solution Eqs. (12a) and (12b) with the wave-number restriction k1 = l1 and k2 �= l2. By doing so, we find that
the nondegenerate soliton undergoes two types of shape-changing collisions. Here, we define such shape-changing collisions.
(i) Type-I shape-changing collision is observed for the velocity condition k2I = l2I , where the initial profile structure of the
nondegenerate soliton, in all the components, is either drastically changing into an asymmetric form or the initial profile structure
is completely reshaped into another profile. (ii) Type-II shape-changing collision is observed for the velocity choice k2I �= l2I ,
where the two single-hump structured nondegenerate solitons are merged into a single-hump soliton in both the SW components
while the shape of the nondegenerate soliton is preserved in the LW component. In both the collision scenarios, the degenerate
soliton exhibits the usual energy exchange collision property as described in Ref. [22].

A. Asymptotic analysis

To explore the degenerate bright soliton collision induced shape-changing behaviours of the nondegenerate soliton, we intend
to analyze the partial nondegenerate two-soliton solution Eqs. (12a) and (12b) with the elements of the Gram determinants
given in Eq. (13) in the asymptotic limits t → ±∞. In these limits, the resultant action provides the forms corresponding to
degenerate and nondegenerate solitons. As we have pointed out in the earlier Sec. III A, to obtain the asymptotic forms for the
present case one has to incorporate the asymptotic nature of the wave variables η jR = k jR(t − 2kI jz) and ξ2R = l2R(t − 2l2I z),
j = 1, 2, in the partially nondegenerate soliton solution. Here we note that the wave variable η1R represents the degenerate
soliton and η2R, ξ2R correspond to the nondegenerate soliton. To find the asymptotic behavior of the above wave variables,
we consider as a typical example the parametric choices, k jR, l2R > 0, k jI , l2I < 0, j = 1, 2, k1I > k2I , l2I . For this choice,
the wave variables behave asymptotically as follows: (i) degenerate bright soliton S1: η1R 
 0, η2R, ξ2R → ±∞ as t → ±∞,
(ii) nondegenerate fundamental soliton S2: η2R, ξ2R 
 0, η1R → ±∞ as t → ∓∞. By incorporating these asymptotic behaviours
of the wave variables in the solution Eqs. (12a)–(12b) with Eq. (13), we deduce the following asymptotic expressions for the
nondegenerate and degenerate solitons.
(a) Before collision: t → −∞
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Soliton 1: The asymptotic form of the degenerate soliton deduced from the partially nondegenerate soliton solution is

S(l ) 

(

A1−
1

A2−
1

)
2k1R

√
k1I e

i(η1I + π
2 ) sech(η1R + ψ−), L 
 2k2

1R sech2(η1R + ψ−), l = 1, 2, (25)

where Al−
1 = α

(l )
1 /(|α(1)

1 |2 + |α(2)
1 |2)1/2, l = 1, 2, ψ− = R

2 = 1
2 ln (|α(1)

1 |2+|α(2)
1 |2 )

2i(k1+k∗
1 )2(k1−k∗

1 ) . Here, in Al−
1 the subscript 1 denotes degenerate

soliton S1, and superscript l− refers to the SW components before collision.
Soliton 2: The asymptotic forms of the nondegenerate soliton S2, which is present in both the short-wave components as well as
in the long-wave component, before collision are obtained as

S(1) 
 1

D1

(
eiη2I e

μ1+μ3
2 cosh

(
ξ2R + μ3 − μ1

2

)
+ eiξ2I e

μ2+μ4
2 cosh

(
η2R + μ4 − μ2

2

))
, (26a)

S(2) 
 1

D1

(
eiη2I e

ν1+ν3
2 cosh

(
ξ2R + ν3 − ν1

2

)
+ eiξ2I e

ν2+ν4
2 cosh

(
η2R + ν4 − ν2

2

))
, (26b)

L 
 1

D2
1

(
e

μ5+μ6+μ7+μ8
2

[
(k2 + k∗

2 )2 cosh

(
ξ2 + ξ ∗

2 + (μ7 + μ8) − (μ5 + μ6)

2

)

+ (l2 + l∗
2 )2 cosh

(
η2 + η∗

2 + (μ6 + μ8) − (μ5 + μ7)

2

)]
+ 1

2
eμ′

8

+ e
μ5+μ8+μ9+μ10

2

[
(k∗

2 + l2)2 cosh

(
η1 + ξ ∗

1 + (μ8 + μ10) − (μ5 + μ9)

2

)

+ (k2 + l∗
2 )2 cosh

(
ξ2 + η∗

2 + (μ8 + μ9) − (μ5 + μ10)

2

)]

+ e
μ6+μ7+μ9+μ10

2

[
(k2 − l2)2 cosh

(
η∗

2 − ξ ∗
2 + (μ6 + μ9) − (μ7 + μ10)

2

)

+ (k∗
2 − l∗

2 )2 cosh

(
η2 − ξ2 + (μ6 + μ10) − (μ9 + μ7)

2

)])
, (26c)

D1 = e
μ5+μ8

2 cosh

(
η2R + ξ2R + μ8 − μ5

2

)
+ e

μ9+μ10
2 cosh

(
i(η2I − ξ2I ) + μ10 − μ9

2

)

+ e
μ6+μ7

2 cosh

(
η2R − ξ2R + μ6 − μ7

2

)
. (26d)

Here, A1−
2 = [α(1)

2 /α
(1)∗
2 ]1/2, A2−

2 = [α(2)
2 /α

(2)∗
2 ]1/2. In the latter, the superscript l−, l = 1, 2, denotes the SW components S(1)

and S(2) before collision and the subscript 2 refers the nondegenerate soliton S2.
(b) After collision: t → +∞
Soliton 1: In this limit, the asymptotic forms for the degenerate soliton S1 after collision are deduced as

S(1,2) 

(

A1+
1

A1+
2

)
2k1R

√
k1I e

i(η1I +θ+
l + π

2 )k1R sech(η1R + ψ+), Ł 
 2k2
1R sech2(η1R + ψ+), (27a)

where A1+
1 = α

(1)
1 /(|α(1)

1 |2 + χ |α(2)
1 |2)1/2, A2+

1 = α
(1)
1 /(|α(1)

1 |2χ−1 + |α(2)
1 |2)1/2,

χ = (|k1 − l2|2|k1 + k∗
2 |2|k1 + l2|2|k1 − k∗

2 |2)/(|k1 − k2|2|k1 + l∗
2 |2|k1 + k2|2|k1 − l∗

2 |2), ψ+ = 1
2 ln

|k1−k2|2|k1−l2|2�̂3

2i(k1−k∗
1 )(k1+k1∗)2|k1−k∗

2 |2|k1−l∗2 |2|k1+l∗2 |2 eiθ+
1 = (k1−k2 )(k∗

1 +k2 )(k1−l2 )
1
2 (k∗

1 +l2 )
1
2 (k1+k2 )

1
2 (k∗

1 +k2 )

(k∗
1 −k∗

2 )(k1+k∗
2 )(k∗

1 −l∗2 )
1
2 (k1+l∗2 )

1
2 (k∗

1 +k∗
2 )

1
2 (k1+k∗

2 )
, and eiθ+

2 =
(k1−k2 )

1
2 (k∗

1 +k2 )
1
2 (k1−l2 )(k∗

1 +l2 )(k1+l2 )
1
2 (k∗

1 −l2 )
1
2

(k∗
1 −k∗

2 )
1
2 (k1+k∗

2 )
1
2 (k∗

1 −l∗2 )(k1+l∗2 )(k∗
1 +l∗2 )

1
2 (k1−l∗2 )

1
2

. Here, l+ in Al+
1 , l = 1, 2, refers to SW components after collision and the subscript 1

denotes the degenerate soliton S1.
Soliton 2: Similarly the asymptotic expression for the nondegenerate soliton S2 after collision deduced from the soliton solution
Eqs. (12a) and (12b) with the elements given in Eq. (13) is

S(1) 
 4k2R
√

k2I A
2+
1 ei(η2I + π

2 ) cosh(ξ2R + λ1
2 )[

a21 cosh(η2R + ξ2R + λ2
2 ) + 1

a∗
21

cosh(η2R − ξ2R + λ3
2 )

] , (28a)

S(2) 
 4l2R
√

l2I A
2+
2 ei(ξ2I + π

2 ) cosh(η2R + λ4
2 )[

a22 cosh(η2R + ξ2R + λ2
2 ) + 1

a∗
22

cosh(η2R − ξ2R + λ3
2 )

] , (28b)
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FIG. 10. Type-I shape-changing collision between degenerate soliton and nondegenerate soliton: To draw this figure the parameter
values are fixed as follows: k1 = l1 = 0.8 − 0.5i, k2 = 0.315 − 1.2i, l2 = 0.5 − 1.2i, α

(1)
1 = 0.5, α

(2)
1 = 0.8, α

(1)
2 = 0.5 + 0.5i, and α

(2)
2 =

0.45 + 0.45i.

L 
 4

D2
2

(
k2

2R cosh

(
2ξ2R + λ4 + λ3 − λ2

2

)
+ 1

2
eλ′

4−( λ4+λ2+λ3
2 ) + l2

2R cosh

(
2η2R + λ2 + λ4 − λ3

2

))
,

D2 = e
λ4
2 cosh

(
η2R + ξ2R + λ4

2

)
+ e

λ2+λ3
2 cosh

(
η2R − ξ2R + λ2 − λ3

2

)
,

eλ′
4 = 4(k2R + l2R)2eλ4 + 4(k2R − l2R)2eλ2+λ3 , (28c)

where λ1 = ln (k2−l2 )|α(2)
2 |2

2i(l2−l∗2 )(l2+l∗2 )2(k2+l∗2 ) , λ2 =
ln |k2−l2|2|α(1)

2 |2|α(2)
2 |2

(2i)2|k2+l∗2 |2(k2−k∗
2 )(l2−l∗2 )(k2+k∗

2 )2(l2+l∗2 )2 , A1+
2 = [α(1)

2 /α
(1)∗
2 ]1/2,

λ3 = ln |α(1)
2 |(l2−l∗2 )(l2+l∗2 )2

|α(2)
2 |(k2−k∗

2 )(k2+k∗
2 )2 , λ4 = ln (l2−k2 )|α(1)

2 |2
2i(k2−k∗

2 )(k2+k∗
2 )2(k∗

2 +l2 ) ,

A2+
2 = i[α(2)

2 /α
(2)∗
2 ]1/2. The explicit forms of all the other

constants are given in Appendix B.

B. Degenerate soliton collision induced shape-changing
property of nondegenerate soliton

As we have defined earlier, the coexisting solitons (both
degenerate and nondegenerate) undergo Type-I and Type-II
shape-changing collisions corresponding to two distinct
velocity conditions k2I = l2I and k2I �= l2I , respectively. In
both these collision scenarios, the degenerate bright soliton
strongly affects the structure of nondegenerate soliton as it
is ensured from the above asymptotic analysis. As a result,
the initial structure of the nondegenerate soliton S2 is varied
to a different of geometrical structure. A typical Type-I
shape-changing collision is depicted in Fig. 10 for k2I = l2I .
In Fig. 10, it is true that the degenerate soliton S1 undergoes
energy-sharing collision among the two SW components
only while it interacts with the nondegenerate soliton S2

as it has been shown in the pure degenerate case [22]. In
the long-wave component, we observe elastic collision only
when the degenerate soliton even collides with another
class of asymmetric double-humped nondegenerate soliton.
During such energy-sharing collision of the degenerate
soliton, the polarization constants of SW components

Al−
1 = α

(l )
1 /(|α(1)

1 |2 + |α(2)
1 |2)1/2, l = 1, 2, change into

A1+
1 = α

(1)
1 /(|α(1)

1 |2 + χ |α(2)
1 |2)1/2, A2+

1 = α
(2)
1 /(|α(1)

1 |2χ−1 +
|α(2)

1 |2)1/2, where χ = (|k1 − l2|2|k1 + k∗
2 |2|k1 + l2|2|k1 −

k∗
2 |2)/(|k1 − k2|2|k1 + l∗

2 |2|k1 + k2|2|k1 − l∗
2 |2). Meanwhile,

the amplitude of the soliton S1 in the long-wave component
remains unchanged except for a finite phase shift. In contrast
to the degenerate soliton S1, the profile structure of the
nondegenerate fundamental soliton S2 gets dramatically
altered during the collision processes as it is evident from
Fig. 10. From Fig. 10, one can observe that the initial
set of asymmetric double-hump profiles in the short-wave
component S(1) and in the long-wave component L get
transformed into another set of asymmetric double-hump
profiles with a finite phase shift. However, in the second
short-wave component, the soliton S2 switches its asymmetric
flattop profile into a single-hump profile with an enhancement
of energy along with a phase shift. From the asymptotic
forms, we identify that the relative separation distance or the
phase terms are not maintained during this special kind of
interaction.

Next, we display the Type-II shape-changing collision in
Fig. 11 for k2I �= l2I , where the degenerate soliton S1 under-
goes usual energy-sharing collision as expected. However, the
nondegenerate soliton S2 exhibits unusual collision property.
From Fig. 11, one can immediately notice that two single-
hump solitons appear in the two short-wave components S(l ),
l = 1, 2, under the velocity condition k2I �= l2I apart from
the appearance two similar solitons in the long-wave com-
ponent. We do not come across the appearance of such two
single-hump solitons in the short-wave components in the case
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FIG. 11. Type-II shape-changing collision between degenerate soliton and nondegenerate soliton: To illustrate this collision we fix the
complex parameter values as follows: k1 = l1 = 1 − 0.5i, k2 = 0.35 − 1.8i, l2 = 0.5 − i, α

(1)
1 = 1, α

(2)
1 = 0.7, α

(1)
2 = 0.8, and α

(2)
2 = 0.6.

of one soliton, where a single-hump profile only emerged in
both the S(l ) components at k1I �= l1I (one can confirm this
from Fig. 3). We also notice that the small amplitude soliton
structure, in both the SW components, disappears after collid-
ing with the degenerate soliton S1 whereas the energy of the
larger amplitude soliton is enhanced further. In other words,
the two single-humped structures, in both the SW compo-
nents, are merged during the collision. After the collision, they
get combined into a single-hump soliton. However, very in-
terestingly the two single-humped nondegenerate structure in
the LW component propagates without any distortion thereby
confirming the elastic collision nature. To characterize both
Type-I and Type-II shape-changing collisions, one can cal-
culate the corresponding transition amplitudes. For both the
collision scenarios, the explicit forms of the transition ampli-
tudes turn out to be

T 1
1 = (|α(1)

1 |2 + |α(2)
1 |2)1/2

(|α(1)
1 |2 + χ |α(2)

1 |2)1/2
,

T 2
1 = (|α(1)

1 |2 + |α(2)
1 |2)1/2

(|α(1)
1 |2χ−1 + |α(2)

1 |2)1/2
, (29)

where χ = (|k1 − l2|2|k1 + k∗
2 |2|k1 + l2|2|k1 − k∗

2 |2)/(|k1 −
k2|2|k1 + l∗

2 |2|k1 + k2|2|k1 − l∗
2 |2). In general, the value of χ

is not equal to one. Consequently the transition amplitudes
T 1

1 and T 2
1 are not unimodular. In this situation, one always

comes across shape-changing collision. However, the total
energies of both the degenerate and nondegenerate solitons
are conserved during the entire collision process. The
standard elastic collision can occur when χ = 1, where
the quantities T 1

1 and T 2
1 are equal to unity. We point out

that one can also calculate explicitly the position shift that
occurred during the collision between the degenerate and
nondegenerate solitons. We wish to emphasize here that to
the best of our knowledge the collision scenarios discussed
above have not been reported elsewhere in the literature for
the (1+1)-dimensional two-component LSRI system Eq. (1).

V. DEGENERATE-SOLITON SOLUTIONS AND THEIR
COLLISION DYNAMICS

Here, we provide the minimal details about the already
known class of degenerate soliton solutions and the under-
lying collision property, reported in Ref. [21] for Eq. (1),
to clearly distinguish the corresponding dynamics from the
dynamics of nondegenerate soliton solution Eqs. (6a)–(6c)
presented in this paper. The energy exchanging collision ex-
hibiting degenerate fundamental bright soliton solution can
be extracted from the nondegenerate one-soliton solution

Eqs. (6a)–(6c) by imposing the restriction k1 = l1 in it. As
a consequence of this constraint, the seed solutions Eq. (3)
get restricted as g(1)

1 = α
(1)
1 eη1 , g(2)

1 = α
(2)
1 eη1 , and η1 = k1x +

ik2
1t . This results in the degenerate one-soliton solution of the

form

S(l ) = 2Alk1R

√
k1I e

i(η1I + π
2 ) sech

(
η1R + R

2

)
,

L = 2k2
1R sech2

(
η1R + R

2

)
. (30)

Here, Al = α
(l )
1√

|α(1)
1 |2+|α(2)

1 |2
, l = 1, 2, eR = − (|α(1)

1 |2+|α(2)
1 |2 )

16k2
1Rk1I

,

η1R = k1R(x − 2k1I t ), and η1I = k1I x + (k2
1R − k2

1I )t . In
contrast to the nondegenerate soliton, the above degenerate
soliton always propagates in all the components with identical
velocity 2k1I . This is because of the presence of a single
complex wave number k1 in the solution Eq. (30). It leads
to single-hump profiles only in all the three components as
we have shown in Fig. 12. The amplitudes of the degenerate
soliton in the SW components and the long-wave component
are 2Alk1R

√
k1I and 2k2

1R, respectively. The central position of
the soliton (for all the components) is R

2 .
The degenerate two-soliton solution of the system Eq. (1)

was reported in Ref. [22] by considering the seed solutions

g(l )
1 = α

(l )
1 eη1 + α

(l )
2 eη2 , η j = k jx + ik2

j t, l, j = 1, 2.

(31)

However, it can be captured from the nondegenerate two-
soliton solution Eqs. (12a) and (12b) by imposing the
restrictions k1 = l1 and k2 = l2. The resultant Gram determi-
nant forms of the degenerate two-soliton solution contains the

FIG. 12. Single-humped degenerate fundamental soliton: k1 =
0.5 − 0.5i, α

(1)
1 = 0.5, and α

(2)
1 = 1.
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FIG. 13. Energy-sharing collision of two degenerate solitons: k1 = 1.5 − 0.5i, k2 = 2 − 2i, α
(1)
1 = 2.5, α

(2)
1 = 1.2, α

(1)
2 = 0.9,

and α
(2)
2 = 0.6.

following elements in Eqs. (12a) and (12b),

Amm′ = eηm+η∗
m′

(km + k∗
m′ )

= Amn = Anm = Ann′ ,

φ1 = φ2 = (eη1 eη2 )T
,

κmm′ = ψ†
mσψm′

2i
(
k2

m − k∗2
m′

)
= κmn = κnm = κnn′ , m, m′, n, n′ = 1, 2. (32)

The other elements are the same as the ones defined in
Eqs. (12a) and (12b). In general, the degenerate N-soliton
solution is a special case of our nondegenerate vector
N-soliton solution under the restrictions, ki = li, i = 1, 2,

..., N . We remark here that obviously any one-soliton solution
will be a special case of the two-soliton solution, under the
appropriate specialization of the parameters. The nondegen-
erate fundamental soliton solution Eqs. (6a)-(6c) turns out
be a special case of the nondegenerate two-soliton solution
Eqs. (12a) and (12b) with α

(1)
2 = α

(2)
2 = 0. Similarly, the de-

generate fundamental soliton solution Eq. (30) is a special
case of the degenerate two-soliton case under the restriction
α

(1)
2 = α

(2)
2 = 0. In passing, we note that very special paramet-

ric choice turns out to be the present fundamental one-soliton
solution [one-soliton solution presented in Eqs. (6a)–(6c) can
be deduced from the degenerate two-soliton solution Eq. (32)
too under the restriction α

(1)
2 = α

(2)
1 = 0 after renaming the

resultant constants α
(2)
2 as α

(2)
1 and k2 as l1]. However, as it is

evident from our discussion, the properties of the nondegen-
erate fundamental soliton solution Eqs. (6a)–(6c) are entirely
distinct from the interacting degenerate two-soliton solution
reported in Ref. [22].

As we have pointed in the previous Sec. IV B and by
the authors of Ref. [22], the degenerate solitons of the LSRI
system Eq. (1) undergo collision with energy redistribution
among the short-wave components. Such a typical collision
scenario is displayed in Fig. 13 as an example. From this
figure, one can easily observe that the energy of the soliton

S2 is enhanced in the S(1) component and it gets suppressed
in the S(2) component. To preserve the conservation of energy
in both the SW components, the energy of the soliton S1

is suppressed in the S(1) component and it gets enhanced in
the S(2) component. However, the degenerate solitons in the
long-wave component always undergo elastic collision. The
total energies of each of the degenerate solitons are conserved
among the components. The elastic collision is brought out in

all the components by fixing the parameters as α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

[22].

VI. CONCLUSION

We have derived the nondegenerate one-, two-, and three-
soliton solutions through the Hirota bilinear method for the
two-component long-wave–short-wave resonance interaction
system. The obtained soliton solutions are represented by
Gram determinant forms. We have shown that the appearance
of an additional wave number in the fundamental soliton
solution brings out novel geometrical structures under the
condition k1I = l1I . In addition, for k1I �= l1I , the soliton num-
ber is increased by one in the long-wave component. The
reason for the creation of additional soliton in the long-wave
component is that the solitons in the two short-wave com-
ponents nonlinearly interact among themselves through the
LW component. Further, we have observed that the nonde-
generate solitons undergo three types of collisions, namely,
shape-preserving with a zero phase shift, shape-altering and
shape-changing collisions with finite phase shifts. The mech-
anism of the nonpreserving nature of phase terms or relative
separation distances induces these novel shape-altering and
shape-changing collision scenarios. However, they can be
viewed as elastic collision only by taking time shifts in
the asymptotic forms of nondegenerate solitons. Surprisingly,
such type of collision property has not been observed in
the degenerate counterpart though they belong to elastic
collision only. Besides this, the emergence of a coexisting
nonlinear phenomenon in the two-component LSRI system
is also explored. We found that the existence of a partially
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nondegenerate soliton solution, which is a special case of the
completely nondegenerate two-soliton solution, is responsible
for the appearance of such a nonlinear phenomenon, where
the nondegenerate soliton simultaneously exists with the de-
generate soliton. We have noticed that the explicit appearance
of degenerate soliton induces two types of interesting shape-
changing and energy-sharing properties of nondegenerate
soliton. Finally, we recovered the energy exchanging soli-
tons from the nondegenerate solitons under degenerate limits.
The present study on nondegenerate solitons of long-wave–
short-wave resonance interaction system will be useful in

hydrodynamics, plasma physics, nonlinear optics and Bose-
Einstein condensates.
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APPENDIX A: THREE-SOLITON SOLUTION

The three-soliton solution of the system Eq. (1) is given as follows:

g(1) =

∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ C1 0′ 0

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣
Amm′ Amn I 0
Anm Ann′ 0 I
−I 0 κmm′ κmn

0 −I κnm κnn′

∣∣∣∣∣∣∣
, (A1)

g(2) =

∣∣∣∣∣∣∣∣∣∣

Amm′ Amn I 0 φ1

Anm Ann′ 0 I φ2

−I 0 κmm′ κmn 0′T

0 −I κnm κnn′ 0′T

0′ 0′ 0′ C2 0

∣∣∣∣∣∣∣∣∣∣
. (A2)

The various elements of the above Gram determinants are defined as

Amm′ = eηm+η∗
m′

(km + k∗
m′ )

, Amn = eηm+ξ∗
n

(km + l∗
n )

, Ann′ = eξn+ξ∗
n′

(ln + l∗
n′ )

, Anm = eη∗
n+ξm

(k∗
n + lm)

,

κmm′ = ψ†
mσψm′

2i
(
k2

m − k∗2
m′

) , κmn = ψ†
mσψ ′

n

2i
(
l2
m − k∗2

n

) , κnm = ψ ′†
n σψm

2i
(
k2

n − l∗2
m

) , κnn′ = ψ ′†
n σψ ′

n′

2i
(
l2
n − l∗2

n′
) ,

m, m′, n, n′ = 1, 2, 3.

The other elements are defined as follows:
φ1 = (eη1 eη2 eη3 )T , φ2 = (eξ1 eξ2 eξ3 )

T
, ψ j = (α(1)

j 0)
T

, ψ ′
j = (0 α

(2)
j )

T
, 0′ = (0 0 0), I = σ =

(
1 0 0
0 1 0
0 0 1

), 0 = (
0 0 0
0 0 0
0 0 0

) and CN = −(α(N )
1 α

(N )
2 α

(N )
3 ), j = 1, 2, 3, N = 1, 2. We remark that the degenerate three-soliton

solution can be obtained from the above nondegenerate three-soliton solution when k j = l j , j = 1, 2, 3. In general,
mathematically to obtain the degenerate N-soliton solution from the nondegenerate N-soliton solution one needs to impose N
number of restrictions on the wave numbers k j = l j , j = 1, 2, ..., N .

APPENDIX B: CONSTANTS THAT ARISE IN THE ASYMPTOTIC ANALYSIS OF COLLISION DYNAMICS OF
DEGENERATE AND NONDEGENERATE SOLITONS

eμ1 = i(k1 − k2)α(1)
2 �̂1

2(k1 − k∗
1 )(k1 + k∗

1 )2(k∗
1 − k2)(k∗

1 + k2)2
, eμ2 = i(k1 − l2)α(1)

1 α
(2)∗
1 α

(2)
2

2(k1 + k∗
1 )(k∗

1 − l2)(k∗
1 + l2)2

,

eμ3 = i(k1 − k2)(k2 − l2)|k1 − l2|2α(1)
2 |α(2)

2 |2�̂2eR4

2(k1 − k∗
1 )(k1 + k∗

1 )2(k∗
1 − k2)(k∗

1 + k2)2|k1 − l∗
2 |2|k1 + l∗

2 |4(k2 + l∗
2 )

,

eμ4 = − i(k1 − k2)2(k1 + k2)(k∗
1 − k∗

2 )(k1 − l2)(k2 − l2)α(1)
1 α

(2)∗
1 α

(2)
2 eR5

2(k1 + k∗
1 )(k∗

1 + k2)(k1 − k∗
2 )(k∗

1 − l2)(k∗
2 + l2)(k∗

1 + l2)2
,

eμ5 = �̂4

2i(k1 − k∗
1 )(k1 + k∗

1 )2
, eμ6 = i|k1 − k2|2�̂5eR5

2(k1 − k∗
1 )(k1 + k∗

1 )2|k1 − k∗
2 |2|k1 + k∗

2 |4 ,
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eμ7 = − i|k1 − l2|2�̂6eR4

2(k1 − k∗
1 )(k1 + k∗

1 )2|k1 − l∗
2 |2|k1 + l∗

2 |4 , �̂4 = (|α(1)
2 |2 + |α(2)

2 |2),

eμ8 = − i|k1 − k2|2|k1 − l2|2|k2 − l2|2�̂3eR4+R5

2(k1 − k∗
1 )(k1 + k∗

1 )2|k1 − k∗
2 |2|k1 + k∗

2 |4|k1 − l∗
2 |2|k1 + l∗

2 |4|k2 + l∗
2 |2 ,

eμ9 = − (k∗
1 − k∗

2 )(k1 − l2)α(1)
1 α

(2)∗
1 α

(1)∗
2 α

(2)
2

4(k1 + k∗
1 )(k1 − k∗

2 )(k1 + k∗
2 )2(k∗

1 − l2)(k∗
1 + l2)2(k∗

2 + l2)
,

eμ10 = − (k1 − k2)(k∗
1 − l∗

2 )α(1)∗
1 α

(2)
1 α

(1)
2 α

(2)∗
2

4(k1 + k∗
1 )(k∗

1 − k2)(k∗
1 + k2)2(k1 − l∗

2 )(k1 + l∗
2 )2(k2 + l∗

2 )
,

eν1 = i(k1 − k2)α(1)∗
1 α

(2)
1 α

(1)
2

2(k1 + k∗
1 )(k∗

1 − k2)(k∗
1 + k2)2

, eν2 = i(k1 − l2)α(2)
2 �̂7

2(k1 − k∗
1 )(k1 + k∗

1 )2(k∗
1 − l2)(k∗

1 + l2)2
,

eν3 = i(k1 − k2)(k1 − l2)2(k2 − l2)(k1 + l2)(k∗
1 − l∗

2 )α(1)∗
1 α

(2)
1 α

(1)
2 eR4

2(k1 + k∗
1 )(k∗

1 − k2)(k∗
1 + k2)2(k∗

1 + l2)(k1 − l∗
2 )(k1 + l∗

2 )2(k2 + l∗
2 )

,

eν4 = − i|k1 − k2|2(k1 − l2)(k2 − l2)α(2)
2 �̂8eR5

2(k1 − k∗
1 )(k1 + k∗

1 )2|k1 − k∗
2 |2|k1 + k∗

2 |4(k∗
1 − l2)(k∗

1 + l2)2(k∗
2 + l2)

,

�̂1 = (
�12|α(1)

1 |2 + �̂∗
12|α(2)

1 |2), �̂2 = (
�12|γ̄12|2|α(1)

1 |2 + �̂∗
12|γ12|2|α(2)

1 |2),
�̂3 = (|�12|2|γ̄12|2|α(1)

1 |2 + |�̂∗
12|2|γ12|2|α(2)

1 |2), �̂5 = (|�12|2|α(1)
1 |2 + |�̂∗

12|2|α(2)
1 |2),

�̂6 = (|γ̄12|2|α(1)
1 |2 + |γ12|2|α(2)

1 |2), �̂7 = (
γ̄12|α(1)

1 |2 + γ12|α(2)
1 |2),

�̂8 = (|�12|2γ̄12|α(1)
1 |2 + |�̂∗

12|2γ12|α(2)
1 |2), �12 = (

k2
1 − k2

2

)
, �̂12 = (

k2
1 − k∗2

2

)
,

γ12 = (
k2

1 − l2
2

)
, ¯γ12 = (

k2
1 − l∗2

2

)
.
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