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Efficiency at optimal performance: A unified perspective based
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We show that coupled autonomous thermal machines, in the presence of three heat reservoirs and following a
global linear-irreversible description, can have efficiency at maximum power (EMP) which is analogous in form
to the EMP of models with two (hot and cold) reservoirs. In particular, the temperature dependence of EMP in
the coupled model is via only the ratio of hot and cold temperatures if the intermediate reservoir temperature is
expressed as an algebraic mean of these temperatures. Many popular expressions of EMP in the literature can be
recovered by making a choice of some standard mean. Further, the universal properties of EMP near equilibrium
can be explained in terms of the properties of symmetric means. For the case of broken time-reversal symmetry,
a universal second-order coefficient of 6/49 is predicted in the series expansion of EMP, analogous to the 1/8
coefficient in the time-reversal symmetric case.
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I. INTRODUCTION

We observe that engines in the real world involve fluxes
of matter and energy and undergo processes with finite rates.
Linear-irreversible thermodynamics is by far the simplest
phenomenological theory that assumes the fluxes to be pro-
portional to the small thermodynamic forces driving them
[1]. Heat engines based on this premise and other auxil-
iary assumptions bound the efficiency at maximum power
(EMP), e.g., as ηC/2 [2], where ηC is the Carnot effi-
ciency. Other irreversible models [3–14] may predict EMP
that goes beyond the linear-response result. These expressions
for EMP are usually model specific (see Table I for a few
examples), although they fall within certain bounds, as for
example

ηC

2
� ηMP � ηC

2 − ηC
. (1)

Invariably, expressions of ηMP exhibit a dependence on the ra-
tio of cold to hot reservoir temperatures (Tc/Th), an important
feature also of the Carnot efficiency, ηC = 1 − Tc/Th. Other
universal or model-independent features can be identified
at small values of ηC (near-equilibrium situations), whereby
the EMP satisfies the series expansion ηMP ≈ ηC/2 + η2

C/8 +
O[η3

C]. Here, the first-order coefficient (1/2) corresponds to
the linear-response behavior, while the second-order coeffi-
cient (1/8) has been analyzed in terms of a certain left-right
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symmetry of the specific model [14–17]. The fact that many
proposed models do show universal features in EMP suggests
the possibility of a generic thermodynamic model that might
incorporate the various expressions within a single frame-
work [18]. However, a scheme for autonomous machines that
may accommodate the myriad expressions for EMP in a uni-
fied framework while accounting for its universal features is
lacking.

In this paper, we analyze the global performance of two
autonomous heat engines which are tightly coupled via a third
heat reservoir having a temperature intermediate between
the hot and cold reservoirs (see Fig. 1). Within a linear-
irreversible framework, we optimize the total power output
and show that EMP is bounded as η∗ � ηC(1 + Tc/T0)−1,
where the upper bound is achieved under a strong-coupling
(SC) condition. The previous bound of ηC/2 is recovered
for T0 = Tc, but can be breached for T0 > Tc. Further, the
requirement that EMP depends only on the ratio Tc/Th, or
equivalently upon ηC [19], requires that T0 be expressed as
a mean value of the hot and cold temperatures. Interestingly,
specific choices of some common means for T0 rather lead to
well-known expressions for the EMPs of two-reservoir heat
engines (Table I). This also attributes the above-mentioned
universal features to EMP, if the choice is restricted to the so-
called symmetric means. We also derive EMP for suboptimal
coupling and suggest a different universality class for EMP
in the case of broken time-reversal symmetry (TRS). More
precisely, in place of the universal 1/8 coefficient in the series
expansion of EMP, we derive a universal coefficient of 6/49
for the case of broken TRS. Finally, apart from the engine,
we are able to optimize the cooling power in the refrigerator
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TABLE I. The intermediate temperature T0 as some well-known symmetric means of Th and Tc, and the corresponding upper bound for
EMP, η∗

u , obtained under strong coupling, where ηC = 1 − Tc/Th. Various finite-time models derive these forms of EMP in the listed references.

Mean T0 ≡ M(Th, Tc ) η∗
u = ηC

(
1 + Tc

T0

)−1
Physical model

Geometric
√

ThTc 1 − √
1 − ηC Ref. [3]

Harmonic 2ThTc
Th+Tc

2ηC
4−ηC

Refs. [4,5,11,20]

Arithmetic Th+Tc
2

(2−ηC )ηC
4−3ηC

Ref. [21]

Logarithmic Th−Tc
ln Th−ln Tc

η2
C

ηC−(1−ηC ) ln(1−ηC ) Refs. [22–25]

Lehmer
T σ

h +T σ
c

T σ−1
h +T σ−1

c

ηC
2− ηC

1+(1−ηC )σ
σ ∈ R, Ref. [26]

mode—a goal which proves to be elusive in some of the
previously studied models.

The paper is organized as follows. In Sec. II, we describe
the model of two tightly coupled autonomous engines within
a linear-irreversible framework based on a weighted mean of
hot and cold fluxes. In Sec. III A, we optimize the power
output and derive a simple expression for EMP. Using T0 in
the form of an algebraic mean of hot and cold temperatures,
we discuss, in Sec. III B, a few examples of EMP within our
framework. This is followed by a discussion on the universal
properties of EMP, again using basic properties of the so-
called symmetric means. In Sec. IV, we extend our framework
to the case of broken time-reversal symmetry (or a violation
of the Onsager reciprocal relation) and predict a different
universality class for EMP in this regime. Section V outlines
our approach for the model of coupled refrigerators and the
optimization of the cooling power is discussed. Section VI
highlights the main conclusions of the paper.

II. COUPLED ENGINE MODEL

Based on Fig. 1, let us now consider the performance of the
subengines. The reservoirs Th and T0 are coupled via an au-
tonomous engine leading to power output Ẇ1 = Q̇h − Q̇0, and
a rate of entropy generation, Ṡ1 = −Q̇h/Th + Q̇0/T0, which
can be written as

Ṡ1 = −Ẇ1

T0
+ Q̇h

(
1

T0
− 1

Th

)
. (2)

FIG. 1. Two autonomous heat engines tightly coupled via a third
heat reservoir at temperature T0, which satisfies Tc � T0 � Th. The
total power output is Ẇ = Ẇ1 + Ẇ2.

Similarly, reservoirs T0 and Tc are coupled via another such
engine that leads to the power output Ẇ2 = Q̇0 − Q̇c, and a
rate of entropy generation, Ṡ2 = −Q̇0/T0 + Q̇c/Tc, which can
be written as

Ṡ2 = −Ẇ2

T0
+ Q̇c

(
1

Tc
− 1

T0

)
. (3)

Since the two subengines are tightly coupled with each other,
the net heat flux exchanged with the intermediate reservoir
is zero. Then, Ẇ1 + Ẇ2 = Q̇h − Q̇c = Ẇ , and Ṡ1 + Ṡ2 = Ṡ is
written as

Ṡ = −Ẇ

T0
+ Q̇h

(
1

T0
− 1

Th

)
+ Q̇c

(
1

Tc
− 1

T0

)
. (4)

Let us define Xh = 1/T0 − 1/Th � 0 and Xc = 1/Tc −
1/T0 � 0, so that Xh + Xc = 1/Tc − 1/Th. Then, we can write
Eq. (4) as

Ṡ = −Ẇ

T0
+ Q̇hXh + Q̇cXc

Xh + Xc
(Xh + Xc)

= −Ẇ

T0
+ Q̇av

(
1

Tc
− 1

Th

)
, (5)

where the average or effective thermal flux is given by

Q̇av = (1 − ω)Q̇h + ωQ̇c, (6)

with ω = Xc/(Xh + Xc) satisfying 0 � ω � 1. In standard ap-
proaches, the reference reservoir is usually chosen to be the
coldest reservoir available, and so T0 = Tc. Within the present
framework, the reference reservoir is an additional resource
at T0 and the relevant thermal flux is the average value Q̇av.
Finally, the total power flux is given as Ẇ = Fẋ, where F
is the load and ẋ ≡ ẋ1 + ẋ2 is the total rate of displacement
generated.

A. Linear-irreversible framework

Now, assuming a linear-irreversible description at the level
of global performance of the coupled engines, we identify the
following flux-force pairs,

J1 = ẋ, X1 = − F

T0
, (7)

J2 = Q̇av, X2 = 1

Tc
− 1

Th
, (8)
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so that the rate of entropy production is cast in a bilinear
form Ṡ = ∑2

i=1 JiXi. Second, the linear regime implies the
flux-force relations of the form Ji = ∑2

j=1 Li jXj , where i =
1, 2. Here, the phenomenological coefficients Li j are assumed
fixed due to the small magnitudes of the forces. Then, the
second-law inequality imposes the following conditions:

L11, L22 � 0, 4L11L22 � (L12 + L21)2. (9)

We first assume the principle of microscopic time-reversal
symmetry (TRS) which allows the use of the Onsager reci-
procity relation L21 = L12. In this case, the third inequality
above reduces to L11L22 � L2

12. This makes it convenient to
define a measure, q = L12/

√
L11L22, for the coupling strength

between thermodynamic forces, which satisfies −1 �
q � +1.

So, the constitutive relations for the fluxes in Eqs. (7) and
(8) can be written in the following form:

ẋ = −L11
F

T0
+ L12X2, (10)

Q̇av = −L12
F

T0
+ L22X2. (11)

Using Eqs. (6), (11), and Q̇h − Q̇c = Ẇ , we can derive the
following relations:

Q̇h = −L12
F

T0
+ L22X2 + ωẆ , (12)

Q̇c = −L12
F

T0
+ L22X2 − (1 − ω)Ẇ . (13)

III. OPTIMIZATION OF POWER OUTPUT

A. Efficiency at maximum power (EMP)

By using Eq. (10), we optimize the power output, Ẇ = Fẋ,
with respect to the load F . The optimal load is obtained
at F ∗ = L12T0X2/2L11. The optimal power, Ẇ ∗ ≡ Ẇ (F ∗), is
given by

Ẇ ∗ = L2
12T0X 2

2

4L11
. (14)

Similarly, the hot flux, Q̇∗
h ≡ Q̇h(F ∗), is obtained from

Eq. (12) as

Q̇∗
h =

[
1 + q2

4

(T0

Tc
− 3

)]
L22X2. (15)

Then, the efficiency at maximum power (EMP), η∗ = Ẇ ∗/Q̇∗
h,

is evaluated to be

η∗ = ηC

[
1 +

(
4 − 2q2

q2
− 1

)
Tc

T0

]−1

. (16)

For given reservoir temperatures, the EMP can be varied by
tuning the coupling strength q, but it remains bounded as

0 � η∗ � ηC

(
1 + Tc

T0

)−1

≡ η∗
u, (17)

where the upper bound is saturated for strong coupling (q2 =
1). Furthermore, to discuss the two reservoirs set up at hot
and cold temperatures, we may set T0 = Tc. Then, the EMP
of Eq. (16) reduces to η∗ = q2ηC/(4 − 2q2), as derived in

Ref. [2]. This EMP is upper bounded by ηC/2. Thus, the
presence of a third reservoir at T0 > Tc, helps to go beyond this
linear-response result, so that ηC/2 now becomes the lower
bound. In other words, if we consider η∗

u of Eq. (17) as a
function of T0, then η∗

u is bounded as in Eq. (1).

B. Examples

The previous studies on the form of EMP were mostly
carried out on two-reservoir setups, where the EMP obtained
depends upon the ratio Tc/Th. In the present model, with three
reservoirs, the EMP depends on two ratios involving the three
temperatures, as in Eq. (16). Now, T0 may be assigned some
numerical value in the interval [Tc, Th]. However, as we show
in the following, when T0 is expressed as an algebraic mean
of Th and Tc, then the EMP depends only on Tc/Th and we can
establish a comparison with the EMP of two-reservoir mod-
els. Interestingly, many known expressions for EMP can be
derived by assigning a specific mean to T0. The few examples
of Table I pertain to the scenario q2 = 1, for which Eq. (16)
yields η∗ = ηC(1 + Tc/T0)−1. Upon comparison between this
formula and a known expression for EMP, the corresponding
T0 may be inferred.

As another example, a tandem construction of linear-
irreversible engines [2] leads to the EMP, η∗ = 1 − (1 − ηC )β .
Comparing this expression for EMP with Eq. (16), we obtain

T0 = β − 1

β

T β

h − T β
c

T β−1
h − T β−1

c

, (18)

a special case of the generalized mean [27,28]. Due to 0 �
β � 1/2, T0 is bounded as ThTc/TL � T0 � √

ThTc, with TL =
(Th − Tc)/ log(Th/Tc) as the logarithmic mean. Here, Curzon-
Ahlborn (CA) efficiency [3] is obtained with β = 1/2, for
which T0 = √

ThTc.
Further, it is not hard to find examples of asymmetric

means, M(Th, Tc) �= M(Tc, Th), that can parametrize more
general expressions of EMP. Thus, the use of weighted har-
monic mean T0 = ThTc/[(1 − α)Th + αTc] in Eq. (16) yields
η∗ = ηC/(2 − αηC), where 0 � α � 1. The symmetric case
of α = 1/2 has been already mentioned in Table I. The above
expression has been derived in various models, where, for in-
stance, the parameter α may quantify the ratio of heat transfer
coefficients [4] or dissipation constants [11,17] on the hot and
cold sides of the engine.

C. Universal properties of EMP

Next, we address the universal properties of EMP in
the context of our coupled model. Let M(a, b) define an
algebraic mean of two real numbers a, b > 0, which satisfies
min[a, b] < M(a, b) < max[a, b]. So, we define M(a, a) =
a. Further, M is a homogeneous function of its arguments,
satisfying M(λa, λb) = λM(a, b), for all real λ. Thus, we
can write M(a, b) = aM(1, b/a). Assuming T0 to be such a
mean of hot and cold temperatures, i.e., T0 ≡ M(Th, Tc), we
can write T0 ≡ ThM(1, Tc/Th) = ThM(1, 1 − ηC). In other
words, η∗ of Eq. (16) becomes a function only of ηC, or the
ratio of cold to hot temperatures.

Then, for a small difference between the hot and cold
temperatures (ηC as a small parameter), we may develop M
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as a Taylor series in (−ηC),

M(1, 1 − ηC) = 1 + a1(−ηC) + a2(−ηC)2 + O
[
η3

C

]
, (19)

where the coefficients a1, a2, . . . are determined by the form
of the given mean [29]. The corresponding series expansion
of Eq. (16) is then given by

η∗ = q2

4 − 2q2
ηC + (1 − a1)

(4 − 3q2)q2

(4 − 2q2)2
η2

C + O
[
η3

C

]
. (20)

The first-order term above is the same as for a two-reservoir
(hot and cold) setup [2], being independent of the intermediate
temperature T0. For q2 = 1, this term yields the half-Carnot
value. The coefficient of the second-order term depends on q2

as well as on a1 which is a characteristic of the mean T0 [see
Eq. (19)]. Remarkably, if T0 is a symmetric mean, i.e., having
the property M(Th, Tc) = M(Tc, Th), then a1 = 1/2 [30], and
we may rewrite Eq. (20) as

η∗ = βηC + β(1 − β )

2
η2

C + O
[
η3

C

]
, (21)

where β ≡ q2/(4 − 2q2) and 0 � β � 1/2. Thus, we have a
universal relation between the first- and second-order coeffi-
cients, which is valid for any choice of the symmetric mean
T0. In particular, for models with SC, β = 1/2, and thus we
obtain 1/8 as the second-order coefficient, analogous to the
two-reservoir case [15].

IV. BROKEN TIME-REVERSAL SYMMETRY (TRS)

The basic framework of Sec. II A can be easily generalized
to scenarios with a broken TRS, for which the reciprocity
relation is no longer true, i.e., L21 �= L12. Then, the second
flux-force relation, Eq. (11), reads as Q̇av = −L21F/T0 +
L22X2. Following an analogous derivation as for the time-
symmetric case, the EMP is given as

η∗
��TRS = ηC

[
1 +

(
1 − γ

γ

)
Tc

T0

]−1

. (22)

Here, γ ≡ xy/(4 + 2y), with x = L12/L21 and y =
L12L21/(L11L22 − L12L21) [8]. For x = 1, we can write
y = q2/(1 − q2) or γ = β, and so Eq. (22) reduces to
Eq. (16), thus recovering the results of the model satisfying
TRS. Second, note that for T0 = Tc, results of the previous
studies [8,9] are recovered, by which η∗

��TRS
= γ ηC. Thus, the

presence of an additional reservoir at T0 > Tc raises the EMP
beyond γ ηC.

As noted in Refs. [8,9], for a given value of x, the parameter
γ lies in the range 0 � γ � x2/(4x2 − 6x + 4) ≡ γ̂ . Since the
EMP of Eq. (22) is a monotonic increasing function of γ , so
the optimal EMP is given by

η∗
��TRS = ηC

[
1 + 1 − γ̂

γ̂

Tc

T0

]−1

. (23)

Clearly, for x = 1, we obtain γ̂ = 1/2, recovering the results
of the strong-coupling case, η∗ = ηC/(1 + Tc/T0). Figure 2
plots Eq. (23) for different special cases. As argued in Ref. [9],
the upper bound of EMP can be breached in the case of
broken TRS, yielding the optimal EMP as 4ηC/7(>ηC/2). It
is apparent from Fig. 2 that the intermediate temperature T0

FIG. 2. The (red) dashed curve denotes EMP for T0 = Tc whose
optimal value is 4ηC/7, obtained at x = 4/3 [9]. For Tc � T0 � Th,
the optimal EMP is bounded between the two dashed horizontal
lines, and is able to breach the 4ηC/7 value. The thick (black) curve
is the EMP for T0 = (Th + Tc )/2, which is also optimal at x = 4/3.

helps to go beyond this result too and so the bound 4ηC/7 is
rendered just as the lower bound.

Although the exact expression for EMP depends on the
specific form of T0, we can inquire into the universal features
just as for the case with TRS. For an arbitrary symmetric mean
T0, and in proximity to equilibrium, we get

η∗
��TRS = γ ηC + γ (1 − γ )

2
η2

C + O
[
η3

C

]
. (24)

The above series generalizes Eq. (21) which is obtained with
x = 1, for which γ = β. For the case of optimal EMP where
γ̂ = 4/7 (x = 4/3 [9]), the series expansion (24) is given by

η∗
��TRS

= 4

7
ηC + 6

49
η2

C + O
[
η3

C

]
. (25)

Thus, corresponding to a {1/2, 1/8} ≡ {4/8, 6/48} pair of
universal coefficients for optimal EMP in the time-symmetric
case, we obtain {4/7, 6/49} as the corresponding universal
pair in the case of broken TRS.

V. MODEL FOR COUPLED REFRIGERATORS

By reversing the energy flows in Fig. 1, we can study
two tightly coupled refrigerators in a similar manner. In this
case, it is possible to optimize the cooling power of the total
machine, as we show below.

We can write the total rate of entropy generation as

Ṡ = Ẇ

T0
− Q̇av

(
1

Tc
− 1

Th

)
. (26)

Then, we identify the following flux-force pairs,

J1 = ẋ, X1 = F

T0
, (27)

J2 = Q̇av, X2 = −
(

1

Tc
− 1

Th

)
, (28)

so that Ṡ is cast in a bilinear form, Ṡ ≡ J1X1 + J2X2.
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Within the linear-irreversible framework, the fluxes in
Eqs. (27) and (28) take the following form:

ẋ = L11
F

T0
+ L12X2, (29)

Q̇av = L12
F

T0
+ L22X2. (30)

Then, we can derive the following relations:

Q̇h = L12
F

T0
+ L22X2 + ωẆ , (31)

Q̇c = L12
F

T0
+ L22X2 − (1 − ω)Ẇ . (32)

A. Maximum cooling power

We optimize the cooling power by setting

∂Q̇c

∂F
= 0. (33)

The optimal value of F ≡ F̂ is given by

F̂ = L12X2T0(2Th − T0)

2L11(T0 − Th)
. (34)

The coefficient of performance (COP) of the refrigerator at
maximum cooling power is defined as

ξ ∗ = Q̇c(F̂ )

Ẇ (F̂ )
, (35)

and is evaluated to be

ξ ∗ = ξC(1 − t0)

t2
0 (2 − t0)

[
(2 − t0)2 − 4(1 − t0)

q2

]
, (36)

where t0 = T0/Th and ξC = Tc/(Th − Tc) is the Carnot bound
for the COP. Now, for a given q value, ξ ∗ is a mono-
tonic decreasing function of t0. So, the bounds of ξ ∗ are
given as

0 � ξ ∗ � 1

ξC(2 + ξC)

[
(2 + ξC)2 − 4(1 + ξC)

q2

]
. (37)

For models with SC, Eq. (36) gets simplified to ξ ∗ = ξC(1 −
t0)/(2 − t0), which interpolates as 0 � ξ ∗ � ξC/(2 + ξC),

with the lower and upper bounds obtained with t0 = 1 and
t0 = Tc/Th ≡ ξC/(1 + ξC), respectively.

VI. CONCLUSIONS

Concluding, we have studied the global performance of
two tightly coupled engines within a three-reservoir setup. As-
suming a linear-irreversible description where the total rate of
entropy generation is defined in terms of a weighted average
of the hot and cold fluxes, we have optimized the total power
and analyzed the properties of the corresponding efficiency at
maximum power. The EMP, in general, depends on two ratios
involving the three reservoir temperatures. However, an inter-
esting simplification occurs if the third temperature is chosen
as an algebraic mean between the hot and cold temperatures.
In this situation, the EMP can be expressed in terms of the
Carnot efficiency of the total setup, or equivalently, the ratio
of cold to hot temperatures. Further, the choice of this mean
in the form of some common means (such as geometric mean,
harmonic mean, and so on) yields well-known expressions
for EMP found in previous studies on two-reservoir setups.
Similarly, the universal properties of EMP found in the latter
case can also be identified in the three-reservoir scenario,
when the third temperature is a symmetric mean of hot and
cold temperatures.

Further, universal features of EMP, surprising as they are,
may be looked upon as a signature of the universality of ther-
modynamic approach. The present framework for the global
performance of coupled machines provides an effective pa-
rameter in T0 which may be tuned to obtain EMP in a desired
form, thus bringing various mathematical forms of EMP under
one formalism. Such an approach, apart from providing a
unified viewpoint, can be instrumental in predicting novel fea-
tures such as the 6/49 second-order coefficient for EMP in the
case of broken TRS. The generality of thermodynamics deems
it feasible that these features may be observed in systems with
broken TRS, such as thermoelectric machines placed in an
external magnetic field.

Finally, we have discussed the case of coupled refrigera-
tors only briefly, mainly showing that the cooling power may
be optimized within the present framework and deriving the
corresponding COP. A more detailed analysis of the model
for refrigerators [31,32] and a possible comparison with
the observed COPs of refrigeration plants is left for future
work.

[1] L. Onsager, Reciprocal relations in irreversible processes. I.,
Phys. Rev. 37, 405 (1931).

[2] C. Van den Broeck, Thermodynamic Efficiency at Maximum
Power, Phys. Rev. Lett. 95, 190602 (2005).

[3] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at
maximum power output, Am. J. Phys. 43, 22 (1975).

[4] L. Chen and Z. Yan, The effect of heat-transfer law on per-
formance of a two-heat-source endoreversible cycle, J. Chem.
Phys. 90, 3740 (1989).

[5] T. Schmiedl and U. Seifert, Efficiency at maxi-
mum power: An analytically solvable model for

stochastic heat engines, Europhys. Lett. 81, 20003
(2008).

[6] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,
Efficiency at Maximum Power of Low-Dissipation Carnot En-
gines, Phys. Rev. Lett. 105, 150603 (2010).

[7] M. Moreau, B. Gaveau, and L. S. Schulman, Efficiency of a
thermodynamic motor at maximum power, Phys. Rev. E 85,
021129 (2012).

[8] G. Benenti, K. Saito, and G. Casati, Thermodynamic Bounds on
Efficiency for Systems with Broken Time-Reversal Symmetry,
Phys. Rev. Lett. 106, 230602 (2011).

044145-5

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1119/1.10023
https://doi.org/10.1063/1.455832
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevE.85.021129
https://doi.org/10.1103/PhysRevLett.106.230602


RAMANDEEP S. JOHAL AND RENUKA RAI PHYSICAL REVIEW E 105, 044145 (2022)

[9] K. Brandner, K. Saito, and U. Seifert, Strong Bounds on
Onsager Coefficients and Efficiency for Three-Terminal Ther-
moelectric Transport in a Magnetic Field, Phys. Rev. Lett. 110,
070603 (2013).

[10] Y. Izumida and K. Okuda, Efficiency at maximum power of
minimally nonlinear irreversible heat engines, Europhys. Lett.
97, 10004 (2012).

[11] C. V. den Broeck, Efficiency at maximum power in the low-
dissipation limit, Europhys. Lett. 101, 10006 (2013).

[12] V. Balachandran, G. Benenti, and G. Casati, Efficiency of three-
terminal thermoelectric transport under broken time-reversal
symmetry, Phys. Rev. B 87, 165419 (2013).

[13] K. Yamamoto, O. Entin-Wohlman, A. Aharony, and N. Hatano,
Efficiency bounds on thermoelectric transport in magnetic
fields: The role of inelastic processes, Phys. Rev. B 94,
121402(R) (2016).

[14] R. S. Johal, Global linear-irreversible principle for optimiza-
tion in finite-time thermodynamics, Europhys. Lett. 121, 50009
(2018).

[15] M. Esposito, K. Lindenberg, and C. Van den Broeck, Univer-
sality of Efficiency at Maximum Power, Phys. Rev. Lett. 102,
130602 (2009).

[16] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,
Quantum-dot Carnot engine at maximum power, Phys. Rev. E
81, 041106 (2010).

[17] R. S. Johal, Performance optimization of low-dissipation ther-
mal machines revisited, Phys. Rev. E 100, 052101 (2019).

[18] An effective thermodynamic approach was studied for finite-
time discrete heat engines by one of the authors in Ref. [14].

[19] As the two engines are tightly coupled to each other, so the
efficiencies of the first and the second engines are related to
the global efficiency as η = 1 − (1 − η1)(1 − η2). Thus, ηC is
still a measure for the maximal efficiency of the global system,
which is achieved when both engines run reversibly.

[20] R. S. Johal and R. Rai, Near-equilibrium universality and
bounds on efficiency in quasi-static regime with finite source
and sink, Europhys. Lett. 113, 10006 (2016).

[21] V. Singh and R. S. Johal, Feynman–Smoluchowski engine at
high temperatures and the role of constraints, J. Stat. Mech.
073205 (2018).

[22] Z. C. Tu, Efficiency at maximum power of Feynman’s ratchet
as a heat engine, J. Phys. A: Math. Theor. 41, 312003 (2008).

[23] C. Van den Broeck and K. Lindenberg, Efficiency at maximum
power for classical particle transport, Phys. Rev. E 86, 041144
(2012).

[24] R. Wang, J. Wang, J. He, and Y. Ma, Efficiency at maximum
power of a heat engine working with a two-level atomic system,
Phys. Rev. E 87, 042119 (2013).

[25] P. A. Erdman, F. Mazza, R. Bosisio, G. Benenti, R. Fazio, and
F. Taddei, Thermoelectric properties of an interacting quantum
dot based heat engine, Phys. Rev. B 95, 245432 (2017).

[26] V. Cavina, A. Mari, and V. Giovannetti, Slow Dynamics and
Thermodynamics of Open Quantum Systems, Phys. Rev. Lett.
119, 050601 (2017).

[27] K. B. Stolarsky, Generalizations of the logarithmic mean, Math.
Mag. 48, 87 (1975).

[28] E. B. Leach and M. C. Sholander, Extended mean values, Am.
Math. Mon. 85, 84 (1978).

[29] For example, if T0 = [(1 − p1)/Th + p1/Tc]−1, a weighted har-
monic mean (0 � p1 � 1), then M(1, 1 − ηC) = 1 − p1ηC +
p1(p1 − 1)η2

C + O[η3
C], so that a1 = p1, a2 = p1(p1 − 1), and

so on.
[30] Many well-known means are symmetric means, such as arith-

metic mean (a + b)/2, geometric mean
√

ab, and harmonic
mean 2ab/(a + b). Further, these means satisfy the following
property, ∂M

∂a |a=b = ∂M
∂b |b=a = 1

2 , which implies a1 = 1/2.
[31] B. Jiménez de Cisneros, L. A. Arias-Hernández, and A. C.

Hernández, Linear irreversible thermodynamics and coefficient
of performance, Phys. Rev. E 73, 057103 (2006).

[32] J. Guo, H. Yang, H. Zhang, J. Gonzalez-Ayala, J. Roco, A.
Medina, and A. Calvo Hernández, Thermally driven refriger-
ators: Equivalent low-dissipation three-heat-source model and
comparison with experimental and simulated results, Energy
Convers. Manage. 198, 111917 (2019).

044145-6

https://doi.org/10.1103/PhysRevLett.110.070603
https://doi.org/10.1209/0295-5075/97/10004
https://doi.org/10.1209/0295-5075/101/10006
https://doi.org/10.1103/PhysRevB.87.165419
https://doi.org/10.1103/PhysRevB.94.121402
https://doi.org/10.1209/0295-5075/121/50009
https://doi.org/10.1103/PhysRevLett.102.130602
https://doi.org/10.1103/PhysRevE.81.041106
https://doi.org/10.1103/PhysRevE.100.052101
https://doi.org/10.1209/0295-5075/113/10006
https://doi.org/10.1088/1742-5468/aacfba
https://doi.org/10.1088/1751-8113/41/31/312003
https://doi.org/10.1103/PhysRevE.86.041144
https://doi.org/10.1103/PhysRevE.87.042119
https://doi.org/10.1103/PhysRevB.95.245432
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1080/0025570X.1975.11976447
https://doi.org/10.1080/00029890.1978.11994526
https://doi.org/10.1103/PhysRevE.73.057103
https://doi.org/10.1016/j.enconman.2019.111917

