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Influence of roughening transition on magnetic ordering
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In the literature of magnetic phase transitions, in addition to a critical point, the existence of another special
point has been discussed. This is related to the broadening of the interface between two different ordering phases
and is referred to as the point of roughening transition. While the equilibrium properties associated with this
transition are well understood, the influence of this on nonequilibrium dynamics still needs to be investigated. In
this paper we present comprehensive results, from Monte Carlo simulations, on coarsening dynamics in a system,
over a wide range of temperature, in space dimension d = 3, for which there exists a roughening transition at
a nonzero temperature TR. An advanced analysis of the simulation data, on structure, growth, and aging, shows
that the onset of unexpected glasslike slow dynamics in this system, that has received attention in recent times,
for quenches to zero temperature, actually occurs at this transition point. This implies that the structure and aging
depend upon the final temperature, when the latter lies between 0 and TR. This is a very interesting exception to
universality in coarsening dynamics. The results also demonstrate an important structure-dynamics connection
in the phase-ordering dynamics. We compare the key results with those from d = 2, for which there exists no
nonzero roughening transition temperature. The absence of the above-mentioned anomalous features in the latter
dimension places our conjecture on the role of the roughening transition on a firmer footing.
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I. INTRODUCTION

Over the past several decades there has been significant
interest [1–25] in the understanding of ordering dynamics
following quenches of paramagnetic configurations to the fer-
romagnetic region by crossing the critical temperature [26]
Tc. In recent times glasslike dynamics in a popular ordering
system, viz., in the Ising model, following quenches to the
final temperature Tf = 0, drew attention [6–8,10,11,13–17].
This is despite the absence of an in-built frustration in the
above-mentioned model. This slow dynamics perhaps is due
to a nonconventional structure formation. The observation is
striking and it is unknown whether such unexpected behav-
ior [9,15–17] is specific to Tf = 0. It is possible that the origin
is at the roughening transition [27], that occurs at a much
higher temperature TR (<Tc), given that below TR the inter-
faces are sharp. Knowledge of this is crucial not only in the
understanding of this intriguing fact but also in establishing
structure-dynamics coupling in the general context of growth
phenomena. Interestingly, the consequences of the presence or
absence of rough interfaces, of importance in real systems, in
such nonequilibrium phenomena still needs to be investigated.

Some of the key aspects of ordering dynamics [23–25,28–
38] are (i) self-similarity and the scaling property of the
structure, (ii) growth of the latter, and (iii) related aging.
The structure is typically probed via the two-point equal time
(t ) correlation function [28], which, for a spin system, reads
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C(r, t ) = 〈Si(t )S j (t )〉 − 〈Si(t )〉〈S j (t )〉, with Si and S j repre-
senting the orientations of spins or atomic magnets at sites
i and j, located r distance apart. It is also customary to study
the Fourier transform of C(r, t ), the structure factor S(k, t ),
with k being the wave number [28]. The latter has direct
experimental relevance. These quantities obey certain scaling
properties when the growth is self-similar. For example, in
simple situations, when structures are nonfractal, C(r, t ) sat-
isfies [28] C(r, t ) ≡ C̃(r/�), with � being the average domain
size or characteristic length scale of the growing system at
time t and C̃(x) a time-independent master function. In such
a situation � is expected [28] to grow as ∼tα . A power-law
behavior is expected for the aging phenomena also. In the
latter case the autocorrelation function [29,30], Cag(t, tw ) =
〈Si(t )Si(tw )〉 − 〈Si(t )〉〈Si(tw )〉, should scale as ∼(�/�w )−λ, in
the asymptotic limit when � � �w. Here, tw (�t) is the wait-
ing time or age of the system and �w is the value of � at t = tw.

For uniaxial ferromagnets one expects [28,37] α = 1/2.
The structure in this case is usually described by the
Ohta-Jasnow-Kawasaki (OJK) function [24,28] C(r, t ) =
2
π

sin−1[exp(−r2/Dt )], with D being a constant. While the
form of C(r, t ) and the value of the growth exponent α are
independent of space dimension d , the aging exponent λ

changes with the latter. The values of λ for this ordering, as
obtained by Liu and Mazenko (LM) [23], are expected to be
�1.67 = λLM

3 in d = 3, whereas in d = 2 it is λLM
2 � 1.29.

Unless otherwise mentioned, in the rest of the paper all our
discussions are for d = 3.

While these predictions were confirmed via Monte Carlo
(MC) [38] simulations of the Ising model, for moderately high
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values of Tf , striking deviations were reported for Tf = 0,
in d = 3. In this case, several works concluded that α =
1/3 or the growth is even slower. Most recently it was re-
ported that the OJK function does not [17] describe the
pattern [39], i.e., the structure that is formed by domains rich
in “up” and “down” spins, at Tf = 0. Furthermore, λ was
also estimated [17] to be much weaker than λLM

3 . Thorough
investigations, we believe, are necessary to arrive at a com-
plete and correct picture. It needs to be understood if such
anomalies bear any connection with any other special point.
If such a special point turns out to be that of the roughening
transition, an important relation concerning the structure and
dynamics [40] can be established in the nonequilibrium con-
text. Our MC study clearly suggests that the above-mentioned
anomalous features are not specific to Tf = 0. The onset of
the anomalies occurs at the roughening transition. Some key
results have been verified by a sophisticated finite-size scaling
analysis [34,41,42]. We believe that these will inspire further
investigations, for reasons described later.

II. MODEL AND METHODS

We choose J > 0 in the Ising Hamiltonian [26,38] H =
−J

∑
〈i j〉 SiS j , where Si and S j can take values +1 and −1,

corresponding to up and down orientations of the atomic
magnets. We study this model on a simple cubic lattice, having
Tc � 4.51J/kB [38], where kB is the Boltzmann constant. For
the limited set of results in d = 2, we considered the square
lattice. Note that in this case Tc � 2.27J/kB [38]. In d = 3,
the value of TR for this model is �2.57J/kB [27], whereas a
nonzero roughening transition temperature does not exist in
d = 2. Moves in our MC simulations were tried by randomly
choosing a spin and changing its sign [38,43]. These were
accepted by following the standard Metropolis criterion [38].
The unit of time in our simulations is a MC step (MCS) that
consists of Ld trial moves, with L being the linear dimension
of a cubic or a square box, in units of the lattice constant.

All our results are presented after averaging over runs with
50 independent random initial configurations, with L = 512.
A consideration of larger systems will keep the conclusions
unchanged. However, with much larger systems, accessing
very late-time dynamics will be difficult in d = 3. Periodic
boundary conditions were applied in all possible directions.
Average domain lengths were measured, from the simula-
tion snapshots, as the first moments [36] of the domain-size
distribution function, in which the length of a domain was
estimated as the distance between two successive or consec-
utive interfaces along any Cartesian direction. Results on the
structure and growth were obtained after appropriately elimi-
nating the thermal noise in the snapshots via a majority-spin
rule [36]. In this procedure a spin is provided with the sign
of the majority of spins in its neighborhood, including itself.
The noise removal was important for the analysis purpose,
especially for very high temperatures (Tf � 2). We repeat,
unless otherwise stated, the results are from d = 3.

III. RESULTS

In Fig. 1 we show � vs t plots for several values of Tf .
The percentage errors, with respect to the mean values, in

FIG. 1. Average domain lengths �(t ) are plotted vs time, on a
log-log scale. Results from different final temperatures are presented.
The solid lines are power laws. The values of the exponents are
mentioned. Minor bendings in the long-time limit in some of the data
sets are due to finite-size effects

the data points lie in the range [0.03,2] in the finite-size
“unaffected” regimes, being higher at later times. The latter
is expected due to the decreasing number of domains with the
increase of time. For Tf = 0 few early works [7,12–14] were
suggestive of an exponent α = 1/3 or even slower growth.
Similar quantitative behavior is seen here as well. However,
at a very late time a crossover [15,17] of the exponent to a
higher value, viz., α = 1/2, can be recognized. The very early
works could not capture this, either due to the consideration
of small systems or simulations over short periods, owing,
perhaps, to inadequate computational resources. As can be
seen, such a slow looking early growth is not unique to Tf = 0.
The data sets for nonzero Tf values also exhibit a similar
trend. However, with the increase of Tf the departure from
this slow behavior occurs earlier, with the 1/3-like regime
ceasing to exist for Tf = TR � 2.57. At this stage, it is worth
warning that the early evolution should not be taken seriously,
at the quantitative level. This is because, during this period
satisfaction of the scaling property of the correlation function
is not observed, as demonstrated below.

In Fig. 2(a) we show plots of C(r, t ), from different times,
by scaling the distance axis by a characteristic length, ex-
tracted by exploiting the satisfaction of scaling of C(r, t ) at
small distances, for Tf = 0.5. The error bars here and for the
autocorrelation functions are smaller than the symbol sizes. It
appears that the collapse starts only from t � 1000, approxi-
mately the time since the departure to α = 1/2 behavior starts.
This general picture is true for other low temperatures also. In
Fig. 2(b) we have shown C(r, t ), again versus r/�, from the
scaling regimes of different Tf values. Interestingly, C̃(r/�) at
different Tf values do not agree with each other. However,
with the increase of Tf the agreement with the OJK func-
tion [C̃OJK(r/�)] [24] keeps getting better. This observation
suggests that perhaps there exists a special temperature Tsp

(<Tc), beyond which the coarsening dynamics is more unique
than below it. In fact, for Tf = TR the agreement between
simulation data and the OJK function is quite well. We will
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FIG. 2. (a) Two-point equal time correlation functions C(r, t ) are
plotted vs the scaled distance r/�, for Tf = 0.5. Data from a few
different times are shown. (b) Same as (a) but here we have shown
C(r, t ) from different final temperatures. In each of the cases we
have chosen t = 5000 that fall in the scaling regimes. In both (a) and
(b) the continuous lines represent the Ohta-Jasnow-Kawasaki (OJK)
function. The correlation functions have been plotted in such a way
that there exists good collapse in the early abscissa range.

return to this central theme after discussion of the basic results
on aging. It will be seen that indeed Tsp = TR.

Figure 3(a) shows plots of Cag(t, tw ), with a variation of
�/�w. The value of Tf for this representative case is 1.5.
Data from a few different waiting times are shown. Good
collapse is visible for the considered values of tw. However,
there exist deviations from the master curve, for �/�w � 1.
These are related to finite-size effects [34]. Decay in the
finite-size unaffected regime is not consistent with the LM
value [23]—see the disagreement with the solid line. In
Fig. 3(b) we show the instantaneous exponent [30,34] λi[=
−d ln Cag(t, tw )/d ln(�/�w )] as a function of �w/�, for mul-
tiple choices of tw lying in the scaling regime. The data sets
appear linear in the finite-size unaffected regimes. Note that at
the early time relaxation of domain magnetization interferes
and should be discarded from the process of estimating λ.
A linear extrapolation to �/�w = ∞ asymptotically provides
λ � 1.5. Given that the above quoted number lies between
λLM

3 and λ(Tf = 0), which is significantly different from each
of these, one gets a strong indication of the presence of a
special point.

In Fig. 3(c) we show plots of λi vs �w/�, for a few different
values of Tf . Here, we discarded the parts corresponding to
finite-size effects and the equilibration of domain magnetiza-
tion. Furthermore, in each of the cases the results are from
well inside the scaling regimes of tw. The arrowheaded lines
are related to the estimations of the values of λ, from linear
extrapolations to the asymptotic limit �/�w = ∞. Clearly, λ

depends strongly on Tf . The accuracy of these estimates is
validated by the independent quantifications of λ via a finite-
size scaling method [34,42]. A representative exercise related
to this is shown in Fig. 3(d), for Tf = 0.75. In this figure Y
is a tw-independent scaling function and y is a dimensionless
scaling variable. Here, we have avoided studying systems
of different sizes, contrary to the standard practice in the
literature of such an analysis. Instead, we have obtained a

FIG. 3. (a) Cag(t, tw ), the autocorrelation functions, are plotted
vs �/�w , on a log-log scale. Data from different tw , for Tf = 1.5,
are included. The solid line is a power law with λ = λLM

3 = 1.67.
(b) The instantaneous exponents λi are shown as a function of �w/�,
for the same final temperature. The arrowheaded line is a linear
extrapolation to the �/�w = ∞ limit, done by excluding the late
time finite size affected as well as early-time domain-magnetization
relaxation parts. (c) Here, we have shown λi, as a function of �w/�,
for a few different values of Tf . In each of the cases tw belongs to
the scaling regime. The arrowheaded lines are linear guides to the
eyes. (d) Finite-size scaling plot of Cag(t, tw ) for Tf = 0.75. The solid
line there corresponds to a power law with the value of the exponent
mentioned near the line.

collapse of data from different tw values. When tw is varied, a
system has different effective sizes to grow further, fulfilling
the requirement of different system sizes. See below for the
details on the scaling method. The behavior of λi in Figs. 3(b)
and 3(c) suggests λi = λ − B/x, with x = �/�w and B being a

FIG. 4. (a) Plots are shown by comparing �λ and �I with the
variation of Tf . (b) Plots of �λ and �I as a function of 1/Tf . The
locations of TR are marked inside the frames.
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FIG. 5. (a) Plots of scaled two-point equal time correlation func-
tions C(r, t ), from d = 2, for different Tf values. The time has been
chosen from the scaling regime. The continuous line represents the
OJK function. (b) The instantaneous exponents λi are plotted as a
function of �w/�, for different Tf values. The solid line is a common
linear extrapolation of the data sets. The arrowheaded horizontal line
points to the LM value of λ in d = 2.

constant, in the finite-size unaffected late-time regime. This
leads to a form [34,42] Cag(t, tw ) = Ae−B/xx−λ. By taking
y = L/� as a scaling variable and yw = L/�w, a finite-size
scaling function can be written as [17] Y = Cag(t, tw )eBy/yw yλ

w,
where Y contains a factor yλ. When results from different tw
are plotted, for optimum choices of the unknown parameters,
including λ, there will be a collapse of data sets that will sat-
isfy the expected yλ behavior at large y. This is demonstrated
in Fig. 3(d) for Tf = 0.75. Here, the collapse is obtained for
λ = 1.26, the number being consistent with the value that was
suggested by the exercise in Fig. 3(c). Next, we quantify the
special temperature from a more systematic study.

In Fig. 4(a) we show �λ = λLM
3 − λ(Tf ), as a function of

Tf . Given that the earlier temperature-independent expecta-
tion is λLM

3 , it is meaningful to look at the stated difference.
There appears to be a nice convergence of the data set to zero
as Tf → TR � 2.57. With respect to the deviation of C̃(r/�)
from the OJK form [24], that we observed above, there may
also be a similar trend. In this case an appropriate quantity to
consider is �I = ∫

dr[C̃(r/�) − C̃OJK(r/�)]. Here, note that
there exists an LM form for C(r, t ) as well [23]. However,
this practically overlaps with the OJK function. It will be
interesting to see if �I approaches zero at the same Tf as in
the case of �λ. Thus, in Fig. 4(a) we have included the Tf

dependence of �I as well. The trends in the presented data
sets are in nice agreement with each other, over a wide range
of temperature—see Fig. 4(b) for clearer convergences of �λ

and �I to zero for Tf → TR.

Figure 5 contains analogous results from d = 2. In
Fig. 5(a) we show the scaled C(r, t ) and Fig. 5(b) shows data
for λi vs �w/�. For each of the cases results from a wide
range of Tf are included. The anomalies present in d = 3
are clearly absent in this case. No detectable Tf dependence
can be observed. The theoretical expectations are satisfied
over the whole range of Tf . Recall that in this dimension, a
nonzero roughening transition temperature does not exist for
this model.

IV. CONCLUSION

From extensive simulations [38] we have presented re-
sults on nonequilibrium dynamics in the Glauber [38,43]
Ising model. This mimics ordering in uniaxial ferromagnets.
Our quantitative analysis of data from space dimension d =
3 on the structure, growth, and aging, over a wide range
of temperature below the critical point, suggests that the
low-temperature behavior is anomalous. We show that the
anomalies are not unique to the case of zero-temperature
quench, as was previously thought. Various quantities ex-
hibit a zero-temperature-like trend until a certain nonzero
value of Tf . Above this temperature, the behavior of all the
aspects becomes consistent with various theoretical expec-
tations [23,24,28,37]. This transition or special temperature
coincides with that of the roughening transition [27]. Such a
conclusion appears more meaningful from the fact that this
interesting nonuniversality is absent in d = 2 and for this
dimension the roughening transition temperature is zero.

To understand this exceptional behavior more detailed
theoretical investigations by exploiting the well-traveled aux-
iliary field ansatz should be carried out [44]. Recently, it
was shown [45] that the ordering dynamics in the Glauber
Ising model exhibits the Mpemba effect (ME). Consider-
ing the surprising observation here and the discovery of
ME in the same model, it will be interesting to see how
in d = 3 the interplay between initial correlation and the
final temperature brings out further different features. The
structure-dynamics connection shown here can be of impor-
tance in the domains of other passive [46–51] as well as
active matter systems [52], where interface roughness is of
interest.
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