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Efficiently fueling a quantum engine with incompatible measurements
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We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measure-
ments of the noncommuting position and momentum quadratures of the quantum oscillator. The engine extracts
work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two

protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements.
In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of
one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit,
continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a
coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature
measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can

achieve unit work conversion efficiency in principle.
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I. INTRODUCTION

Quantum thermodynamics is concerned with how the ex-
change of heat and work can be understood and applied when
quantum effects such as entanglement and coherences are
present [1-4]. The emerging field of quantum energetics is
applicable to stochastic energy exchanges when there are no
thermal baths. As an example, quantum measurement pow-
ered engines have been proposed with qubit systems, as well
as continuous variable systems [5—16]. This line of research is
greatly stimulated by successful demonstrations of quantum
measurements and control in a variety of quantum platforms
including but not limited to superconducting circuits [17-19],
cavities [20-22], trapped ions [23-25], trapped nanoparticles
[26], single-electron systems [27], and mechanical resonators
[28,29].

By making appropriate combination of measurements
and feedback operations [30-37], a quantum engine can
be used to accelerate an electron to charge a capacitor,
or to lift a tiny mass [5]. A quantum refrigerator based
on measurements [13], measurement-driven single tempera-
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ture engines that require no feedback [7,12], interaction-free
measurement engines [9], and quantum measurement en-
gines driven by quantum entanglement [16] have also been
conceptualized, extending the scope of measurement-based
thermal-equivalent machines. The prime focus in these mod-
els has been on the measurement of a single observable, either
the spin along a chosen axis in the case of finite-dimensional
systems [8,14,16,38], or a given quadrature with continuous
variable systems [5,7,39].

In this paper, we propose a quantum engine fueled by
simultaneous weak measurements of two noncommuting
observables: the position and momentum of a quantum oscil-
lator. Work is extracted by moving the bottom of the harmonic
trap suddenly, conditioned on the measurement outcomes.
We show that incompatible measurements have rewarding

FIG. 1. Cyclic operation of the quantum oscillator measurement
engine fueled by incompatible measurements. (a) The quantum os-
cillator is initially thermalized to a heat bath at temperature T. (b) A
demon weakly measures both the position and momentum of the
quantum oscillator. The measurement results in a coherent state.
(c) Work is extracted by displacing the trap conditioned on the
measurement outcomes.
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energetic consequences when compared to similar protocols
for a quantum engine fueled by measurement of a single
quadrature [5,39], and when compared to the classical limit
which describes a heat engine fueled by measuring the po-
sition of a Brownian particle in a harmonic trap [40,41].
With simultaneous quantum measurements, the measurement
strengths for each of the incompatible quadratures can be
tuned such that the measurement results in a displaced ground
state (a coherent state [42,43]) of the quantum oscillator
[44.,45]. This allows one to perfectly reset the engine’s cycle
by work extraction, in the same way as conceived in the orig-
inal version of the Szilard engine, where the demon resets a
gas of particles at no cost: it uses information on the positions
to compress the gas on the left of a vacuum chamber, and then
lets it expand back to equilibrium [46]. The engine is efficient
because the work extraction step precisely brings it back to the
equilibrium state. When simultaneous weak measurements of
position and momentum are performed on a thermal state, it
is also well known that they add an extra quantum of noise in
to the oscillator [44,47]. This added noise from measurement
allows us to extract work even at zero temperature, beating the
previously known classical bounds for a Brownian heat engine
(see Appendix A) [40,41].

II. SETUP

A quantum harmonic oscillator is described by the
Hamiltonian, o= % —l—ma)”—z, where p and X obey the
commutation relation, [X, p] = ii. When the temperature is
sufficiently small such that k3T < fiw, thermal fluctuations
are negligible and the quantum harmonic oscillator will be in
its ground state |0). The premise of the measurement engine
is that a suitable weak quantum measurement will excite the
oscillator. Work can then be extracted by a feedback loop that
changes the harmonic trap suddenly. The feedback is most
efficient if it resets the quantum engine to its initial quantum
state at the end of each cycle, making the engine prepared
for the next cycle to begin. For the quantum oscillator, a
simultaneous weak quantum measurement of both position
and momentum observables is uniquely suited to this task
because such a protocol realizes measurements in the coherent
state basis [42—45].

We now proceed to describing two protocols for optimal
work extraction with incompatible quantum measurements of
the quantum oscillator: a single-shot measurement protocol
where measurements are described by projection onto the
coherent state basis [44], and the time-continuous limit where
continuous weak quantum measurements of both position and
momentum of the quantum oscillator results in a coherent
state whose coordinates diffuse in time [45].

A. Single-shot quantum measurements

The protocol takes place in three steps (see Fig. 1):
(1) Step (a): The quantum oscillator thermalizes with the

ambient inverse temperature, 8 = 1/kgT, yielding a thermal
state, p(0) = %, where Z = tr{e ).
(2) Step (b): The quantum oscillator is weakly measured

in the coherent state basis {|«)}, yielding result «.

The Kraus operators describing the measurement are, K («) =
\/L; lor) (| [48,49], and the normalized probability distribution

corresponding to the readouts is,

e—rz/(H-ﬁ) (D

)

Por i) = Lot ) = !
o= AN T rd )

using the parametrization o = re’. We denote the aver-

age photon number in the initial thermal state by 7 =

(e’ngT — 1)~!, the Bose-Einstein occupation. The probability
density Py(r, 1) is also known as the Husimi Q distribution
of the state p(0) [47,50], which is obtained when simulta-
neous weak measurements of position and momentum are
performed on a thermal state. The average quanta in Py(r, i)
is 7 + 1, meaning that the measurement process adds one ex-
tra quantum to the oscillator quantum state (see Appendix B).

We may allow the quantum harmonic oscillator to undergo
free evolution, |a) — |ee @@} = |r) at the end of which
the coherent state is located along the positive x axis in the
phase space, (x, p). Here t(«) = 6 /w. This free unitary evo-
lution is essentially a rectifier, which channels an arbitrary
displacement to a preferred direction, using quantum feed-
back. The efficiency of this step will require that the time scale
of thermalization, 7, > 27 /w.

(3) Step (c) (work extraction): We suddenly shift the quan-
tum harmonic trap, such that the coherent state |r) is the new
quantum ground state. In the process, we extract the amount of
work, W = hwr? > 0. The system thermalizes to the ambient
temperature 7', completing the cycle.

In a quantum LC circuit implementation, the work extrac-
tion in step (c) would correspond to modifying the offset
voltage in the capacitor suddenly. Alternatively, one can also
modify the branch flux or current in the circuit, if the free evo-
lution aligns the coherent state along the flux or current axis,
or a combination of displacements in both voltage and current
by an appropriate choice, t(«). An alternate binary-valued
feedback protocol for the engine is presented in Appendix C.

B. Extractable work

The average amount of work extractable from the quantum
harmonic oscillator in steps (a)—(c) is,

2 o0
(W) = hw / do / rdr r*Py(r, i) = ho(1 + 7). (2)
0 0

Note that the extra quantum added by the measurement
process (see Appendix B) is also extracted perfectly in
the feedback step. This additional quantum of energy is a
purely quantum effect, which exceeds the classical bound
on extractable work from the Brownian heat engine at zero
temperature (see Appendix A). Addition of extra noise from
simultaneous measurement of noncommuting observables is
required by quantum mechanics [44,47,51-55], and our mea-
surement engine exploits the energetic consequence of this
added noise by demonstrating that it can be rectified to pro-
duce useful work. The extracted work is also equal to the sum
of the average energy given by the thermal bath (Qr = hwn)
and the average energy given by the measurement process
(Qu = hw). Hence energy is conserved and we have (W) =
Or 4+ Qu = Q. In addition, energy Qy, is lost by the measur-
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ing apparatus such that the latter has to be reenergized to be
compatible with the Wigner-Araki-Yanase theorem [56-59].
The measurement engine in this case also has unit work con-
version efficiency, i.e., n = (W)/Q = 1. Above we have not
accounted for the additional cost to erase the memory of the
Maxwell’s demon, which is discussed in Appendix D [60].

III. CONTINUOUS WEAK QUANTUM
MEASUREMENT PROTOCOL

We now describe a time-continuous operation of our quan-
tum oscillator measurement engine, where continuous weak
quantum measurement of both position and momentum of the
quantum oscillator results in a coherent state whose coordi-
nates diffuse in time. Work is extracted by moving the bottom
of the harmonic trap; either time continuously as measurement
results are accumulated, or at the end.

For the engine, we assume that the oscillator is initial-
ized in a Gaussian state, so the first moments together with
the covariance matrix elements V;; = (1/2{§; — g, 4; — q,}),
completely specify the quantum state [61]. Here ¢, = &,
g» = p, and g; = (§;), i =1,2. Simultaneous weak mea-
surements of both the position and momentum observables
of the quantum harmonic oscillator given the continuous
readouts r;(¢) for position measurement and 7, (¢) for momen-
tum measurement results in the following stochastic quantum
evolution of the quantum harmonic oscillator state (in dimen-
sionless units where X — /mw/hx, p — p/~/hmw,t — wt)
[45]:

dqi qs q4

Lo+ 21— q) + —=(r — qo),

1 =P 7 (ri—q1) 2 (r»—q2)

dq> q4 qs

7 - + 7 (r—q1)+ o (r — q2),

das _,, 4 4 1

dt YT 20 2m)

dl]4 _ _ q3q4 _ 4495

ar BT T T o

dgs a ¢ 1

bk I, PRI N - B 3
dt A v s ) )

The covariances are labeled by, g3 = 2((8%) — (£)?), q4 =
(&p+ px) — 2(%)(p), and g5 =2((p*) — (p)*). The read-
outs are stochastic variables, r; = g; + /7;i, Where ¢; are
a Gaussian white noise (due to quantum fluctuations)
satisfying (&;(t)¢;(0)) = 8(¢) and t; are the characteristic
measurement times, defined as inverses of the correspond-
ing measurement rates [45,62-65]. Work can be extracted
in the form of an instantaneous linear feedback Hamil-
tonian, Hfb = fit)X + f(t)p, where fo(t) = —2—Tl[r1(t) -
611(t)] — 35 [n@) — @@®)] and fi(t) = N @) — (O] +
212 [Y‘z(l) — qz(t)] (see Appendix E). Here g;, i =1,2 are
the predicted evolution of g; in the absence of measure-
ments, given by, §;(t) = q1(0)cost + g»(0)sint and ¢, (t) =
—q1(0)sint + g»(0)cost. A comparable measurements and
feedback scheme was also used in Ref. [66] to stabilize a
quantum analog of flywheel that stores energy like a battery
in its rotational motion.

We restrict to the case when t; = 1, = v, which pro-
duces coherent states of the quantum oscillator as measure-
ment outcomes and maximizes the engine’s efficiency (see
Appendix G). For the covariance matrix initialized in its nor-
mal form, V = diag{v, v} with a corresponding mean number
of thermal photons 7 = v — 1/2, the quantum measurement
induced evolution is such that it preserves the normal form
of the covariance matrix [45]. The work along an individual
trajectory obeys (in the Stratonovich form),

d(W/hw)
dt

=qi1q1 + @292 = o)+ Cz(t)]

o3 %
a)+—=

Wi

+ 6]2|: §2(t)] 4

2t 2[
The probability distribution of work extracted at arbitrary
finite time is given by,

PW/ho, 1) = — W 5
Wihe-) =20 eXp[ o(t)ha):|’ ©)
so the work extracted on an average is given by (W/hw) =
o (t)/t. The parameter o (t) equals v?(¢)dt if work is extracted
after every measurement of duration dt. If the controller de-
cides to apply feedback only after a duration ¢, the work
distribution corresponds to the case o(t) = fot dt'v*(t) in
Eq. (5). The nonzero average work results from rectifying the
quantum noise in the measurement process, and is nonzero
even at zero temperature (see Appendix F). The average power
J of the quantum measurement engine is given by,

J(t) = d(W/hw)/dt = v (1)/x, (6)

which serves as a useful quantity to infer the relation between
rate of information acquisition (the measurement rate) and
work extraction for the continuous measurement engine; work
is extracted at a faster rate as the measurement rate t~! is
increased. Further, a larger v(z) corresponding to a higher

thermal quanta in the initial state also allows higher power.

A. Steady state of the engine

The dynamical equations, which describe the evolu-
tion of covariance matrix elements are deterministic, and
they achieve the steady-state value, lim;s. v(¢) = 1/2. In
this limit, which is also the steady state of the quantum
measurement engine, the quantum measurement dynamics de-
scribes coherent state diffusion. The measurement engine also
achieves unit efficiency in its steady state; since the measure-
ment merely displaces the ground state (where v(t) = 1/2),
the feedback resets the engine perfectly, closing the engine’s
cycle.

B. Results

The characteristics of the continuous quantum measure-
ment engine are shown in Fig. 2. We first consider a situation
where work is extracted by applying a feedback after con-
tinuously measuring the oscillator for a finite duration 7.
Figure 2(a) displays a simulation of a single such trajectory,
which undergoes two types of dynamics; while the variance
decreases to its minimum uncertainty deterministically, the
average displacement diffuses as energy is added through
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FIG. 2. (a) A single quantum trajectory resulting from continuous quantum measurement of both position and momentum observables, for
a duration wt = 2.5. At time wt = 2.5 the oscillator is reset (blue arrow). (b) The probability distribution of extractable work if the feedback
is applied only once at wt = 1, from simulation of 10* trajectories. The red curve is the exact prediction for the probability distribution of
extractable work. (c) The average of extractable work when the feedback is performed only once at a given wt. (d) The average position and
momentum of the harmonic oscillator after every single step measurement, for a duration wt = 5. Here the oscillator is reset to the origin by
a feedback applied after each measurement with timestep wdr = 0.005. (e) The probability distribution of extractable work at wt = 1 from
simulation of 10* trajectories, for continuous feedback applied after every single step measurement. (f) The average power J delivered by the
engine per measurement rate T ', as a function of duration of the measurement. The engine reaches a steady state with unit efficiency in the
large time limit when the quadrature variances of the oscillator (which are identical), v(¢) tends to 1/2.

the measurement. After a time ¢ the oscillator is reset to
extract work. Figure 2(b) displays the probability distribution
of extracted work from the feedback step. The average work
extracted [Fig. 2(c)] increases with the duration of the mea-
surement. Subsequently, we consider the situation where work
is extracted after each step of the measurement. Figure 2(d)
displays the average position and momentum of the oscillator
after each measurement, which are then reset to the origin by
the feedback. Figure 2(e) displays the probability distribution
of extracted work. The average power J delivered by the
quantum engine in unit of the measurement rate = is shown
in Fig. 2(f), which decreases and reaches its steady-state value
as the quantum oscillator is purified by measurements.

IV. CONCLUSIONS

We have characterized a quantum engine fueled by si-
multaneous quantum measurements of both position and
momentum observables of a simple harmonic oscillator. We
discussed two protocols for operation of the engine, re-
spectively powered by single-shot and continuous quantum
measurements. In both cases, the measurement produces a
displaced ground state of the quantum oscillator, and work
is extracted by shifting the bottom of the harmonic trap
suddenly. When compared to their classical counterpart, the
quantum engines yield nonzero work output even at zero
temperature, demonstrating the energetic consequence of the
quantum of noise added when both quadratures are measured
simultaneously; at zero temperature the nonzero work output
results from the feedback utilizing the quantum of energy

inserted by the phase preserving measurement [44,47,51-55].
We also derived exact analytical expressions for the proba-
bility distributions of extractable work in both transient and
steady state of the quantum engine. The availability of exact
probability distributions of extractable work may further aid
research towards thermodynamically characterizing quantum
measurement engines, and derive quantum fluctuation theo-
rems for quantum engines and refrigerators fueled solely by
the quantum measurement process [13,14,38,67,68].

Note added. Recently, we became aware of a closely re-
lated preprint [39] investigating work extraction from thermal
resources using phase sensitive measurements, as opposed to
the phase preserving measurements discussed in the present

paper.
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FIG. 3. Cyclic operation of the classical Brownian heat engine
[40,41]. (a) The Brownian particle in a harmonic trap is initially
thermalized to a heat bath at temperature 7. (b) The demon measures
position of the Brownian particle. (c) Work is extracted by displacing
the trap conditioned on the measurement outcome.

APPENDIX A: BROWNIAN HEAT ENGINE

The classical limit of the engine is described by a
Brownian particle in a harmonic trap, whose position x is
distributed according to the equilibrium distribution P(x) =

,/ﬁ exp (— %), where k is the spring constant, kg is
Boltzmann’s constant and T is the temperature of the heat bath
(see Fig. 3) [40,41]. A Maxwell’s demon extracts work from
the heat bath by measuring the particle’s position x, followed
by shifting the bottom of the harmonic trap suddenly to the
new position of the particle. If the measurement performed
is error free with ideal feedback, it is possible to convert
all the available information to extractable work, W = kx?2 /2
[40]. The demon in this case extracts work on an average,
(W) = kgT/2 per cycle, which also saturates the achievable
upper bound for extractable work by moving the trap in the
classical Brownian engine limit [40].

APPENDIX B: ENERGY CONTRIBUTED
BY MEASUREMENT

The unconditional state of the quantum oscillator after a
coherent state basis measurement (implemented by a simul-
taneous weak measurement of both position and momentum
quadratures, also known as a phase-preserving measurement)
can be written as,

pa = /dzaQ(a>|a><a|, (B1)

where Q(a) = ﬁe“"‘z/“*’_’), is the Husimi Q distribution
[50] of a thermal state [denoted as Py in Eq. (1) of the main
text] with average number of thermal quanta 7. We can now
compute the average number of quanta in the unconditional

postmeasurement state p, given by,

(N)a = tr{paN} = tr[paa’al = / d*aQ(@)|a* =i+ 1.

(B2)
We find that the measurement, on an average, adds one
quantum of energy to the oscillator, which is then perfectly
extracted in the feedback step. The additional quantum in
QO(x) stems from the fact that the coherent state basis is
over-complete; even measurement of the vacuum state will in
general yield a coherent state with finite «.

Note that the addition of single quantum is a generic
property of coherent state basis measurements. which can be
implemented by a simultaneous weak measurement of both
position and momentum of the quantum particle [44]. To see

this, we can write an arbitrary initial quantum state p in the P
representation as using the coherent state basis |8),

p= /dzﬁP(ﬁ)lﬂ)(ﬂl- (B3)

The P representation can be derived from the initial den-
sity matrix p in different equivalent ways, for instance see
Ref. [69], where it is defined as,

AP

PB)=—

— | (=vlely) explly” + By" = B'y)dy,

(B4)
where |y) are again coherent states. The different equivalent
P representations of p are constrained to obey the optical
equivalence theorem for the density matrix p for the expec-
tation value of any normally ordered operator: ((a')'a™) =
trlp(a’y'a™ = [d*BP(B)(B*)"B™. As an example, the aver-
age number of quanta in the initial density matrix p maybe
computed using the P function as, Ny = (ata) = tr[pa’al =
fdz,BP(,B)Lt‘}l2 =n. The P function for a coherent state
|} (| is the § function, P(8) = 6(8 — «) and a P representa-
tion for a thermal state with average number of thermal quanta
iis, P(B) = = exp(—|BI? /).

On the other hand, performing a measurement in the coher-
ent state basis produces coherent states |«) with probability
Ola) = %((xl pla), which is known as the Q representation
of the density matrix p. The unconditional post measurement
state p4 can be written as the following ensemble where the
probabilities are given by the O function [50,70]:

pa = / PaQ@a)al. (BS)

So a method to probe the Q function of a quantum state ex-
perimentally is to perform measurements in the coherent state
basis [47]. We now proceed to compute the average quanta
in the postmeasurement state. In order to do that, we can
relate the Q function (which appear as the probability density
describing the postmeasurement state) to the P function via
the transformation rule [70]: Q(a) = nlfdzﬂP(ﬂ)e"“”g‘z,
and write,

pa = / h(% / dzﬁP(ﬁ)e""“ﬁ'z)IM(al- (B6)

The average number of quanta in the unconditional post mea-
surement state is, (N)4 = tr[psa’a]. This can be evaluated by
changing the order of integrals as,

(N)4 = tr[paa’al = % / d*BP(B) / dPae”l Pl |

= /dzﬁP(ﬁ)(l + 1B =1+n, (B7)

where 7 is the average quanta in the state prior to mea-
surement. Clearly, this extra quantum comes from the
measurement process, and the addition of a quantum of noise
is in the same spirit as how it is typically described as added
to the variance of quadratures after the measurement, as dis-
cussed in Refs. [44,47]. Here we look at the change in the
mean quanta instead, which is the observable relevant to the
engine’s energetics.
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FIG. 4. The efficiency of the engine in the binary feedback
n' = (W’)/Q, as a function of the average number of thermal photons
in the initial state 7z and ry. The dashed black line indicates the
contour line of maximum 7" : n,, (71, ry) ~ 0.85.

APPENDIX C: BINARY FEEDBACK

The engine’s implementation with single-shot measure-
ments and a binary-valued feedback is as follows:

(1) Step (a)—(b) are identical to that discussed in the main
text.

(2) Step (c) (work extraction): When the amplitude of the
measured coherent state is greater than ry/2, work is extracted
by shifting the trap to rp, and the system is let to thermalize.
Otherwise, no action is performed. The work extracted is
zero if r < rp/2 and the work extracted is hw(2rry — rg) for
r=ry/2.

The average work extracted in this protocol is,

2 [e%e]
W'y = ho / de / rdrP(r, it)(2rro — 1§)
0 ro/2

= ro
= howrgy/ (1 + 1) erfc———. Cl1
vt mete; s b

Here erfe(u) = 2n~1/2 [ e dy. The efficiency is less than
that of the continuous feedback scheme, ' = Wy 1, and

has a maximum, n;,, = 0.85 (Fig. 4). The classical analog of
this protocol is presented in Ref. [41].

APPENDIX D: COST OF MEMORY ERASURE
AND THE EFFICIENCY OF THE ENGINE

Here we first discuss Landauer erasure in the binary feed-
back protocol discussed above. The memory in this example
behaves essentially like a logical bit, with states L or R, in-
dicating if the particle is to the left of ry/2 or to the right of
ro/2. The minimum energy cost to erase the memory can be
accounted by the Landauer’s bound as [71],

W = kgTpH (po). (D1)

Here H(po) = —polog po — (1 — po)log (1 — po), where we
have defined py as the concatenated probability of finding the
particle to the right of ry/2:

00 2
Po = /d@/ rdrP(r, i) = e i, (D2)
Fg/z

The Shannon entropy is indeed bounded from above by log 2
as expected for a classical bit memory. The efficiency n/ of
the thermodynamic cycle can now be computed,
g = WO =W _ V) —kaTol (o)
Q Q
We now look at continuous measurement examples where
at each step both the information stored, and the feedback
are continuous valued. The associated probability density
is P(ry1, r»), where rq, r, are the readout variables. As an
extension of the above example, we consider a countable
discretization for the probability distribution of the readouts
P(rii, r;) where the sampling is done according to bins
around points r;, 2; having bin area 82 such that,

. (+1)8 pG+DS
P(ris, 12))8 = / / dridryP(ri,r2), (D4
is s

by the mean value theorem [72]. Here 8% can be related to
the resolution of the detector. The entropy of this discrete
probability distribution is given by,

H(P)=— 25275(7’11', raj)log [P(rii, r2;)8°]
iJ
==Y 8P(rii, r2)log [P(r1z. 12))]
iJ
— Y " 8P(rii. 12) log 8.

iJj

(D5)

Assuming P(r, r,)log P(ry, rp) is Riemann integrable, we
note that the first term — Zi’j 82P(ri;, r2;)log Pri, rj) —>
— [dridryP(ry, r2)10g P(ry, r,) = H(P) when § — 0. We
also note that )=, ; 8*P(rii, r2;) = 1. Therefore for a dis-
cretization into squares of area 82, the associated Shannon
entropy scales approximately as, H(P)= H(P) — log§>
[72]. The efficiency of the thermodynamic cycle at each step
becomes,

W) = Wees _ (W) — ksToH(P)
) g

where (W) is the average work extracted at each step.

(D6)

nr =

APPENDIX E: CONTINUOUS FEEDBACK

The work extraction protocol is essentially a linear feed-
back stabilization protocol for the quantum oscillator. The
effect of a linear Hamiltonian Hy, = f1X 4+ fop on the quan-
tum mechanical averages of X and p when measurements are
done continuously is,

dq qs q4

7 - + o (rn—q)+ n (r2 —q2) + f,

dqr q4 qs

2 _ o+ 2 - L ) —fi, (Bl
7 q + 20 (r—q1)+ n (rn—q)— fi, (ED

where g, = (&) and ¢, = (p). Therefore we can choose
the amplitude of the linear feedback Hamiltonian,
L) ==L — a1 ] — En@) — @) and

fi@) = (@) = (O] + £ [ra) = @2(0)] such that the
unitary evolution resulting from feedback effectively cancels
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the measurement back-action on the quantum state. Here
gi, i = 1,2 is the predicted evolution of ¢g; in the absence of
measurements, given by, g;(t) = q1(0)cost + ¢g»(0) sint and
¢>(t) = —q1(0)sint + g»(0) cost, in units where t — wt.

APPENDIX F: WORK EXTRACTED ON AVERAGE
IN THE CONTINUOUS MEASUREMENT PROTOCOL

As discussed in the main text, the work extracted along an
individual quantum trajectory in the continuous measurement
protocol satisfies the following stochastic equation:

dW/h . .
(—d/t ®) =qq1 + P9 = q1 [%{1@) + 2\/—42(”}

+ 1)+ t F1
%[ ffl() fiz( )} (F1)

We further assume initial conditions ¢;(0) = g»(0) =0
and ¢3(0) = g5(0), g4(0) =0. As a result, the extractable
work at arbitrary time ¢ is the integral, W(¢)/liw =

fo dt'[qi(t )’“(’ )51 @+ g (' )‘15(’ )gz(t )]. The above integral
is cast in the Straton0v1ch form and can be discretized as,

/ dl/[@l(f/)%(t )Cl(f/) + QZ(I/)%O )Cz(f/)}
0

2T 2T
/ N—-1 N—-1 i
q1+q i A q2+q“ P
Z g5¢] + Z 45

(F2)

Here ¢5(t'), gs(t’) are the quadrature variances, which evolve
deterministically according to Eq. (3) of the main text. We

can now use the relations, q’ﬁ'l =q| +dt' (g5 + i]f 1), and

& =qh +dt'(—¢) + 2’1—15552") (together with the observation
that the stochastic averages of terms which are linear in ¢
vanish, and ¢?dt’ = 1 by Ito’s rule) in order to compute the
stochastic average of extractable work. We have,

dir =24} +dr' (s + 5¢))
(W/hw)=<2 : (22 2 l)qézf
Vg
L Nz‘:‘ZCJHdl/(— | ﬁ;iﬁ)qigi>
552 [»
2T S 2
dt/N 1

1 t
%—/ dt'v(d' ).  (F3)
T Jo

Above we have defined v(t') = g3(t')/2 = gs(t')/2, when
q3(0) = ¢5(0), and ¢4(0) =0. It follows that work is
extracted at arate, d (W/hw) /dt’ = v?(t')/ 7. The above calcu-
lation also shows that the extracted work originates from the
noise due to quantum fluctuations in the simultaneous quan-
tum measurement process, with each quadrature measurement
channel contributing work at a rate v2(¢')/(27).

Ito interpretation

The extracted work is given by, W/hw = (q% + q%)/Z =
f(q1, q2)- Using Ito’s lemma, we have,

O 4o af 82f
df = —2dt' + ~dq, + ——d
F= 5™ T o o, qz+2aq2
192f 3%f
———dg> dq.d F4
+2aq§ q2+aqlq2 q1dq> + (F4)

d d af 92
Also note that dtf, =0, m{] =q1: 5, =d2 5 f = a—f;
?2f

g = 0. We can also use the coordinate equatlons in the Ito
form, given by:

1 and

dq1 = —=dWs,
\/_ \/_
and
qs
d —qidt’ dWw, + dW,. F5
q2 qidt’ + 2f 1+ NG 2 (F5)
Here W,, i =1, 2., are the Wiener increments. Substituting
in Eq. (F4), we get the following differential:
df = q <Qth + —dWl )
27 f
+612(—Q1dt,+ dW1 sz)
1 2
dr’ —dW —dW,
(o o )
2
+ ( qldt + —dWl sz) ]
(F6)
We are interested in the case when ¢3(0)=
gs(0), and ¢4(0)=0 [leading to ¢3(')=g¢qs(t')=

2v(t'), and q4(t') = 0]. Further we use dW? =dt' and
keep terms of order dt’ or less to obtain,

2 2

q3 / qS /

df = —dW ——dW —dt —dt
If = qi 1+ @5 7= \/— h+ = > (4t + )

27T 4z
v(t')? 41953 9295
=L g+ 1By dW;. F7
Y AW+ S, (F7)

The drift terms vanish upon stochastic average, demonstrating
that the average power J delivered by the engine is J(¢t') =
”(’ ” the unit of energy, iiw, is implicit in the energy (power)
deﬁn1t1on J.

APPENDIX G: EFFICIENCY OF THE ENGINE
WITH CONTINUOUS FEEDBACK

We define the stochastic energy of the quantum
oscillator as Q/hw = H/hw —1/2 = ((p?) + x?))/2
= [var(x) 4 var(p) + (x)> + (p)*1/2 = 1/2 = (¢ + 43)/2 +
(g3 +g5)/4 —1/2 =W/ho + (g5 + g5)/4 — 1/2. We have
identified the energy stored in the displacement as extractable
work, W. The subtracted half corresponds to the zero-point
energy of the quantum oscillatorr When 11 =1, =71,
q3(t) = qs5(t) =2v(t), and g4(t) =0. In this case we
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FIG. 5. The efficiency of the engine in three cases, 7, = 71, T, =
0.97y, and 1, = 1.27;, averaged over 10* quantum trajectories. We
note that unit efficiency is reached in the steady state when 7, = 1.

obtain,

>t

Q/hw =W/ho +4v(t)/4 — 1/2 — W/ho, (GD)

since in the steady state (f > t) we have lim,s., v() = 1/2.
We thus notice that in the continuous feedback case, when
work is extracted after each measurement, the extracted work
W — Q in the long time limit, demonstrating that the work
conversion efficiency of the engine n = W/Q — 1. Here the
energy extracted as work differs from the average Hamiltonian
change for the quantum oscillator in the transient regime,
which includes energy stored in the variances of X and p
that evolve according to Eq. (3). Moving the bottom of the
trap, which extracts part of the average Hamiltonian change as
work, preserves the variances. Extracted work becomes equal
to the average Hamiltonian change in the steady state, when
the variances reach their fixed point values. The efficiency of
the engine in three cases, 7, = 71, 7, = 0.97y, and 1, = 1.274
are shown in Fig. 5. We note that unit efficiency is reached in
the steady state when 1, = 1.
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