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We propose an approach toward understanding the spin glass phase at zero and low temperature by studying
the stability of a spin glass ground state against perturbations of a single coupling. After reviewing the concepts
of flexibility, critical droplet, and related quantities for both finite- and infinite-volume ground states, we study
some of their properties and review three models in which these quantities are partially or fully understood. We
also review a recent result showing the connection between our approach and that of disorder chaos. We then
view four proposed scenarios for the low-temperature spin glass phase—replica symmetry breaking, scaling-
droplet, TNT, and chaotic pairs—through the lens of the predictions of each scenario for the lowest-energy
large-lengthscale excitations above the ground state. Using a new concept called σ -criticality, which quantifies
the sensitivity of ground states to single-bond coupling variations, we show that each of these four pictures can
be identified with different critical droplet geometries and energies. We also investigate necessary and sufficient
conditions for the existence of multiple incongruent ground states.
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I. INTRODUCTION

Despite years of intensive investigation the nature of the
low-temperature phase of short-range spin glasses remains
unsettled. Among other open questions, two of the most im-
portant center on properties at zero temperature: specifically,
the number of ground states and the nature of low-lying
excitations above them. Ground-state multiplicity is an es-
sential feature required for the correct characterization of
the zero-temperature thermodynamics of spin glasses (and
perhaps counterintuitively, plays an important role in influ-
encing nonequilibrium dynamics following a deep quench
[1–4]), while large-lengthscale, low-energy excitations above
the ground state at zero temperature are important in deter-
mining the thermal properties of the spin glass phase at low
but nonzero temperatures.

In this paper we introduce and develop a new approach
to understanding ground-state properties, by focusing on
ground-state stability with respect to coupling perturbations.
Some of the concepts used in this paper have appeared in
earlier work [5–8], but so far they have not been integrated
into a unified picture.

We will see that the concept of disorder chaos [8–13] is re-
lated to the approach used here, though disorder chaos focuses
on the behavior of a ground state when all of the coupling
values have changed by a small, usually random, amount. In
this paper we focus instead on the behavior of a ground state
when a single coupling value is changed—in a direction to

destabilize the ground state—by an arbitrary amount. The first
question that naturally arises is, by how much does one need
to change the coupling value at an arbitrarily chosen edge to
cause a droplet flip (i.e., the uniform reversal of a subset of
spins in an Ising model)? If the coupling distribution has finite,
O(1)-variance, then one can easily prove an O(1) upper bound
for the change required.

So if we then destabilize the ground state by making an
O(1) change to a single coupling in an infinite system, how
large can the resulting change be? One might naturally expect
that any such change should be local, involving the overturn-
ing of O(1) spins. This is almost certainly true for most edges
(if not all) in the Edwards-Anderson (EA) spin glass [14]
in any dimension greater than one. (We will see however in
Sec. III C that this is not true in one dimension for any edge,
but for a trivial reason special to 1D.)

But a droplet flip containing O(1) spins need not neces-
sarily be the case for all edges in all dimensions. In fact, the
most interesting case to consider is one where an O(1) change
in the coupling value at a single edge leads to a complete
transformation of an infinite-volume ground state σ , to a
new ground state σ ′ with nontrivial spin and edge overlap
with σ . This property is one example of what we will call
“σ -criticality.”

The question then becomes, could such edges even exist?
We will see not only that as of now the answer is yes in
principle, but that they must occur in any dimension in which
the replica symmetry breaking (RSB) picture might hold.
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As already noted, the method used in this paper is to
consider a spin glass ground state when all couplings are held
fixed but one. As we have discussed elsewhere [5–8] (but will
review in Sec. II), in any ground state every edge has a single
coupling value, called its critical value, which is determined
by all of the other coupling values except for that associated
with the edge in question. On either side of an edge’s critical
value there are two distinct ground states differing by a droplet
flip whose boundary passes through that edge. We refer to this
as the critical droplet of the edge in that particular ground
state.

For a fixed coupling realization, and a specific ground
state consistent with that realization, every coupling value is a
certain distance (on the real line) from its edge’s critical value;
we refer to this distance as the coupling’s flexibility [5–8]. A
ground state can be characterized by the collection of all its
flexibilities; these and critical droplet size distributions will
be the objects of our study.

The plan of this paper is as follows: in Sec. II we introduce
basic concepts and definitions related to finite-volume ground
states, critical droplets, and flexibilities and discuss some of
their properties. In Sec. III we introduce the zero-temperature
periodic boundary condition metastate and extend the dis-
cussion of Sec. II to infinite systems. We also discuss three
spin glass models in which critical droplet geometries are
completely or partially understood. In Sec. IV we examine
the connection between critical droplets, disorder chaos, en-
ergy fluctuations, and ground-state multiplicity. In Sec. V we
review some of the main conjectured scenarios for the low-
temperature spin glass phase and classify them in terms of
their predicted lowest-energy large-lengthscale excitations.

Sections II through V provide the necessary background,
concepts, and terminology needed for subsequent sections.
Although some of the material in Secs. II–V is new, most of
the results cited in those sections have been published, though
in a scattered, piecemeal fashion [5–8]. The remaining sec-
tions consist entirely of new results. In Sec. VI the concept of
σ -criticality is defined and it is proved that this property holds
for space-filling critical droplets. In Sec. VII we examine
some consequences of the possible presence of σ -criticality
in spin glass ground states, including its effect on ground-state
multiplicity. In addition, a new translation-invariant measure
for classifying ground states is proposed and its properties
studied. In Sec. VIII we establish the connection between σ -
criticality and interfaces between ground states in the replica
symmetry breaking picture of the spin glass phase, and use
this to prove a theorem on ground-state multiplicity in the
RSB picture. In Sec. IX we use σ -criticality to find necessary
and sufficient conditions for ground-state multiplicity to arise
more generally. We summarize our results in Sec. X with a
focus on how each of the four pictures of the spin glass phase
presented in Sec. V corresponds to its own category of critical
droplet geometries and, through the concept of σ -criticality,
type of ground-state stability/instability.

II. GROUND STATES AND CRITICAL DROPLETS

In this paper we focus on the Edwards-Anderson (EA)
nearest-neighbor Ising spin glass model [14] in zero magnetic

field on the d-dimensional cubic lattice Zd :

HJ = −
∑
〈x,y〉

Jxyσxσy, (1)

where σx = ±1 is the Ising spin at site x and 〈x, y〉 denotes an
edge (or “bond”—we will use the two terms interchangeably)
in the (nearest-neighbor) edge set Ed . The couplings Jxy are
independent, identically distributed continuous random vari-
ables chosen from a distribution ν(dJxy), with random variable
Jxy assigned to the edge 〈x, y〉. Our requirements on ν is that
it be supported on the entire real line, is distributed symmet-
rically about zero, and has finite variance; e.g., a Gaussian
with mean zero and variance one. We denote by J a particular
realization of the couplings.

A finite-volume ground state is the lowest-energy spin
configuration in a finite volume �L with a specified bound-
ary condition; here the sum in Eq. (1) is restricted to edges
touching at least one site entirely within �L (that is, the sum
includes not only edges with both sites entirely within �L

but also edges having one site in �L and a nearest-neighbor
site on the boundary ∂�L). We will always choose �L to
be a cube of side L centered at the origin. If the boundary
condition is spin-symmetric, such as free or periodic, then
given the spin-flip symmetry of the EA Hamiltonian, ground
states will come in spin-reversed pairs; we discuss this further
in Sec. III A.

An infinite-volume ground state is defined by the condition
that its energy cannot be lowered by flipping any finite sub-
set of spins. That is, if σ denotes an infinite-volume ground
state (always defined with respect to a specific J , though this
dependence will be suppressed for notational convenience),
then

ES =
∑

〈x,y〉∈S

Jxyσxσy > 0, (2)

where S is any closed (d − 1)-dimensional surface (or contour
in two dimensions) in the dual lattice; i.e., S is a surface
completely enclosing a connected set of spins (a “droplet”).

(One quick remark about notation before moving on:
strictly speaking, it is the dual bond 〈x, y〉∗, not 〈x, y〉 itself,
that belongs to S, which is a surface in the dual lattice. How-
ever, because the sum in Eq. (2) is over sites and edges in
the original lattice, we abuse notation somewhat and write
〈x, y〉 ∈ S in the sum. This should be understood as meaning,
“sum over edges in the original lattice whose duals belong
to S.”)

The inequality in Eq. (2) is strict since, by the continuity
of ν(dJxy), for a pair (J, σ ) there is zero probability of any
closed surface having exactly zero energy in σ . The condition
Eq. (2) must also hold for finite-volume ground states for any
closed surface completely inside �L. It is then not hard to
show that an alternative (and equivalent) definition, which we
also sometimes use, is that an infinite-volume ground state is
any convergent limit of an infinite sequence of finite-volume
ground states.

The notions of critical droplets and flexibilities were
introduced in Ref. [5] and arise most naturally from the
construction of the excitation metastate, also introduced in
Ref. [5] (see also Refs. [6–8]). Here we avoid technical-
ities and introduce these concepts without bringing in the
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excitation metastate; the reader is referred to the above ref-
erences for a fuller discussion. (For a complete and fully
rigorous definition of critical droplets and related notions
using the excitation metastate, see Refs. [5–8]). For fixed
coupling realization J , consider a finite-volume ground state
σ> and a specific edge 〈x, y〉 with coupling value Jxy. For ease
of discussion suppose Jxy = K > 0 in J and that it is satisfied
in σ>. Hold all coupling values fixed except for Jxy. For
increasing values of Jxy > K , σ> only becomes more stable
and remains unchanged. The ground state σ> will also remain
unchanged (though with decreasing stability) for a finite range
of values of Jxy below K . Eventually, below some (positive
or negative) value Jxy = Jc < K , the ground state becomes
unstable and a droplet of spins will overturn, leading to a new
ground state σ<. It is easy to see that decreasing Jxy further
below Jc now increases the stability of σ<.

The conclusion is that this procedure—i.e., all couplings
but Jxy held fixed and Jxy varying from −∞ to +∞—leads
to a pair of ground states σ> and σ<, differing by a droplet
flip, as follows: there is a critical value Jc, determined by all
couplings except Jxy, such that for Jxy > Jc, the ground state is
σ>, while for Jxy < Jc, the ground state is σ<.

What happens exactly at Jc? It is not hard to see that
precisely at that value, in both σ> and σ<, there will be a
(shared) unique closed surface S0 in the dual lattice which
includes the dual edge 〈x, y〉∗ and has precisely zero energy as
defined by Eq. (2), with every other surface in the dual lattice
having strictly positive energy.

We refer to the volume (or equivalently, set of spins),
enclosed by this zero-energy (precisely at Jc) surface S0 as the
critical droplet of 〈x, y〉 in (J, σ>). For our original (J, σ>),
the critical droplet boundary S0 is the closed surface which
includes 〈x, y〉∗ with least energy ES0 in the original J . It
follows that, in both σ> and σ<, S0 is the lowest-energy
dual lattice surface containing 〈x, y〉∗ for any value of Jxy (as
always, with all other couplings held fixed to their original
values in J). Moreover, though ES0 depends on the value Jxy,
it is always positive in the corresponding ground state (i.e., σ>

or σ<), except at Jc where it is zero in both.
While the discussion above assumed that Jxy was originally

positive and satisfied in σ , the conclusions hold in general. A
more formal treatment [5,6] using metastates shows that all of
the properties described above survive in the infinite-volume
limit and therefore hold also for infinite-volume ground states;
the only difference (but an important one!) is that in infinite-
volume ground states a critical droplet can be either finite
or infinite in extent. Any finite critical droplet consists of a
connected set of spins, but that need not be true in the infinite
volume limit. We defer further discussion of infinite critical
droplets (which play an important role in what follows) to
Sec. III B.

Based on this discussion, we can now define the concepts
of critical droplets and flexibilities. We begin by considering
the EA model in a finite volume �L.

Definition 2.1. Consider the ground state (or ground-state
pair, to be discussed in Sec. III A) σL for the EA Hamilto-
nian Eq. (1) on a finite volume �L with boundary conditions
chosen independently of J . (For ease of discussion we restrict
attention to simple, commonly used boundary conditions,
such as free, periodic, antiperiodic, or fixed.) Choose an edge

(or bond) bxy = 〈x, y〉 with x, y ∈ �L. Consider all closed
surfaces in the dual edge lattice E∗

L which include the dual
bond b∗

xy. By Eq. (2) these all have positive energy; moreover,
because of the continuity of ν(dJxy) there are no “ties” in these
energies. Therefore, there exists a closed surface ∂D(bxy, σL ),
passing through b∗

xy, of least energy in σL. We call ∂D(bxy, σL )
the critical droplet boundary of bxy in σL and the set of spins
D(bxy, σL ) enclosed by ∂D(bxy, σL ) the critical droplet of bxy

in σL.
Remark. Critical droplets are defined with respect to edges

rather than associated couplings to avoid confusion, given
that we will often vary the coupling value associated with
specific edges, while the edges or bonds themselves are fixed,
geometric objects.

Definition 2.2. The energy E [J, D(bxy, σL )] of the critical
droplet of bxy in σL for coupling realization J is defined to be
the energy of its boundary as given by Eq. (2):

E [J, D(bxy, σL )] =
∑

〈x,y〉∈∂D(bxy,σL )

Jxyσxσy. (3)

Definition 2.3. The critical value of the coupling Jxy as-
sociated with bxy in σL is defined as the value of Jxy, where
E [J, D(bxy, σL )] = 0, while all other couplings in J are held
fixed.

Remark on notation. As mentioned earlier, the critical value
of the coupling bxy in σL is determined by all of the couplings
in EL except Jxy; for further discussion on this point, see
Refs. [5–8]. In later sections we will use this fact to study how
the critical droplet energy of bxy changes when Jxy is varied
while keeping all other couplings fixed. For this reason, to
avoid confusion we hereafter drop the explicit dependence of
droplet energy on J , which is understood, and simply write
E [D(bxy, σL )].

Remark. The definition of critical droplets is not restricted
to closed surfaces entirely within �L; i.e., it is possible for a
critical droplet to reach the boundary ∂�L, with the proviso
that the droplet, if overturned, must still obey the imposed
boundary conditions. Hence, a critical droplet reaching the
boundary is ruled out for fixed boundary conditions but is
allowed for free, periodic, or antiperiodic boundary condi-
tions. In the case of free boundary conditions, a critical droplet
reaching the boundary will not be a closed surface within �L

(excluding ∂�L); if it touches two separate faces of ∂�L it
would then divide the spins in �L into two disjoint com-
ponents both of which extend to the boundary. For periodic
boundary conditions, the critical droplet boundary is a closed
surface enclosing a connected droplet of spins in the equiv-
alent d-dimensional torus, but both surface and droplet can
appear disconnected when viewed within the cube �L.

We complete this section by introducing the flexibility
f (Jxy, σL ) for fixed coupling realization J .

Definition 2.4. For fixed J , let Jxy be the coupling value
of the bond bxy and Jc(bxy, σL ) be the critical value of bxy

in σL. We define the flexibility f (bxy, σL ) of bxy in σL to be
f (bxy, σL ) = |Jxy − Jc(bxy)|. (Dependence of flexibility on J
is suppressed for ease of notation, but is understood.)

Remark. The flexibility, as briefly discussed in the Intro-
duction, is the distance of a coupling’s value in a realization
J from its critical value in a specified ground state. It is
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therefore in some sense a measure of the stability of σL. More
precisely, it measures the sensitivity of a ground state at a
particular edge as a function of the couplings: the larger the
flexibility, the more stable is the ground state under changes of
the edge’s coupling value. Hence, the flexibility, as opposed to
the critical droplet, is defined with respect to couplings rather
than edges because, unlike its critical droplet, the flexibility of
an edge depends on its associated coupling value in J . (Note:
the definition of flexibility given here differs by a factor of
two from that given in Ref. [8], where flexibility of a coupling
was defined as the energy cost of its critical droplet flip in the
original J .)

Remark. It was noted following the definition of the critical
value Jc of a bond bxy with coupling value Jxy that Jc is
determined by all couplings in J except Jxy. Because couplings
are chosen independently from ν(dJxy), it follows that the
value Jxy is independent of Jc. Therefore, given the continuity
of ν(dJxy), there is zero probability in a ground state that any
coupling has exactly zero flexibility.

It follows from the definitions above that

f (bxy, σL ) = E [D(bxy, σL )]. (4)

Therefore, couplings which share the same critical droplet
have the same (strictly positive) flexibility.

From Definitions 2.1–2.4 some simple properties of critical
droplets and flexibilities can be immediately deduced. We col-
lect these in the following two lemmas, which will be useful
in later sections.

Lemma 2.5. Consider two distinct edges b1 and b2 and a
finite-volume ground state σL. Then:

(a) If f (b1, σL ) > f (b2, σL ), then b1 cannot belong to
∂D(b2, σL ). (b2 may or may not belong to the critical droplet
boundary of b1).

(b) If b1 ∈ ∂D(b2, σL ) and b2 ∈ ∂D(b1, σL ), then b1 and b2

share the same critical droplet. Equivalently, if two bonds have
equal flexibilities, they share the same critical droplet.

Proof. (a) This is an elementary consequence of Eq. (4)
combined with the fact that for any edge 〈x, y〉, its critical
droplet boundary is the closed surface of minimum energy that
includes 〈x, y〉.

(b) From (a), b1 ∈ ∂D(b2, σL ) implies that f (b1, σL ) �
f (b2, σL ), and b2 ∈ ∂D(b1, σL ) implies that f (b2, σL ) �
f (b1, σL ). Therefore, f (b1, σL ) = f (b2, σL ). Using Eq. (4),
we then have E (D(b1, σL )) = E (D(b2, σL )). But by the conti-
nuity of the coupling distribution, there is zero probability that
any two distinct bounded surfaces have identical energies. The
result then follows.

Lemma 2.6. If the flexibility of any edge is lowered (by
changing its coupling value) but remains positive in σL, then
the flexibility of any other edge in σL is either also lowered
(by the same amount) or else remains unchanged.

Proof. Choose an arbitrary bond b0 with coupling value
J0 in J and critical value Jc in σL. Without loss of generality
let J0 > Jc. Changing the initial coupling value J0 to a lower
value J (b0) with J (b0) ∈ (Jc, J0) lowers the flexibility of b0

without affecting σL. The question then becomes whether it
affects the flexibilities of other bonds in σL. Changing the
value of J (b0) can affect only the flexibilities of bonds bi with
b0 ∈ ∂D(bi, σ ), so let us consider such a bond. Using Eq. (3)

we have

E [D(bi, σL )] =
∑

〈x,y〉∈∂D(bi,σL )

Jxyσxσy = J (b0)

+
∑

〈x,y〉∈∂D(bi,σL )\b0

Jxyσxσy. (5)

Using Eq. (4) the flexibility f (bi, σL ) is then

f (bi, σL ) = E [D(bi, σL )]=J (b0) +
∑

〈x,y〉∈∂D(bi,σL )\b0

Jxyσxσy.

(6)

Therefore, in the process of lowering J (b0) without passing its
critical value, f (bi, σL ) is also lowered without any change in
σL, and the amount by which it is lowered is the is the same
for any bi satisfying b0 ∈ ∂D(bi, σ ). This proves the lemma.

The discussion above has been confined to finite-volume
ground states. Before extending these ideas to infinite-volume
ground states, it is helpful to introduce the periodic bound-
ary condition metastate, which will be done in the following
section.

III. METASTATES AND CRITICAL DROPLETS
IN INFINITE-VOLUME GROUND STATES

A. The zero-temperature periodic
boundary condition metastate

We have argued in earlier papers that a natural setting
for studying the equilibrium thermodynamics of inhomoge-
neous systems is the metastate [15–21], and we will use
that setting here. The metastate of interest in this paper is
the zero-temperature periodic boundary condition metastate,
denoted κJ (σ ) (or often simply κJ ), which is a probability
measure on infinite-volume ground states σ induced by an in-
finite sequence of volumes with periodic boundary conditions.
This “ground-state metastate” is a simpler construct than the
excitation metastate mentioned in Sec. II, which contains
all thermodynamic information that can be generated in the
ensemble of all volumes and which as noted earlier will be
omitted from the present discussion.

A quick note before proceeding: because both periodic
conditions and the Hamiltonian Eq. (1) obey spin-flip symme-
try, the finite-volume ground states generated in each volume
appear as spin-reversed pairs σL and σL(= −σL), so hence-
forth a general ground-state label α should be understood to
refer to a mixed thermodynamic state consisting of a pair of
spin-reversed ground states (α, α) each with weight 1/2. It is
easily seen that for any edge, any spin-reversed pair of ground
states share the same critical droplet and flexibility.

There are two independent constructions of metastates, one
initially constructed for random-field magnets [15] and one
initially constructed for spin glasses [16]; both constructions
are sufficiently general that they can be used for a wide variety
of applications, such as mean-field Curie-Weiss ferromagnets
with random couplings [22,23], neural networks [22,24], and
other disordered systems. It was proved in Ref. [17] that there
exists an infinite sequence of volumes, chosen independently
of J , for which the two constructions give an identical metas-
tate, and so either method can be used to construct the κJ

introduced above.
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In the approach of Ref. [15], one considers for each �L

with periodic boundary conditions the random pair (JL, σL ),
where JL is the restriction of J to EL, and takes the limit (using
compactness) of these finite-dimensional distributions along a
J-independent subsequence of L’s. This yields a probability
distribution κ on infinite-volume (J, σ )’s which (given the use
of PBC’s) is translation-invariant under simultaneous lattice
translations of J and σ . The ground-state metastate is then
the conditional distribution κJ of κ given a fixed J , and is
supported entirely on GSP’s for that J .

The physical nature of the metastate is perhaps more trans-
parent using the alternative construction of Ref. [16]. Consider
an infinite sequence of volumes �L1 ,�L2 . . . all centered at
the origin and with with L1 � L2 � . . . such that Lk → ∞ as
k → ∞. The zero-temperature PBC metastate κJ is then de-
fined through the following construction: given the sequence
of volumes introduced above we can construct a type of mi-
crocanonical ensemble κN in which each of the finite-volume
ground-state pairs σL1 , σL2 , . . . , σLN has weight N−1. The en-
semble κN converges to the metastate κJ as N → ∞ in the
sense that, for every well-behaved function g on ground states
(e.g., a function on finitely many spins),

lim
N→∞

N−1
N∑

k=1

g(σLk ) =
∫

g(σ ) dκJ (σ ). (7)

From Eq. (7) we see that
∫

dκJ (σ ) = 1 and κJ can therefore
be interpreted as a probability measure on ground-state pairs:
the finite-volume probability of any event depending on a
finite set of spins and/or couplings converges in the infinite-
volume limit to the κJ -probability of that event.

The information contained in κJ includes the fraction of
cube sizes Lk which the system spends in different infinite-
volume ground-state pairs σ as k → ∞. By this we mean
the following: choose a fixed “window,” i.e., a cube �w

of side w centered at the origin. If there is only a sin-
gle pair of ground states, as in the droplet-scaling model
[10,25–27], then the spin configurations in �w generated
by the finite-volume ground-state pairs will eventually settle
down to a fixed configuration, which is the restriction of
the infinite-volume GSP to �w [28]. However, if there are
many infinite-volume ground-state pairs, as in the replica-
symmetry-breaking (RSB) picture [21,29–34], then the spin
configuration in �w never converges to a limit (a phenomenon
we have called chaotic size dependence [28]). Instead, for any
�Lk with Lk sufficiently large, the pair of spin configurations
in �w will be identical to that of one of the many infinite-
volume ground-states pairs available for the system to choose
from, and the “chosen” GSP varies with Lk . Although the
spin configuration in �w never settles down, the fraction of
volumes �Lk for which the local spin configuration (i.e., in any
fixed window) of any particular ground-state pair appears does
converge to a limit, and this information is contained within
κJ . For a fully rigorous treatment, see Ref. [17].

B. Critical droplets in infinite-volume ground states

We now extend the discussion of Sec. II to infinite-
volume ground states. As noted earlier, a rigorous definition
of critical droplets and flexibilities requires use of the exci-

tation metastate [5–8], but we will define these and related
quantities informally here and refer the interested reader to
the references for a complete discussion. The main point
is that finite-volume critical droplets and flexibilities con-
verge with their properties preserved in the infinite-volume
limit: sequential compactness of the finite-volume ground
states leads to convergence along deterministic subsequences
of �L’s of the associated finite-dimensional probability dis-
tributions (involving finitely many couplings and spins) to
a limiting translation-invariant probability measure κJ on
infinite-volume configurations. The relative compactness for
ground states and critical droplets follows from the two-
valuedness of the Ising spins and that for the critical value
follows from the (L-independent) trivial bound

|Jc(bxy, σL )| � min(
∑

z 
=y
|z−x|=1

|Jxz|,
∑

u 
=x
|y−u|=1

|Juy|) (8)

for any edge 〈x, y〉.
From this discussion we present the following lemma,

omitting a formal proof.
Lemma 3.1. All of the properties of critical droplets listed

in Lemmas 2.5 and 2.6 are preserved in the infinite volume
limit.

The above discussion would not be needed in an informal
treatment if all critical droplets in infinite-volume ground
states were finite, i.e., completely bounded within a finite
volume; they can then be defined exactly as in Sec. II. (In
fact, it was proved [35] that this is the case in two spin glass
models; we will return to this in Sec. III C.) However, the
possibility that critical droplets can be infinite in extent in one
or more directions must also be considered. Here metastates
are a convenient tool for defining such unbounded critical
droplets, comprising an infinite subset of spins: they are
the infinite-volume limits of critical droplets in finite-volume
ground states.

How might such unbounded critical droplets arise? One
possibility (there may be others) is the following: consider
a fixed edge bxy whose finite-volume ground-state critical
droplets increase in size as L increases, while the correspond-
ing flexibilities decrease as L increases. In the limit L → ∞
one then arrives at a critical droplet with infinite boundary
comprising an infinite subset (with respect to Zd ) of spins
and with a well-defined (and still strictly positive) limiting
flexibility. We will be particularly interested in a special case
of unbounded critical droplets:

Definition 3.2. Consider an edge bxy and an infinite-volume
ground state σ . We will say that “the critical droplet of bxy in
σ is space-filling” to mean that ∂Dbxy,σ comprises a positive
density of bonds in Ed .

We will prove in Sec. VIII that space-filling critical
droplets are an essential component of the RSB picture of the
low-temperature spin glass phase. At present we do not know
whether space-filling critical droplets exist at all in the EA
spin glass or, if they do, whether their existence is dimension-
dependent. It could be that (in a given finite dimension) all
critical droplets are bounded (we will refer to these simply
as “finite critical droplets”), in which case the distribution
of their sizes becomes important in answering fundamen-
tal questions of ground-state structure and multiplicity (see
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Sec. IV). Critical droplets can in principle also be unbounded
and contain an infinite subset of spins, but with a boundary
that has zero density in the dual lattice to Ed .

There are three models whose critical droplet properties are
fully or partially known: the EA model in one dimension, the
highly disordered model in all dimensions, and the strongly
disordered model in all dimensions. We briefly discuss each
below.

C. Critical droplet properties in three models

EA model in one dimension. For the EA Ising model on
an infinite chain the structure of critical droplets is trivial for
the zero-temperature PBC metastate, which is supported on a
single GSP. For this ground-state pair, in any finite window
every bond is satisfied, its critical value Jc = 0, its critical
droplet boundary is a single bond (namely, itself, or more pre-
cisely, its dual bond), and its critical droplet is (semi)infinite.
Its flexibility is simply the magnitude of its coupling value,
so, e.g., if ν is Gaussian, then the ground-state distribution of
flexibilities is a half-Gaussian.

Although stated for the PBC metastate, these results
hold for any metastate generated using coupling-independent
boundary conditions (with the proviso that if the boundary
conditions are non-spin-flip-symmetric, such as fixed, the re-
sulting metastate is supported on a single ground state). It is
instructive to see how the results for the infinite chain follow
from a sequence of finite chains with several simple boundary
conditions.

For free BC’s, the above results also hold for every finite
chain, with Jc = 0 and the critical droplet extending to a
boundary (on either side—in one dimension only the relative
orientation of the spins on either side of the chosen bond
matters). As the chain length goes to infinity, the above results
are then easily recovered.

The situation is more interesting for periodic, antiperiodic,
and fixed BC’s. We can divide these into two classes: the first
comprises PBC’s and fixed BC’s with the two boundary spins
having the same orientation; the second comprises APBC’s
and fixed BC’s with the two boundary spins having the oppo-
site orientation. For spin chains in the first class, every bond
is satisfied if there is an even number of antiferromagnetic
couplings; for those in the second class, every bond is satisfied
if there is an odd number of antiferromagnetic couplings. The
other possibility occurs when chains in the first class have
an odd number of antiferromagnetic couplings and chains in
the second class have an even number of antiferromagnetic
couplings; in that case a single bond must be unsatisfied in the
ground state, and this will be the bond having the coupling
with smallest magnitude regardless of sign.

We consider first the case in which there must be one
unsatisfied bond in the finite-chain ground state. Denote the
bond with smallest coupling magnitude bi = 〈xi, xi+1〉 with
coupling value Ji. Choose an arbitrary bond b0, different from
bi, with coupling value J0 in J . Its critical value is then
Jc = sgn(J0)|Ji|; when the magnitude of b0’s coupling falls
below this value, a droplet consisting of spins lying between
an endpoint of b0 and one of bi will flip.

The second case is any where all couplings are satisfied in
the finite-chain ground state in the initial J . Using the same

notation as in the first case, as soon as the running coupling
value J (b0) of b0 changes sign, it becomes unsatisfied, but no
flip will occur until its magnitude equals |Ji|. (Note that as
soon as J (b0) changes sign, the number of antiferromagnetic
couplings changes by one, and now one edge must now be
unsatisfied in the ground state.) In this case Jc = −sgn(J0)|Ji|,
with all else the same as in the first case.

For both of these cases, as the length of the chain increases,
the bond of lowest coupling magnitude moves out to infinity
(while randomly switching from the right half to the left half
of the chain, but as noted earlier, only the relative orientation
of the spins on either side of b0 matters), with its magnitude
approaching zero. Therefore, as the length of the spin chain
increases, the critical value of b0’s coupling decreases to zero,
becoming exactly zero in the infinite-chain limit.

For the EA spin glass on Zd , having a finite critical droplet
boundary along with an infinite critical droplet is unique to
one dimension. The relevant property here is the finiteness of
the critical droplet boundary, rather than the infinite critical
droplet “volume”: as we will see in Sec. IV, it is the critical
droplet boundary, not its volume, that is connected with the
presence or absence of ground-state multiplicity. In most re-
spects, though, d = 1 is a special case and hereafter we focus
only on dimensions larger than one.

Highly disordered model in d dimensions. The highly dis-
ordered model [36–38] has the EA Hamiltonian Eq. (1) but
with a nonphysical, volume-dependent coupling distribution
(though the couplings remain i.i.d. for each volume). The
coupling distribution is “stretched” so that, with probability
one, in sufficiently large volumes each coupling magnitude
occurs on its own scale: it is at least twice as large as the next
smaller one and no more than half as large as the next larger
one.

A simple way of realizing this is to assign two collections
of i.i.d. random variables εxy and Kxy to the edges, with εxy =
±1 each with probability 1/2, and Kxy a continuous random
variable uniformly distributed in the interval [0,1]. We then
define the couplings J (L)

xy within �L as

J (L)
xy = cLεxye−λ(L)Kxy , (9)

where cL is a scaling factor chosen to ensure a finite energy
per unit volume in the thermodynamic limit and λ(L) is a
scaling parameter that grows quickly with L. It was shown
in Ref. [37] that λ(L) � L2d+1+δ for any δ > 0 is sufficient
for the “stretched” property described above to hold in all
sufficiently large volumes. Although the couplings themselves
depend on L, their associated εxy’s and Kxy’s do not, allowing
ground states and their properties to be well-defined in the
infinite-volume limit.

The highly disordered model is one of the few nontriv-
ial spin glass models where the ground-state multiplicity is
exactly known: it has a single GSP below six dimensions
and uncountably many above [36,37,39]. Its critical droplet
structure is also known: it was proved (Theorem 2.2 of
Ref. [35]) that, assuming there is no percolation at pc in the
corresponding independent bond percolation model, then in
all dimensions, the critical droplet boundary of any bond in
any ground state is finite. Consequently, for any fixed bond
in sufficiently large volumes, the critical droplet volume is
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independent of L. The distribution of critical droplet sizes,
which is relevant for determining ground-state multiplicity in
conventional EA models (Sec. IV), is unknown.

Remark. As noted above, this result depends on the
assumption that there is no percolation at pc in the corre-
sponding independent bond percolation model. This has been
proved rigorously (see Ref. [40] and also Sec. 1.5 of Ref. [41])
in all dimensions except 3 � d � 10, but is generally believed
to be true in all finite dimensions.

Strongly disordered model in d dimensions. The strongly
disordered model is identical to the highly disordered model
except that Eq. (9) is replaced by

Jxy = εxye−λKxy , (10)

where λ (and therefore the coupling distribution) is now inde-
pendent of L. We will be interested in models where λ � 1.

In the strongly disordered model, the “stretched” condi-
tion, namely, that every coupling value is no more than half
the next larger one and no less than twice the next smaller
one, breaks down in sufficiently large volumes. This can be
quantified [37]: let g(λ) be the probability that any two arbi-
trarily chosen bonds have coupling values that do not satisfy
the highly disordered condition; then g(λ) = 2 ln 2/λ. Hence,
the “stretched” condition holds with high likelihood for vol-
umes �L in which |�L|2 � λ and likely fails for those with
|�L|2 � λ, where |�L| = Ld is the volume (number of spins)
of �L.

The strongly disordered model is potentially important be-
cause its critical droplet properties are analytically tractable
given its similarity to the highly disordered model. Moreover,
since its coupling distribution does not vary with L and is i.i.d.
with mean zero and finite variance, it satisfies the conditions
for ν(dJxy) given below Eq. (1). We therefore expect global
properties such as ground-state multiplicity to be the same as
in other versions of the EA spin glass with more conventional
coupling distributions.

Theorem 3.2 of Ref. [35] provides some information on
the critical droplet structure of the strongly disordered model:
it shows that, if (as before) there is no percolation at pc in
the corresponding independent bond percolation model, then
in the strongly disordered model, the critical droplet bound-
ary of an arbitrary but fixed bond is finite with probability
approaching one as λ → ∞ (as before, in any ground state in
any dimension).

We next turn to the connection between critical droplets
and disorder chaos, and discuss how critical droplet distribu-
tions determine the size of energy fluctuations (with respect to
coupling variations) in ground states.

IV. INCONGRUENT GROUND STATES, DISORDER
CHAOS, AND ENERGY FLUCTUATIONS

Unlike the models discussed in Sec. III C, in the EA model
above one dimension we do not yet know the size and/or
energy distributions of critical droplets—which, as we will see
in later sections, would be sufficient to answer the questions
posed at the start of the Introduction. In this section we turn
to a different question: How are critical droplets related, if
at all, to other thermodynamic and energetic features of spin
glasses? These questions were addressed in Ref. [8], and this

section provides a brief review of results from that paper
relevant to the current discussion. The main results of interest
are contained in theorems which concern the relation between
critical droplets and disorder chaos, and which show how
critical droplet properties determine energy fluctuations (with
respect to coupling variations) in the ground state. Knowledge
of the latter in a given dimension could enable a determination
of ground-state multiplicity in that dimension, as we will see.

We begin by discussing disorder chaos, which was intro-
duced as a feature of the droplet-scaling picture [9,10], but has
since been proved to occur [13] also in the infinite-range SK
model [42], and so may be a feature of all pictures of the spin
glass phase in short-range models. In the context of the EA
Ising model it has not been proved to occur (or not occur) in
any dimension greater than one; the only rigorous result in this
context we are aware of is a weak bound proved by Chatterjee
[13] on the amount of disorder chaos that can occur in the EA
model.

Disorder chaos was originally defined as follows (here we
follow the discussion of Ref. [11]): consider the EA Hamil-
tonian Eq. (1) with Gaussian ν(dJxy) (with mean zero and
variance one, as always). One wants to perturb every coupling
by a small random amount such that the modified couplings
still obey the law of the original ν(dJxy). One way of doing
this (another will be discussed below) is to introduce a small
�J > 0 and then modify the couplings by

Jxy → J ′
xy = Jxy + ηxy�J√

1 + (�J )2
, (11)

where ηxy is an i.i.d. random variable also taken from a
Gaussian distribution with mean zero and variance one. In a
fixed volume with specified BC’s, one then compares, using
various overlap functions, the ground state for the original
J with that for J ′. According to the droplet-scaling picture,
there is a critical length 
c, depending on �J , such that on
lengthscales small compared to 
c the spin overlap of the
primed and unprimed ground states is close to one, while for
lengthscales large compared to 
c the spin overlap falls off
rapidly as lengthscale increases. In the droplet-scaling picture
the dependence of 
c on �J is 
c = (�J )−1/ξ with ξ an
exponent that can be related to others that arise naturally in
droplet-scaling.

The effects of the coupling transformation Eq. (11) on the
EA model are simple to work out in one dimension for a
given realization of couplings and ηxy’s. Select any arbitrary
site as the origin. A coupling will become unsatisfied, thereby
flipping a critical droplet, when �J is sufficiently large so
that its J ′

xy has opposite sign to its Jxy (of course this can only
happen if its Jxy and its ηxy have opposite sign). Therefore, as
�J decreases to 0 the coupling nearest to the origin which first
changes sign moves out to infinity (whether such a coupling
is to the right or left of the origin changes randomly as �J de-
creases). As a result the ground-state pair remains unchanged
on an increasing lengthscale 
c → ∞ as �J → 0.

Before turning to the results for disorder chaos in Ref. [8],
a brief digression is helpful. In Ref. [8] (as well as Ref. [13])
the focus is on edge, rather than spin, overlaps (though it
should be noted that the function C(r, L) defined in Eq. (3)
of Ref. [11] reduces to an edge overlap for r = 1). This is
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because a central question in Ref. [8], as in this paper, is
whether incongruent ground states exist in the EA model. The
term “incongruent” as applied to spin glasses first appeared
in Refs. [43,44], and (in the context of ground states) refers
to two infinite-volume ground states whose edge overlap is
strictly smaller than one; that is, there is a positive fraction of
edges that are satisfied in one ground state and unsatisfied in
the other, and vice-versa. More precisely, let

QL(σ, σ ′) = 1

|EL|
∑

〈x,y〉∈EL

σxσyσ
′
xσ

′
y (12)

denote the edge overlap between (any) two spin configurations
σ and σ ′ both in �L, with |EL| denoting the total number
of edges (including those touching the boundary) contained
within �L. Then two infinite-volume GSP’s η and ζ are in-
congruent if limL→∞ QL(ηL, ζL ) = Q(η, ζ ) < 1, where ηL is
the restriction of η to �L and similarly for ζL. (More precisely
this limit is a lim sup and a coupling-dependent subsequence
of volumes may need to be taken, but that and other technical
issues are discussed in Ref. [8] and need not concern us further
here.)

The reason for this digression is that all mentions of
multiple ground states throughout this paper refer strictly to
incongruent states, which we have argued elsewhere [20,45–
47] are the “physical” states; multiple spin glass states that
are not incongruent are of mathematical interest but unlikely
to appear in any laboratory or other physical setting. In par-
ticular, both many-state pictures discussed in Sec. V below
are limited to incongruent states. In fact, it was proved in
complete generality [45] (i.e., independent of any particular
picture) that any zero-temperature metastate generated by
coupling-independent BC’s is supported on either a single
ground state (or GSP) or else on multiple incongruent ground
states (or GSP’s). We will discuss this further in Sec. V, but
now return to disorder chaos as defined in Ref. [8].

In Ref. [8] the notion of disorder chaos is extended to
specify not only if disorder chaos occurs, but also the scale
at which it occurs. To do this the coupling perturbation is
redefined to a form more convenient for our purposes: let J
and J ′ denote two independent realizations of the couplings,
both drawn from a Gaussian ν with mean zero and variance
one. Then for a particular edge 〈x, y〉, if Jxy is drawn from
J and J ′

xy from J ′, then we consider an interpolation Jxy(t )
between Jxy and J ′

xy parametrized by t � 0:

Jxy(t ) = e−t Jxy +
√

1 − e−2t J ′
xy. (13)

Unlike most other treatments, the setting in Ref. [8] was
confined to infinite-volume ground states, so the perturbation
Eq. (13) is applied only within a fixed volume �L ⊂ Zd , with
Jxy(t ) = Jxy outside �L. Note that if we identify t with 1

2 (�J )2

and take the limit t → 0, the perturbation Eqs. (11) and (13)
converge for sufficiently small t .

Using the interpolation Eq. (13) allows a straightforward
extension of the idea of disorder chaos. Let σL(0) denote
the periodic boundary condition ground-state pair in �L with
realization J and σL(t ) denote the same with realization J (t ).
We can now state the following (informal) definition (for the
full definition, see Def. 1.3 of Ref. [8]): we will say there is
absence of disorder chaos at scale α, with 0 � α � 1, if with

probability close to one the edge overlap QL[σL(0), σL(t )]
remains close to one for t � C|�L|−α , with C a constant, for
all sufficiently large L. Qualitatively speaking, disorder chaos
is completely absent when α = 0, while α = 1 corresponds
to what could reasonably be called “strong” disorder chaos.
Between these limits, the amount of disorder chaos can effec-
tively be “tuned” be varying alpha from 0 to 1 (in a purely
theoretical sense; the quantity α is fixed within a given system
or model and plays an important role in its thermodynamics,
as we will discuss below).

One of the main results of Ref. [8] was to find a relation
between the amount of disorder chaos in a system and the size
of its critical droplets; we emphasize again that by “size” of a
critical droplet we refer to the number of edges in its boundary
|∂D(bxy, σL )| and not to the number of spins contained within
the droplet itself. As before fix a volume �L with GSP σL and
choose an arbitrary bond b = 〈x, y〉 inside �L. Let 0 < C <

∞ be a constant (i.e., independent of L). Then Theorem 1.5
of Ref. [8] states that

Theorem 4.1 (Arguin-Newman-Stein [8]). Suppose there
exists γ with 0 � γ � 1 such that with probability one, for
all large �L,

|∂D(b, σL )| � C|�L|γ for all b ∈ EL. (14)

Then there is absence of disorder chaos on all scales α > 2γ .
Remark. While the proof of Theorem 1.5 of Ref. [8] is

technical, the underlying idea is to show that if all critical
droplets are limited in size by a specified amount, and the cou-
plings are globally perturbed by a sufficiently small amount,
many of the edge flexibilities will not decrease to zero, and
thus the resulting ground state will agree with the original on
most edges. The result can be controlled precisely enough so
that the “tuning” of γ determines the α above which disorder
chaos does not occur.

So disorder chaos and critical droplets are different but
related facets of ground-state stability in spin glasses, and
therefore of spin glass thermodynamics. While disorder chaos
by itself is an interesting phenomenon, especially given its
conjectured relation with temperature chaos [9,10], it also
plays a primary role in determining ground-state multiplicity,
as we will now see.

The connection between disorder chaos and ground-state
multiplicity is that the amount of disorder chaos in a spin
glass controls the energy fluctuations in the ground state, as
determined in Corollary 1.4 of Ref. [8]. Here one assumes that
two or more incongruent ground states (or GSP’s) exist, and
chooses an arbitrary incongruent pair σ 1 and σ 2. Corollary 1.4
(here stated as a theorem) then says the following:

Theorem 4.2 (Arguin-Newman-Stein [8].) If there is ab-
sence of disorder chaos at scale α (0 � α � 1), then given two
(infinite-volume) incongruent ground states (or GSP’s) σ 1 and
σ 2, there exists C > 0 independent of L such that

Var[HL,J (σ 1) − HL,J (σ 2)] � C|�L|1−α (15)

where HL,J denotes the EA Hamiltonian Eq. (1) restricted to
the volume �L and the variance is taken with respect to all the
couplings inside �L (i.e., in EL).

The connection to ground-state multiplicity arises because
of a (rigorous) finite-volume bound on free energy fluctuations
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found independently in Refs. [48,49] (the argument can be
found in Ref. [50]). Fix J and consider two finite-volume
ground states σ P

L and σ AP
L generated in a volume �L at fixed

T � 0 using periodic boundary conditions (σ P
L ) and antiperi-

odic boundary conditions (σ AP
L ). Their free energy difference

is �FL = F (σ P
L ) − F (σ AP

L ). Then

Var(�FL ) � ALd−1, (16)

with A a constant and the variance as before is over all cou-
plings in EL. At zero temperature the lefthand side of Eq. (16)
reduces to the lefthand side of Eq. (15), i.e., it represents en-
ergy fluctuations between ground states within a fixed volume.

The result Eq. (16) is equivalent to stating that the energy
difference between incongruent ground states in volumes �L

cannot increase faster than O(L(d−1)/2). This would violate the
lower bound Eq. (15) if α < 1/d in dimension d; if this were
to happen, incongruent ground states would be ruled out in
that dimension. (This bound on α appeared in Claim 5.4 in
Ref. [8].)

It should be noted that such a result would not yet be
rigorous because the lower bound Eq. (15) was derived for
infinite-volume ground states restricted to a volume �L while
the upper bound Eq. (16) was derived for finite-volume
ground states in �L. Nonetheless, if the lower bound Eq. (15)
were to hold for the infinite-volume case restricted to finite
volume, it seems likely to hold in the pure finite-volume case
as well.

Because of the relation Eq. (14), Theorem 4.2 can be recast
as a connection between critical droplets and energy fluctua-
tions:

Theorem 4.3. Let α denote the minimal scale on which
disorder chaos is absent and γ be defined as in Eq. (14). Then
Theorems 4.1 and 4.2 together imply

Var[HL,J (σ 1) − HL,J (σ 2)] � C|�L|1−2γ . (17)

Remark. If the finite-volume upper bound Eq. (16) were to
hold for the infinite-volume case restricted to finite volume,
then a sufficient condition for absence of incongruence is γ <

(2d )−1.
We can test this result for the EA model in one dimension.

As noted earlier, the critical droplet boundary in that case con-
sists of a single bond, so γ = 0, satisfying the condition for
absence of incongruence (as well as the absence of disorder
chaos on any scale). As is well known, there is only a single
GSP for the EA model in one dimension, consistent with the
result obtained above.

In higher dimensions the behavior of critical droplets sets
bounds both on the scale of disorder chaos and on the mag-
nitude of energy difference fluctuations between (potential)
incongruent states. Perhaps the simplest possibility is that all
critical droplets are finite with an exponential size distribution.
If that were to occur in some dimension, then γ = 0 and it be-
comes very likely that the PBC metastate is supported on only
a single GSP in that dimension. Other (reasonable) possibili-
ties are that all critical droplets are finite but with a power-law
falloff (with the power possibly dimension-dependent); or it
could be that in a given dimension some positive density of
edges have infinite critical droplets, which is a particularly
interesting case. We will return to these issues in Sec. VIII.

TABLE I. The four scenarios described in the text for the low-
temperature phase of the EA model, categorized in terms of interface
geometry (rows) and energetics (columns). At zero temperature the
vertical column headings describe the energy of the minimal large
lengthscale excitations above the ground state predicted by each; at
low temperature they describe the free energy of these excitations.
Adapted from Fig. 1 of Ref. [54].

Low-energy High-energy

Space-filling RSB Chaotic pairs
Zero-density TNT Scaling-droplet

V. INTERFACES AND LOW-TEMPERATURE SPIN
GLASS SCENARIOS

Many pictures have been proposed for the thermodynamics
of the low-temperature phase of the EA model. We focus here
on four of these, of which two (replica symmetry breaking,
or RSB [21,29–34], and scaling-droplet [10,25–27]) have al-
ready been referred to in previous sections, given that they
have received a great amount of attention in the literature. The
other two are the so-called trivial-nontrivial (TNT) picture
[51,52] and the chaotic pairs (CP) picture [18,19,53]. The
reason for considering these four pictures together is encap-
sulated in Table I, as we now discuss.

Of the four, two (RSB and chaotic pairs) predict the
existence of many ground states, and the other two (scaling-
droplet and TNT) imply the existence of only a single pair
of spin-reversed ground states [8,10,45]. These four pictures
are characterized not only by the multiplicity of ground states
they predict (which does not distinguish between the two
columns in Table I, i.e., the ground-state multiplicity is the
same across either row), but more fundamentally by the nature
of the interfaces that separate their ground states from their
lowest-lying excitations. In fact, the point of view of this
paper is that the more fundamental property of the differing
spin glass scenarios is the geometric and energetic nature
of the interfaces separating ground states from their lowest-
energy large-lengthscale excitations. The presence or absence
of multiplicity of ground states follows as a consequence of
the nature of these excitations, and so in this sense is less
fundamental.

An interface between any two infinite spin configurations
(not necessarily ground states) η and ζ is defined to be the
set of bonds whose associated couplings are satisfied in η

and unsatisfied in ζ , or vice-versa; they separate regions in
which the spins in η agree with those in ζ from regions in
which their spins disagree. An interface may consist of a
single connected component or multiple disjoint ones (often
referred to as domain walls). If η and ζ are ground states,
then given Eq. (2), any component of their mutual interface
must be infinite in extent. Note that a GSP (η, η), in which η

and η are simply global flips of each other, have no interface
between them, and as noted earlier we will affix a single label
(η in this case) to the pair.

Interfaces can be characterized by their geometry and
energy. With respect to the former, they can be either “space-
filling,” meaning they comprise a positive density of all bonds
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in Ed , or zero-density—i.e., the dimensionality of the inter-
face in a d-dimensional system is strictly less than d . (Recall
that two incongruent ground states, by definition, differ by
a space-filling interface.) Moreover, their energies can scale
with distance along an interface: as one travels a distance

 along an interface between η and ζ , the magnitude of its
energy change (which is equal in η and ζ ; only the sign
differs) might scale as 
y, y > 0, or else might remain O(1),
independent of length traveled along the interface (y = 0). For
our purposes it is sufficient to distinguish only between an
interface whose energy increases with 
, which we’ll denote
a “high-energy interface,” and one whose energy remains
O(1) no matter how far one travels along the interface (a
“low-energy interface”). For a high-energy interface, it is not
required that the interface energy depends on 
 as a power law;
all that matters is that the energy increases (not necessarily
monotonically) without bound as 
 → ∞.

With this in mind we present the four low-temperature spin
glass scenarios in the following table, which illustrates their
various relationships (and clarifies why we consider these four
pictures together):

Remark on Table I. The scaling-droplet picture predicts
a broad distribution of (free) energies for a minimal en-
ergy compact droplet of diameter O(L), with a characteristic
energy growing as Lθ with θ > 0 in dimensions where a
low-temperature spin glass phase is present. The distribution
is sufficiently broad that there exist droplets of O(1) energy on
large lengthscales, but these appear with a probability varying
as L−θ as L → ∞. In contrast, both the RSB and TNT pictures
require droplets with O(1) energy to appear with positive
probability bounded away from zero on all lengthscales. For
this reason the scaling-droplet scenario belongs in the second
column of Table I.

As proved elsewhere [46], the presence of space-filling ex-
citations, regardless of energetics (as long as the energy scales
no faster than O(L(d−1)/2), as discussed below [Eq. (16)]), is
a sufficient condition for ground-state multiplicity, so the sce-
narios in the first row (RSB and chaotic pairs) both imply the
presence of multiple GSP’s. Their difference in interface en-
ergetics, however, already shows that the two pictures are not
equivalent at zero temperature, as sometimes claimed. In fact,
the interface energetics leads to the most significant difference
between the two pictures at low but nonzero temperature,
in which a single thermodynamic state in the RSB picture
comprises a nontrivial mixture of infinitely many incongruent
pure state pairs with free energies differing by O(1) [55,56],
while in chaotic pairs a single thermodynamic state consists
of a single pure state pair. Therefore, in finite volumes the
two pictures appear very different, given that the properties of
infinite-volume thermodynamic states are reflected in those of
the finite-volume Gibbs states observed in fixed windows as
described in Sec. III A. The (low temperature) PBC metastate
in both pictures is supported on an infinite (uncountable in the
case of RSB [57]) set of distinct thermodynamic states, but as
noted, these are each mixtures of incongruent pure states in
RSB but not in chaotic pairs.

As an interesting side note, a rigorous analysis [58] of
pure state weight distributions in potential mixed-state pic-
tures strongly suggests that RSB is the only viable mixed-state
picture that can be supported in the EA model.

So the two pictures in the top row of Table I can be shown
to imply the presence of multiple ground-state pairs in the
support of κJ . What about the two in the bottom row? A
proof that the TNT picture, as put forward in Refs. [51,52],
implies a single ground-state pair appears in Ref. [45].
The caveat is important, however. The procedures used in
Refs. [51,52] will be discussed in more detail in Sec. VIII;
here we need note only that both procedures, when adapted
to the metastate approach, use in the infinite-volume limit a
translation-invariant method to generate zero-density, O(1)-
energy large-lengthscale excitations above the ground state
in large volumes. The translation-invariance implies that the
excitations deflect to infinity as the volume size increases (see
Ref. [45] for details) resulting in a two-state picture. This
leaves open the possibility of generating infinite, zero-density,
O(1)-energy excitations in a non-translation-invariant way,
which might or might not lead to a many-state picture.

Turning to droplet-scaling, an argument that this picture
also implies a single ground-state pair appears in Ref. [8];
however, it relied on the conjecture that the upper bound
Eq. (16) holds for the infinite-volume case restricted to finite
volume, as discussed above Theorem 4.3. If that conjecture is
proved correct, then the argument becomes fully rigorous.

It is then reasonable to conclude that while the pictures in
the first row predict multiple ground states in the support of
κJ , those in the second predict a single spin-reversed pair.
This is the primary reason behind our assertion above that
interface properties are more fundamental than ground-state
multiplicity.

VI. SPACE-FILLING CRITICAL DROPLETS
AND σ-CRITICALITY

Up until now we have collected a diverse series of pre-
viously published results that together argue for the view
that critical droplets play a fundamental role in determining
ground-state properties in spin glasses. In particular, we have
seen that they are intimately connected to and determine
ground-state properties such as disorder chaos and ground-
state multiplicity. Moreover, the material already discussed
provides the background and terminology required to present
new results that further this argument, which will include
establishing the connection between critical droplet distribu-
tions and the low-temperature scenarios listed in Table I.

As argued in previous sections, a ground state can be char-
acterized by its distribution of critical droplet geometries and
energies (or equivalently, edge flexibilities). As discussed in
previous sections, critical droplets can be finite or infinite, and
if the latter, can be either space-filling or zero-density. It is
important to note that, unlike interfaces, critical droplets can
only have energies of O(1) no matter their size, given Eq. (3)
and the inequality Eq. (8).

It is not hard to show that a positive fraction of bonds
must have finite critical droplets in any ground state in any
dimension, but we omit the proof here. A natural division
is then between a ground state having all its critical droplets
finite versus having a positive fraction of its critical droplets
infinite with the remainder finite. Infinite critical droplets can
be further subdivided into those which are space-filling and
those which are zero-density; recall from previous sections
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that when we refer to the “size” of a critical droplet, we are
referring not to the number of spins it contains but rather the
number of edges whose duals lie in its boundary.

This categorization, while useful, is not comprehensive,
because it considers only the critical droplets assigned to each
edge. We will see below that it is equally important to consider
for each edge how many distinct critical droplets (i.e., those
assigned to other edges) to which it belongs. (When we say
an edge “belongs” to a critical droplet, we mean that its dual
lies on the boundary of another edge’s critical droplet.) We
therefore introduce a new definition that extends the concept
of a space-filling critical droplet and which will be useful in
what follows.

Definition 6.1. Choose a coupling realization J and an
arbitrary bond bxy = 〈x, y〉, and consider a ground state σ

consistent with J . Then bxy will be called σ -critical in ground
state σ if there is an open interval of coupling values J (bxy)
throughout which σ remains a ground state and bxy belongs to
the critical droplet boundary ∂Dbx′y′ ,σ of a positive density of
bonds bx′y′ ∈ Ed .

Before proceeding we will need the following lemma:
Lemma 6.2. Suppose a bond b1 with coupling value J1 in J

and critical value Jc in σ belongs to the critical droplet bound-
ary ∂D(b2, σ ) of a different bond b2. Then b1 will remain in
∂D(b2, σ ) for the entire range of coupling values between J1

and Jc.
Proof. If b1 ∈ ∂D(b2, σ ) when J (b1) = J1, then for this

coupling value D(b2, σ ) is the minimum energy droplet to
which b2 belongs. Without loss of generality assume J1 > Jc.
Then when J (b1) is lowered to a value J∗ ∈ (Jc, J1], the en-
ergy of D(b2, σ ) is lowered by an amount J1 − J∗. Then by
Lemmas 2.6 and 3.1 the energy of every other droplet (critical
or otherwise) in σ is either lowered by the same amount (if
its boundary includes the dual of b1) or else is unaffected.
Consequently, D(b2, σ ) remains the lowest-energy droplet in
σ which passes through b2, and the result follows.

In what follows it will be important to distinguish between
two types of σ -criticality. We will say a bond exhibits σ -
criticality of the first kind if its critical droplet is space-filling.
A bond exhibits σ -criticality of the second kind if its critical
droplet boundary is not space-filling but if, for some open
interval of coupling values (extending down to its critical
value), it nevertheless belongs to the critical droplet boundary
of a positive density of edges in Ed .

We will see in Theorem 6.3 below that if a bond’s critical
droplet is space-filling, then it has a nonzero range of coupling
values for which a positive density of edges shares the same
critical droplet—namely, that of the original bond. In contrast,
the second kind of σ -criticality occurs when a coupling be-
longs to an infinite, positive-density set of different critical
droplets. This could in principle occur in situations wherein a
positive density of bonds has infinite but zero-density critical
droplets, or even a situation wherein all critical droplets are
finite but with a sufficiently slow falloff of critical droplet
sizes (this will be explored further in Sec. IX).

What is shared in both kinds of σ -criticality is that, within
a certain range of coupling values, altering the coupling value
of a σ -critical edge by a small amount (i.e., without causing
a droplet flip) changes the flexibilities of a positive density of

bonds in σ ; when this occurs we will say that such a bond
controls the flexibilities of the affected bonds. For the second
kind of σ -criticality this is true by definition. As for a bond
which exhibits σ -criticality of the first kind, the next theorem
shows that it has a nonzero range of coupling values in which
it too controls the flexibilities of a positive density of bonds
in σ .

Theorem 6.3. There is an open interval of coupling values,
with the critical value at one end of the interval, for which a
bond which is σ -critical of the first kind controls the flexibil-
ities of a positive density of bonds without causing a droplet
flip in σ .

Proof. Given a coupling realization J and a corresponding
ground state σ , let b0 be a σ -critical bond of the first kind, with
coupling value J0 in J . For ease of discussion, and without loss
of generality, let J0 be positive and satisfied in σ , and denote
its critical value in σ by Jc; then J0 > Jc and the flexibility of
b0 in σ is f (b0, σ ) = J0 − Jc.

Recall from Lemmas 2.6 and 3.1 that lowering the coupling
value of b0 to any value in the interval (Jc, J0) cannot increase
the flexibility of any other coupling in σ . With this in mind,
consider a different bond b̃ j ∈ ∂D(b0, σ ). For any such bond,
its critical droplet will also be D(b0, σ ) unless it belongs to
a closed surface S j (as always, in the dual lattice), different
from ∂D(b0, σ ) (though there may be bonds common to both),
with E (S j ) < E [D(b0, σ )] [if there exists more than one such
surface, then the S j with the smallest E (S j ) is ∂D(b̃ j, σ )].
As J (b0) is lowered from J0 toward Jc, E [D(b0, σ )] is
simultaneously lowered while σ remains unchanged. Dur-
ing this process, as long as the inequality E [D(b0, σ )] >

E (S j ) remains satisfied, E (S j ) remains unchanged by Lemma
2.5(a). But because E (Sj ) > 0 and E [D(b0, σ )] = 0 exactly
at J (b0) = Jc, eventually E (S j ) > E [D(b0, σ )] before Jc is
reached.

We now make the following claim: as J (b0) is lowered
toward Jc, it will eventually arrive at a value J∗ ∈ (Jc, J0]
such that a positive density of couplings in ∂D(b0, σ ) (and
therefore a positive density of couplings in Ed ) will have the
same critical droplet as b0. To see this, set J (b0) = Jc (note
that the probability of this occurring with J (b0) chosen from a
continuous distribution is zero). In that case E [D(b0, σ )] = 0,
and because in the original J the flexibility of all bonds was
strictly positive, every bond bj ∈ ∂D(b0, σ ) now has flexibil-
ity zero; by Lemma 2.5(b) all now share the critical droplet
D(b0, σ ). Now take J (b0) = Jc + ε for some ε > 0. If the
above claim is false, then for any ε > 0 a fraction one of all
bonds b j ∈ ∂D(b0, σ ) must have a critical droplet D(b j, σ ),
different from D(b0, σ ), with E [D(b j, σ )] < ε. But this can
only be true if E [D(b j, σ )] = 0 for all but a zero-density set
of b j , which cannot happen given that couplings are chosen
from a continuous distribution, as noted above. This proves
the claim.

It is important to recognize that no bond can ever control
the flexibilities of other bonds over its entire range of coupling
values. In particular, a bond cannot belong to the critical
droplet boundary of another bond if its coupling value is such
that is “supersatisfied” [5], i.e., necessarily satisfied in every
GSP. Upper and lower bounds for this range are easily derived,
and are as in Eq. (8): a sufficient condition for a bond bxy to
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be supersatisfied is if its coupling value Jxy satisfies

|Jxy| � Jmax = min

⎛
⎜⎝ ∑

z 
=y
|z−x|=1

|Jxz|,
∑

u 
=x
|y−u|=1

|Juy|

⎞
⎟⎠. (18)

The following lemma will be useful later:
Lemma 6.4. There is a nonzero gap between the bounds in

Eq. (18) and the critical value Jc in any ground state of any
edge that is σ -critical in that ground state; i.e., −Jmax < Jc <

Jmax.
Proof. For a given bond bxy, its critical value must lie in the

interval [−Jmax, Jmax] given by Eq. (18); moreover, its critical
value can only attain the values at the endpoints of this interval
if its critical droplet—call it Dmax—is the same as that used to
derive the bounds. These bounds arise from the droplet flip
of a single spin, which is at an endpoint of the edge 〈x, y〉 in
question; the droplet boundary is also local, comprising the
duals of 〈x, y〉 and the edges in the smaller sum on the right-
hand side. If 〈x, y〉 is a σ -critical edge of the first kind in σ ,
then its critical droplet is space-filling, and therefore different
from Dmax. This proves the result for a critical droplet of the
first kind.

If 〈x, y〉 is a σ -critical edge of the second kind in σ , then it
belongs to the critical droplet boundary of an infinite number
of other edges. By Lemma 2.5(a), its flexibility—and hence
the energy of its critical droplet—can be no greater than that
of any of the critical droplets to whose boundaries it belongs.
Therefore, its flexibility must be less than or equal to the
minimum (or infimum) of the energy of this infinite collection.
All of these energies (but one, only if Dmax is the critical
droplet of one of the neighboring bonds of bxy) must be strictly
less than Dmax. Therefore, the energy of the critical droplet of
bxy is strictly smaller than E (Dmax), from which the statement
of the theorem follows.

We will see in Sec. IX that if κJ is supported on a single
GSP, then there is zero density of bonds being σ -critical of
either kind. An extreme case is one where all critical droplets
in a given dimension are finite with an exponential distribution
of sizes. This is consistent with the argument in Sec. IV
that if a spin glass ground state has an exponential distribu-
tion of critical droplet sizes, then energy fluctuations will be
sufficiently large so that ground-state multiplicity should be
absent.

In what follows we shall refer to a bond being σ -critical
without further specification if it makes no difference whether
the σ -criticality is of the first or second kind.

VII. SOME CONSEQUENCES OF σ-CRITICALITY

In the EA model at positive temperature, if thermodynamic
states consist of a nontrivial mixture of incongruent pure state
pairs (as in the RSB picture), then two things must be true:
the number of pure state pairs in any single thermodynamic
state is (countably or uncountably) infinite [59], and the PBC
metastate at that temperature is supported on an uncountable
infinity of pure state pairs [57]. Until now there have been no
equivalent rigorous statements for zero temperature. With the
machinery developed in previous sections, we are now able to
make some progress on these questions; in particular, we will

show in this and succeeding sections that the zero-temperature
PBC metastate κJ in the RSB picture is supported on at least
a countable infinity of pure states.

One obstacle in extending positive-temperature results to
zero temperature has been the lack of a translation-invariant
measure on ground-state pairs that applies in all possible
scenarios. That can now be remedied with the following defi-
nition:

Definition 7.1. For fixed J , let PJ ( f , σ ) denote the (empir-
ical) probability distribution over all edges of the flexibilities
f in the ground state σ , and PJ ( f ) = 〈PJ ( f , σ )〉κJ be the
metastate average of PJ ( f , σ ) over the ground states σ in the
support of κJ .

It is easy to see that PJ ( f ) is both measurable and
translation-invariant. This leads to the following lemma,
which will be useful in what follows:

Lemma 7.2. PJ ( f ) is almost surely constant (i.e., constant
except for a set of measure zero) with respect to J .

Proof. The i.i.d. coupling distribution ν(J ) is translation-
ergodic and PJ ( f ) is a measurable, translation-invariant
function on the J’s. The result immediately follows.

As a consequence of Lemma 7.2, we can drop the subscript
and simply write P( f ) for the metastate-averaged flexibility
distribution.

A. Dependence of PJ ( f , σ ) on σ

One possible use of PJ ( f , σ ) is to provide a (translation-
invariant) way of distinguishing among ground states. The
following theorem shows that it does, at least in cases where
ground states have a positive fraction of σ -critical edges.

Theorem 7.3. Suppose that κJ is supported on multiple
incongruent GSP’s σ , and suppose that a subset of σ ’s having
overall positive weight in κJ each have a positive fraction of
σ -critical edges. Then PJ ( f , σ ) must have some dependence
on σ .

Proof. From the assumption of the theorem, there is a set
of GSP’s σ with positive weight in κJ with the property that σ

has a positive density of σ -critical edges. Let b0 be an edge
that is σ -critical in a set of GSP’s with positive weight in
κJ , and suppose its coupling value in J is J0. Choose one
σ within this set, and suppose in this GSP the critical value
of b0 is Jc; without loss of generality, let J0 > Jc. Because
we will be changing (only) the coupling value assigned to
b0, we will denote its running coupling value by J (b0). As
J (b0) is lowered to J+

c , σ will remain unchanged but some
fraction (possibly zero) of the GSP’s in κJ will have changed
due to a critical droplet flip. Focusing only on those GSP’s
which remain unchanged, Lemmas 2.6 and 3.1 and Theorem
6.3 imply that the process of lowering the coupling value of
b0 will have lowered the flexibilities of a positive fraction of
edges in a set of σ ’s for which J (b0) is within the range where
b0 controls the flexibilities of a positive fraction of edges. In
all of these PJ ( f , σ ) will have changed.

If κJ is supported on a countable (finite or infinite) set of
σ ’s, then it is sufficient that J (b0) is within this range for a
single such σ , given that it will have positive weight in κJ .
This will also be true if κJ is supported on an uncountable set
of states, if one or more such states also has positive weight
in κJ . However, a possible scenario is one in which κJ is
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supported on an uncountable set of states, each of which has
zero weight in κJ . For this case, the preceding argument needs
to be modified.

Suppose then that this scenario holds. Because the edge set
Ed is countable, by the assumption of the theorem a positive
density of bonds will be σ -critical in a set of σ ’s with positive
weight in κJ . Suppose that the critical values of a bond b0

with this property are dense within an open interval (J1, J2) ⊂
[−Jmax, Jmax]. Choose a coupling value J3 ∈ (J1, J2) and an
ε > 0 and let J (b0) ∈ (J3, J3 + ε). It must be the case that
J (b0) controls the flexibilities of a positive density subset of
σ ’s with critical values in this range for some (J3, ε) pair with
J3 and ε chosen as prescribed, by reasoning similar to that
used in the last part of the proof in Theorem 6.3. [This remains
true even if there is only a single accumulation point of critical
values of b0 in (J1, J2).] Therefore, in this scenario PJ ( f , σ )
will also have changed in a set of GSP’s with positive weight
in κJ .

Now assume that PJ ( f , σ ) is independent of σ . This would
then require two things: first, that in the GSP’s in which
a critical droplet has not flipped, their PJ ( f , σ )’s have all
changed in exactly the same way; and second, that in all
σ ’s in which a critical droplet has flipped, as J0 → J+

c their
final PJ ( f , σ ) has changed identically with those in which
no critical droplet flipped. But if these were to happen P( f )
will have changed, violating Lemma 7.2. The only remaining
alternative is that with κJ -measure one PJ ( f , σ ) cannot be the
same for κJ -almost every σ .

B. σ-criticality and ground-state multiplicity

The techniques used above can be taken further to show
that the existence of σ -criticality is incompatible with the
existence of metastates supported on a finite number N > 1
of ground-state pairs.

Theorem 7.4. Let N denote the number of GSP’s on which
κJ is supported, and suppose each GSP has a positive fraction
of σ -critical edges. Then either N = 1 or N = ∞.

Proof. Assume 2 � N < ∞. By assumption some bond b0

has positive probability of being σ -critical in 1 � n � N of
the ground-state pairs. We can relabel so that this subset of
ground-state pairs is σ1, σ2, . . . σn with Jc1 � Jc2 � . . . � Jcn,
where Jci is the critical value of J (b0) in ground-state pair σi.

As in the proof of Lemma 6.4, let ±Jmax denote the
endpoints of the interval in which σ -criticality can occur
for b0. By Lemma 6.4 and the assumption that there is
only a finite number of GSP’s in κJ , the intervals [Jc1, Jmax]
and [−Jmax, Jcn] have nonempty interiors. Choose J0 so that
Jmax > J0 > Jc1. It follows from Lemmas 2.6 and 3.1 and
Theorem 6.3 that lowering J (b0) from J0 to J+

c1 will lower the
flexibilities in σ1 of a positive density of bonds, and hence will
change P( f , σ1). For the remaining σ2 . . . σn, their flexibility
distribution will either be changed similarly to that of σ1 or
else will be unchanged.

As for the other GSP’s in the support of κJ , P( f , σ j ) will
remain unchanged, because changing the coupling value of a
bond can only change P( f , σ j ) if the bond is σ -critical in σ j .
Because n is finite, σ1 has positive weight in κJ , and therefore
P( f ) will have changed which contradicts Lemma 7.2. This
proves the theorem.

Remark. The proof of Theorem 7.4 can be extended to a
countable or uncountable infinity of GSP’s if there is a gap in
their critical values anywhere inside the interval [−Jmax, Jmax].
In the absence of an argument that such a gap exists, then
a priori the set of GSP critical values in either case can be
dense in [−Jmax, Jmax], which would then require a different
argument to extend Theorem 7.4 to these cases.

VIII. GROUND-STATE INTERFACES
AND CRITICAL DROPLETS

In this section we explore the connection between σ -
criticality and GSP interfaces. Our main result is that a
necessary condition for RSB to hold in the EA spin glass at
zero temperature is that in every GSP there is a positive prob-
ability that any edge is σ -critical, and a sufficient condition is
a positive probability of any edge being σ -critical of the first
kind.

We first make a brief digression. Recall from the discussion
in Sec. V that a key feature of the RSB picture is the pres-
ence of space-filling, O(1)-energy excitations—i.e., droplets
of overturned spins—above an arbitrary GSP selected from
κJ . But if the energy of an excitation in �L increases no
faster than

√|∂�L| and the excitation is space-filling in the
infinite-volume limit, the excitation is necessarily an interface
between incongruent ground states [46]. We will therefore
refer to a space-filling, O(1)-energy interface between two
infinite-volume GSP’s as an RSB interface. It is primarily the
existence of RSB interfaces that distinguishes the RSB picture
at zero temperature from all others shown in Table I.

It is important to remember, though, that numerical results
[60–62] indicate that the interface between an arbitrarily se-
lected pair of GSP’s chosen from κJ should, in any viable
picture, have a high-energy (i.e., increasing with L) interface
between them. This is not inconsistent with the RSB predic-
tion that for any GSP σ , arbitrarily chosen from κJ , there
exists a subset of other GSP’s that are distant in Hamming
space from σ , but in any finite-volume restriction of Zd , no
matter how large, are separated from it in energy by a gap of
O(1).

Returning now to the main discussion, if RSB interfaces
exist they should be directly observable. As just noted, numer-
ical evidence [60] strongly indicates that in three and higher
dimensions the energy change in switching from periodic to
antiperiodic boundary conditions scales as a positive power of
the system size, so a different procedure must be used to ob-
serve RSB interfaces directly. Fortunately two such methods,
which appear to lead to the same results, have been proposed.
One is due to Palassini and Young (PY) [51] and the other to
Krzakala and Martin (KM) [52] (see also Ref. [63]). Although
the two methods (to which we refer the reader to the original
references) are different, both are designed to observe large-
lengthscale excitations with O(1) energy above the ground
state. And, not surprisingly, the same outcome was indeed
observed in Refs. [51,52], namely, zero-density excitations of
O(1) energy, which led both to propose what is now known as
the TNT picture.

However, these results were disputed in Ref. [64], where
use of the PY procedure was claimed to generate positive-
density interfaces, i.e., interfaces whose edge set scaled

044132-13



C. M. NEWMAN AND D. L. STEIN PHYSICAL REVIEW E 105, 044132 (2022)

linearly with the volume. We will refer to these finite-volume
interfaces between an excitation and ground state as RSB
excitations; in the infinite-volume limit they become RSB
interfaces between two incongruent GSP’s. If Ref. [64] is
correct that the PY procedure leads to RSB excitations, then
one would expect the KM procedure to do the same. For
this reason, when we refer to RSB excitations or interfaces
hereafter, we require that they be observable using either the
PY or KM methods.

While both methods are expected to lead to the same
outcome, for our purposes it is easier to work with the
KM procedure, so we briefly describe its essential idea here
(adapted to the metastate framework): consider an infinite
sequence of volumes �L all with periodic boundary con-
ditions. In any given volume, two spins are independently
chosen uniformly at random within �L and forced to assume
a relative orientation opposite to that which they had in the
ground-state pair σL (by “independently” we mean not only
that the two spins are chosen independently of each other in
any given volume, but also that the pair of spins is chosen
independently between volumes). The resulting excited state,
which we will denote by τL, is then the lowest-energy spin
configuration in �L in which the chosen pair of spins have the
opposite orientation from that in σL.

Both the PY and KM methods suggest the following ex-
tension of the zero-temperature PBC. For every volume �L

collect the following information: σL, τL (which will refer
to the excited state in either procedure), �EL = EL(τL ) −
EL(σL ) > 0, and the edge set corresponding to the inter-
face between σL and τL. Then because the joint distribution
(JL, σL, τL ) is invariant under torus translations of �L, the
limiting distribution μJ is translation-invariant on Zd and is
itself a kind of metastate containing more information than κJ

(in fact, μJ is a special case of the excitation metastate).
What is the significance of the τL? It turns out that in the

infinite-volume limit, these all become ground states them-
selves. It is not hard to see why this is so. Working within
the KM procedure, fix a finite volume �L0 , which will serve
as a “window” in the sense described in Sec. III A, and study
the excited spin configurations inside it generated within �L

(with L � L0 always). The independently-chosen spins will
then move outside of �L0 with probability approaching one as
L → ∞.

Consider one of these �L, and call the two independently
chosen spins σ1 and σ2; τL is then the lowest-energy configu-
ration in �L subject to σ1 and σ2 having the opposite relative
orientation to what they had in σL. But then Eq. (2) must hold
for any contour or surface completely inside �L that includes
either both or neither of σ1 and σ2. Because σ1 and σ2 even-
tually move outside any fixed L0 in the infinite-volume limit,
Eq. (2) becomes satisfied in τL for every closed contour or
surface inside any window of fixed size, no matter how large.
Therefore, any infinite-volume spin configuration τ which is
a convergent subsequence of τL’s satisfies the definition of an
infinite-volume GSP.

Although the argument above was done using the KM
procedure, a similar argument leads to the same result for PY.
While we exclusively use the KM procedure in this paper, all
results obtained for KM should hold equally well for PY. So
if, as argued in Ref. [64], these procedures generate space-

filling interfaces, then μJ will be supported on pairs of GSP’s
separated by RSB interfaces.

An interesting question arises: although these τ ’s are in
the support of μJ , are they also in the support of the origi-
nal κJ? In other words, we know from the above argument
that the τ ’s are GSP’s of the infinite-volume EA Hamilto-
nian Eq. (1). But are they also subsequence limits of an
infinite sequence of finite-volume GSP’s with periodic bound-
ary conditions? Of course, if all coupling-independent and
spin-flip-symmetric boundary condition metastates are the
same—which is strongly suspected [19] but not yet rigorously
proved—then the question is immediately answered in the
affirmative. In the absence of a proof though, it would be
useful to know whether the τ ’s have this property. The next
theorem shows that they do.

Theorem 8.1. If the limiting infinite-volume spin configu-
rations τ generated from the excited states τL using the KM
or PY procedure have RSB interfaces with the corresponding
σ ’s, then they are infinite-volume ground states also in the
support of κJ .

Proof. The argument above already showed, using the
condition Eq. (2), that the τ ’s are ground states of the infinite-
volume Hamiltonian Eq. (1). What remains to be shown is
that the τ ’s are also in the support of κJ . Suppose this is not
the case. One can then construct a new metastate κ ′

J 
= κJ

supported solely on the set of τ ’s. By the assumption of the
theorem, these τ ’s are incongruent with σ ’s in the support of
κJ . Now select from μJ a (σ, τ ) pair separated by an RSB
interface, with σ in the support of κJ and τ in the support
of κ ′

J , and examine the fluctuations in their energy difference
�EL within any volume �L ⊂ Zd . Using Theorem 3.3 from
Ref. [65], there is a constant c > 0 such that for any �L suffi-
ciently large, Var(�EL ) � c|�L|, which violates the condition
that the energy difference between the selected σ and τ is
never greater than O(1) in any �L.

Remark. The proof of Theorem 8.1 shows that the conclu-
sion remains valid for a large class of procedures that generate
infinite-volume τ ’s that are incongruent with some set of σ ’s
in the support of κJ .

We turn now to the relation between σ -criticality and RSB
interfaces. We begin by showing that a sufficient condition for
the presence of RSB interfaces between a GSP σ and (one
or more) other GSP’s is that a positive density of bonds have
space-filling critical droplets in σ .

Theorem 8.2. If a GSP σ chosen from κJ has a positive
fraction of edges with space-filling critical droplets, then σ

will have an RSB interface with one or more other GSP’s in
κJ .

Proof. We introduce the following procedure for generating
excited states in a given volume �L. Choose an arbitrary bond
uniformly at random within EL (the edge set restricted to �L)
and consider the excited state τL generated by flipping its
critical droplet (with J remaining fixed). As before, the bond
is chosen independently for each �L.

By assumption, in any �L the procedure defined above has
a positive probability of generating a positive-density critical
droplet, so there is a set of τL with positive measure in κJ

generated by this procedure having a positive-density inter-
face with the corresponding σL. By the usual compactness
arguments the set of interfaces between the τL’s and σL’s will

044132-14



GROUND-STATE STABILITY AND THE NATURE OF THE … PHYSICAL REVIEW E 105, 044132 (2022)

converge to limiting space-filling interfaces in one or more
subsequences of �L’s. By construction the energy of the inter-
face in any volume is twice the flexibility of the chosen bond,
so in the infinite-volume limit the energy of the generated
interface between τ and σ remains O(1) in any finite-volume
subset of Zd .

Consider one such bond b1 chosen in �L which by this
procedure generates a τL having a positive-density interface
with σL. By definition the critical droplet is the lowest-energy
droplet generated by changing a bond’s coupling value past its
critical value. Then the condition Eq. (2) is satisfied in the τL

generated by flipping the critical droplet of b1 for all closed
contours or surfaces except those passing through b1. But by
the same arguments as those leading to Theorem 8.1, the cho-
sen bond will move outside any fixed window with probability
approaching one as L → ∞; so in any fixed volume Eq. (2)
will be satisfied in τL for sufficiently large L. Consequently,
any infinite-volume τ generated by this procedure is itself an
infinite-volume GSP of the Hamiltonian Eq. (1), and by the
remark following the proof of Theorem 8.1 it is in the support
of κJ .

Theorem 8.2 shows that the presence of space-filling crit-
ical droplets (which by Theorem 6.2 are σ -critical) is a
sufficient condition for RSB interfaces between GSP’s to be
present within κJ . We now consider a necessary condition.

Theorem 8.3. If a GSP σ chosen from κJ has an RSB
interface with one or more other GSP’s in κJ , then a positive
fraction of edges in σ are σ -critical.

Proof. If RSB holds in a given dimension, then by predic-
tion RSB excitations will be observable using the PY or KM
procedure in a positive fraction of volumes [64]; here we will
use the KM procedure. Let �L be one of the volumes in which
an RSB excitation is generated and call the two spins chosen
by the KM procedure σ1 and σ2. As before call the original
GSP σL and the excited state pair τL, and let SKM denote the
interface between σL and τL; SKM is an RSB excitation.

Next choose a bond b2 ∈ SKM and consider its critical
droplet D(b2, σL ). If the droplet corresponding to D(b2, σL )
includes only one of (σ1, σ2) and its boundary ∂D(b2, σL )
is different from SKM, then there’s a contradiction, because
by definition E [∂D(b2, σL )] < ESKM , where both energies are
computed in σL as in Eq. (2). Therefore, if the critical droplet
of b2 includes only one of (σ1, σ2), it is already space-filling.
As a consequence, in what follows we will assume that
∂D(b2, σL ) encloses both or neither of σ1 and σ2.

We next break up the relevant surfaces into pieces as illus-
trated in two dimensions in Fig. 1. Let S̃ = SKM ∩ ∂D(b2, σL );
S̃ contains at least b2 but could contain other bonds as well.
Split ∂D(b2, σL ) into two pieces, S̃ and ∂D<, such that S̃ ∩
∂D< = ∅ and S̃ ∪ ∂D< = ∂D(b2, σL ). Do the same with SKM,
so that S̃ ∩ S<

KM = ∅ and S̃ ∪ S<
KM = SKM.

Because b2 belongs to both SKM and ∂D(b2, σL ),
E [∂D(b2, σL )] < E (SKM) so

E [∂D(b2, σL )] = E (S̃) + E (∂D<) < E (SKM)

= E (S̃) + E (S<
KM) ⇒ E (∂D<) < E (S<

KM).
(19)

Additional information can be gained by noting that any
surface enclosing a droplet which includes either both or

FIG. 1. A sketch in two dimensions of the surface sections used
in the proof of Theorem 8.3. All surfaces (or contours in two dimen-
sions) live in the dual lattice, and the bond b2 in the real lattice. The
surface SKM, which encloses σ1 but not σ2, is the union of S̃ and S<

KM,
while the critical droplet boundary ∂D(b2, σL ) of b2 in σL is the union
of S̃ and ∂D<. The surfaces S<

KM and ∂D< have no bonds in common.

neither of σ1 and σ2 must have positive energy when computed
in either σL or τL; it follows that E [∂D(b2, σL )] > 0 in both
the ground and KM spin configurations. Because E (S̃) has the
same magnitude and opposite sign in the two states, it follows
that E (∂D<) > 0. We therefore have the inequalities

0 < E (∂D<) < E (S<
KM). (20)

Next consider another bond b3 in S<
KM (and therefore not in

∂D<). Its coupling magnitude can be changed (in a direction
to bring it closer to its critical value in σL), and the energy
E (S<

KM ) correspondingly lowered, by any amount up to its
flexibility f (b3, σL ) without affecting either the ground or KM
states. Such an operation may or may not lower E (S<

KM) below
E (∂D<). Suppose it does not. How often can we repeat this
procedure without creating a droplet flip?

Suppose a zero fraction of edges are σ -critical; as a con-
sequence, if SKM is space-filling, then any bond whose dual
is in ∂SKM has a critical droplet different from SKM. Let
PσL (bi1 , bi2 , . . . , bin ), with n fixed and finite, be the probability
in �L that any bond in the set {bi1 , bi2 , . . . , bin} is in the critical
droplet boundary of at least one other bond in the set. If once
again we choose the n bonds randomly and independently in
each volume �L, then the absence of σ -criticality would en-
sure that PσL (bi1 , bi2 , . . . , bin ) → 0 as L → ∞, for any fixed,
finite n.

This conclusion is unchanged if we restrict the chosen
bonds to belong to S<

KM in any volume in which SKM is space-
filling: because of the absence of σ -criticality, ∂D(b2, σL )
cannot be space-filling, so S̃ cannot be either; therefore, S<

KM
must be.

Using the reasoning above, the number n of such “noninter-
acting” sets of bonds in SKM can slowly increase to infinity as
�L → ∞. Changing the magnitude of the coupling associated
with one of these bonds has no effect on the flexibility of any
of the others as long as no droplet flip occurs in σL, so the
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operation described above can be performed on an increasing
number of bonds (as L increases) in SKM.

Therefore, because E (S<
KM) − E (∂D<) was O(1) before

changing any coupling values, and the flexibility of every
individual bond is also O(1), and we can perform the oper-
ation described above on b3 independently on a number n of
“noninteracting” bonds (with the original b2 included in this
set) that increases with the size of the volume under consider-
ation, it follows that the inequality Eq. (19) must be eventually
violated in sufficiently large volumes. As a consequence, the
presence of RSB interfaces is incompatible with the absence
of σ -criticality.

Theorems 8.2 and 8.3 can be combined as the following
theorem:

Theorem 8.4. RSB interfaces between ground states in the
zero-temperature periodic boundary condition metastate κJ

are present if each {σ} has a positive density of bonds which
have a space-filling critical droplet, and only if each σ has a
positive density of bonds which are σ -critical.

We conclude our discussion on the connection between
RSB and σ -criticality with a theorem on ground-state mul-
tiplicity in the RSB picture. It is well known that RSB is a
many-state picture [33] based on the correspondence between
replicas and pure states [30,33], and it has been rigorously
established that the positive temperature PBC metastate is
supported on an uncountable infinity of pure states [57]; but
we are unaware of any rigorous results on GSP multiplicity
in the RSB picture at zero temperature. (There is, however,
a rather surprising result [66] about GSP multiplicity in the
infinite-range SK model [42], in which it was shown that
with appropriate subsequence limits every infinite-volume
spin configuration is a ground state.) With the correspondence
between RSB and σ -criticality established in this section,
however, we can now state the following theorem:

Theorem 8.5. If RSB holds in some dimension, then in
that dimension the zero-temperature PBC metastate κJ is sup-
ported on infinitely many incongruent GSP’s.

Proof. By the Theorem in Sec. 6 of Ref. [46] and Theorem
1 of Refs. [48–50], the presence of space-filling interfaces
with energy scaling no faster than L(d−1)/2 along the interface
requires κJ to be supported on N � 2 incongruent ground-
state pairs. By Theorem 8.3, if RSB holds in some dimension,
then there is positive probability that any edge is σ -critical.
Theorem 7.4 then requires that either N = 1 or N = ∞; there-
fore N = ∞.

Theorem 8.5 does not specify whether κJ is supported on
a countable or uncountable infinity of GSP’s. Based on the
rigorous result of an uncountable infinity of pure states at
positive temperature [57], however, we are prepared to make
the following conjecture:

Conjecture 8.6. If RSB holds in some dimension, then
in that dimension the zero-temperature PBC metastate κJ is
supported on an uncountable infinity of incongruent GSP’s.

IX. CRITICAL DROPLETS AND
GROUND-STATE MULTIPLICITY

We saw in the previous section that σ -criticality of the
first kind—i.e., a positive probability of an edge having a
space-filling critical droplet in a ground state—is a sufficient

condition for RSB to hold in the EA model in a given di-
mension. While the presence of σ -criticality of the second
kind would be enough to provide a necessary condition, it is
unclear whether it is also sufficient for RSB to be present. One
might then speculate whether the presence of σ -criticality of
the second kind combined with absence of the first kind might
lead to a different picture, such as chaotic pairs, or even (less
plausibly) scaling-droplet or TNT.

To address this question we take a step back and ask
whether necessary or sufficient conditions can be found for
multiple incongruent GSP’s to be present at all, regardless of
which picture results.

As in earlier sections, our interest is in GSP multiplicity
that is observable using straightforward and standard physical
procedures. The usual approach is to ask whether changing
the boundary conditions “at infinity” can change the spin
configuration (other than a global flip) inside a large but
fixed finite window centered at the origin. Here “changing the
spin configuration” means that some bond inside the window
changes its state from satisfied to unsatisfied or vice-versa.1

This leads to the following definition:
Definition 9.1. Consider an infinite sequence of volumes

�L, with L → ∞. If, in a positive fraction of these volumes,
a change in boundary condition from periodic to antiperi-
odic changes the spin configuration inside any (large, but
small compared to �L) fixed window centered at the origin,
then we will say that the zero-temperature periodic boundary
condition metastate κJ is supported on observably multiple
ground-state pairs.

Remark. As noted in Sec. IV, it was proved in Ref. [45]
that the distinct ground-state pairs generated in this way are
necessarily mutually incongruent. In the rest of the paper
“multiple ground-state pairs” will mean observably multiple.

It will be important to keep in mind that with proba-
bility one any two metastates generated by choosing either
periodic or antiperiodic boundary conditions for each �L,
independently of the couplings and L, are equal to each other
[19]. The method of proof further implies a stronger result,
namely, that the same is true for boundary conditions that,
in any single volume �L, choose (again independently of the
couplings, etc.) periodic boundary conditions for some pairs
of opposite boundary spins and antiperiodic for others. By
“opposite boundary spins” we mean spins (σ1, σ2) that have
the same coordinates in (d − 1) dimensions and coordinates
(−L/2,+L/2) in the dth dimension. This stronger result will
be useful in what follows, and will be included as a theorem
below after some preliminary discussion.

We first take a closer look at the process of switching
from periodic to antiperiodic boundary conditions along a
single direction in a specific volume. Consider the edge set EL

comprising all bonds connecting two sites x and y with x and
y both in �L, and the set ∂EL consisting of bonds connecting
sites u and v with u ∈ �L and v ∈ ∂�L. The two sets are
distinct; we will refer to bonds belonging to EL as “interior
bonds” and those belonging to ∂EL as “boundary bonds.”

1This means that with positive probability the number of edges
undergoing such a change scales like the volume of the window.
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It has long been recognized that switching from periodic
to antiperiodic boundary conditions along a single direction
is equivalent to restoring periodic boundary conditions every-
where on ∂�L while simultaneously reversing the signs of all
couplings Jxy corresponding to boundary bonds in ∂E ′

L, where
∂E ′

L ⊂ ∂EL consists of the set of boundary bonds along a
single side (in two dimensions) or face (in higher dimensions)
belonging to ∂�L. This result follows from the invariance of
Eq. (1) with respect to the gauge transformation σx → −σx

simultaneously with Jxy → −Jxy for all y satisfying ‖x − y‖ =
1.

An immediate consequence of the above observation is that
the change of spin configuration inside �L, due to switching
the signs of the Jxy corresponding to boundary bonds bxy in
∂E ′

L, is determined by the critical droplet size distribution in
ground states belonging to the support of κJ . To see this, note
that a global change in sign of all couplings along a face of
∂�L yields the same interior configuration as locally changing
the same set of couplings one at a time, each time letting the
spins rearrange to the new GSP, and going on to the next.
After every coupling change from Jxy → −Jxy in a boundary
bond, one of two things happens: either the bond’s critical
value is not crossed, so the bond’s critical droplet does not flip,
and the GSP remains unchanged, or else2 the bond’s critical
value is crossed, flipping the bond’s critical droplet thereby
leading to a new GSP inside �L (but not necessarily changed
inside the window). As already noted, the GSP following each
coupling sign reversal is the same as would result with the
original J and a change of boundary condition from periodic
to antiperiodic on the corresponding opposite spin pair. Sign
reversals notwithstanding, any new GSP generated in this way
remains in the support of the original κJ , as a consequence of
the following theorem:

Theorem 9.2 (Newman-Stein) [19]. Any two metastates
generated by an infinite sequence of volumes with different
boundary conditions are the same if the two boundary condi-
tions on each volume are related by a gauge transformation.

Clearly, if changing from periodic to antiperiodic BC’s on
only a subset of opposite spin pairs in a positive fraction of
volumes leads to a change of spin configuration inside a fixed
window, then there also exist multiple incongruent GSP’s in
the support of κJ . This leads to the following theorem:

Theorem 9.3. The presence of σ -criticality of either kind is
a sufficient condition for the existence of multiple observable
ground-state pairs in the support of κJ .

Proof. Consider a volume �L along with a fixed window
�L0 , both centered at the origin and with 1 � L0 � L. By
Definition 9.1 and the remark following, if there are two or
more incongruent GSP’s in the support of κJ then there is
positive probability that a change from periodic to antiperi-
odic boundary conditions for one or more pairs of opposite
boundary spins along one direction will effect a change in the
spin configuration inside �L0 .

From Theorem 8.2 we already know that σ -criticality of
the first kind is a sufficient condition for GSP multiplicity.

2Some coupling’s sign reversal will lead to a critical droplet flip in
any GSP; otherwise, Eq. (2) will be violated if all couplings along a
closed surface reverse sign.

Suppose this is absent but σ -criticality of the second kind
is present. From the discussion above, switching any pair
of opposite boundary spins from periodic to antiperiodic is
equivalent to changing the sign of the coupling of a single
bond in ∂E ′

L. Let EL0 denote the set of all bonds bxy such that
x ∈ �L0 and y ∈ �L0 . Because of the presence of σ -criticality
of the second kind, a bond has positive probability of belong-
ing to the critical droplet boundary of a positive density of
bonds in EL; so changing the sign of a coupling on a boundary
bond arbitrarily far away has positive probability of causing a
bond in EL0 to change its state from satisfied to unsatisfied
or vice-versa. There is then positive probability that the spin
configuration inside �L0 will change when the BC’s of any �L

(with L > L0) are changed from periodic to (partially or fully)
antiperiodic. This completes the proof.

We next consider a necessary condition for observing in-
congruent GSP’s in κJ . As discussed above, the equivalence
between changing boundary conditions and flipping the signs
of boundary couplings one at a time suggests that the ob-
servation of multiple GSP’s requires the existence of critical
droplets of arbitrarily large size. This will certainly occur if
σ -criticality is present, but it might also occur in its absence.

To proceed, we introduce the following quantities. Let
K∗(b, σ ) denote the number of bonds in Ed whose criti-
cal droplet boundaries in σ pass through b. Then for k =
1, 2, 3 . . . define P(k, σ ) to be the fraction of bonds b ∈ Ed

such that K∗(b, σ ) = k, and let

Eσ [K∗] =
∞∑

k=1

k P(k, σ ). (21)

That is, Eσ [K∗] is the average number of bonds whose critical
droplet boundaries a typical bond belongs to in the GSP σ .
We then define the following:

Definition 9.4. A ground state σ will be called σ -subcritical
if σ -criticality of either kind is absent, but Eσ [K∗] = ∞.

Remark. A GSP will be σ -subcritical if, for instance, a
positive fraction of bonds belong to the critical droplet bound-
aries of an infinite, zero-density set of other bonds. Neither
σ -criticality nor σ -subcriticality will be present if P(k, σ )
falls off faster than k−(2+ε) for any ε > 0 as k → ∞.

If σ -criticality and σ -subcriticality are both absent, i.e.,
Eσ [K∗] < ∞, then a fraction one of all bonds belong to the
critical droplet boundary of only a finite number of other
bonds (the converse of course is not necessarily true). If this
were to occur, then, as we argue below, the spin configuration
in any fixed finite window should not be affected by changing
the boundary condition from periodic to antiperiodic in a vol-
ume whose boundaries are sufficiently far from the window.

To test this conjecture, we define the following. As in
the proof of Theorem 9.3, consider a volume �L along with
a fixed window �L0 , both centered at the origin and with
1 � L0 � L. The underlying probability space for the dis-
cussion here is the one corresponding to the choice of the
coupling configuration J . Then let AL denote the event that
switching from periodic to antiperiodic boundary conditions,
either along all of ∂E ′

L or else a subset of ∂E ′
L, changes the

spin configuration inside the window �L0 such that there is
some subset of bonds belonging to EL0 which change their

044132-17



C. M. NEWMAN AND D. L. STEIN PHYSICAL REVIEW E 105, 044132 (2022)

status from satisfied to unsatisfied, or vice-versa, in the new
ground-state spin configuration.

Next, order the n couplings in ∂E ′
L from 1 to n (which index

is assigned to which particular coupling in ∂E ′
L is immaterial

so long as every coupling is assigned one and only one index,
and each coupling’s index is distinct from all the others). Let
BL,i, i = 1, . . . , n be the event that, with periodic boundary
conditions on ∂�L, changing the sign of the single coupling Ji

assigned to a bond bi ∈ ∂E ′
L, while leaving all other couplings

unchanged from J , changes the spin configuration inside �L0

such that there is some subset of bonds belonging to EL0 which
change their status from satisfied to unsatisfied, or vice-versa,
in the new ground-state spin configuration. In other words,
the event BL,i occurs when the critical droplet of bi ∈ ∂E ′

L
penetrates the window �L0 .

Finally, again with periodic boundary conditions on ∂�L,
reverse the sign of couplings 1, . . . , i, one at a time in order of
index. The event CL,i then occurs if changing the sign of the
ith boundary coupling changes the spin configuration inside
�L0 from its configuration just before the ith coupling sign
was flipped.

Several relations follow from the above definitions, for a
fixed volume �L with n = |∂E ′

L| boundary bonds along one
face:

(a) AL = ⋃n
i=1 CL,i,

(b) BL,1 = CL,1,
(c) Using gauge-invariance as above, P(BL,i ) = P(CL,i ).
From (a) and (c) above we obtain the union bound

P(AL ) = P

(
n⋃

i=1

CL,i

)
�

n∑
i=1

P(CL,i ) =
n∑

i=1

P(BL,i ). (22)

Now suppose that κJ is supported on multiple incongruent
GSP’s. If so, then switching from periodic to antiperiodic
boundary conditions changes the spin configuration inside
�L0 in a positive fraction of �L’s. Thus for a large �L,
P(AL ) > c > 0, where c is independent of L, and conse-
quently

n∑
i=1

P(BL,i ) > c > 0, (23)

independently of L.
Now let b0 be a fixed bond and b′ be a varying bond located

anywhere in Ed . Let Db′,b0 denote the event that the boundary
of the critical droplet in σJ caused by modifying the value of
Jb′ passes through b0, and let P(Db′,b0 ) denote the probability
of occurrence [with respect to (J, σJ )] of Db′,b0 .

Then Eq. (23) suggests (see the remark following Claim
9.5 below) that

P(Db′,b0 ) > C‖b′ − b0‖−(d−1), (24)

where 0 < C < ∞ is some constant and ‖b′ − b0‖ denotes the
Euclidean distance between b′ and b0.

Finally, if EJ,σ [·] denotes the average both over couplings J
and σ ’s from κJ , then Eq. (24) implies that EJ,σ [K∗(b0, σ )] =
∞, which in turn suggests that Eσ [K∗] = ∞ for (at least) a
positive fraction of the σ ’s in the metastate for (at least) a
positive fraction of the J’s. We therefore conclude with the
following claim:

Claim 9.5. A necessary condition for κJ to be supported on
multiple GSP’s is that Eσ [K∗] = ∞—i.e., either σ -criticality
or σ -subcriticality is present—in a positive fraction of the
GSP’s in the support of κJ .

Remark. Although the informal argument above provides
convincing evidence that Eσ [K∗] = ∞ is a necessary condi-
tion for multiple GSP’s to be in the support of κJ , we present
it as a (nonrigorous) claim rather than a rigorous theorem.
This is because the quantities related to K∗ are defined with
respect to infinite-volume ground states in the metastate, while
Eq. (23) is a condition on finite-volume ground states. [This is
similar to the issue discussed following Eqs. (15) and (16) in
Sec. IV.] One could of course define finite-volume equivalents
of K∗ and related quantities, but the point of view of this paper
is that a coherent picture requires all results to be formulated
within the metastate framework.

X. SUMMARY AND DISCUSSION

The nature of the spin glass phase has not been settled
despite years of investigation and a vast literature. Numerous
pictures have been proposed, which differ on fundamental
aspects of spin glass equilibrium behavior: multiplicity of
pure states at low temperature or ground states at zero tem-
perature; the number and structure of positive-temperature
thermodynamic states (i.e., whether each one in the support of
the metastate comprises a single pure state pair or a nontrivial
mixture of infinitely many incongruent pure state pairs); inter-
face structure and energy; the geometry and energetics of the
lowest-energy large-lengthscale excitations above the ground
state; and so on.

In this paper we proposed that all of these features are
related to the stability of the ground state to a change in
coupling value of a single bond. This is different from but,
as shown in Ref. [8] and discussed in Sec. IV, can be related
to the concept of disorder chaos [8–13]. In this paper the
primary objects of interest are the flexibility of a coupling,
which is the amount by which the coupling can be varied
before forcing a change in the ground state of interest, and
the associated bond’s critical droplet, which is the droplet flip
caused by changing the bond’s coupling value. Flexibilities,
critical droplets, and associated quantities can be defined both
for finite-volume and infinite-volume ground states. There are
three spin glass systems, discussed in Sec. III C, for which
these quantities are completely or partially understood: the
EA model in one dimension, the highly disordered model
in all dimensions, and the strongly disordered model in all
dimensions.

Our main interest is the EA spin glass within the context of
the zero-temperature periodic boundary condition metastate
κJ , defined in Sec. III A. Starting in Sec. V we focused on
four prominent conjectures about the nature of the spin glass
phase in this model: RSB, scaling-droplet, chaotic pairs, and
TNT. These can be categorized and related by the geometry
and energy of the large-lengthscale, low-energy excitations
above the ground state at zero temperature, as shown in Ta-
ble I in Sec. V. To investigate the connection between these
pictures and ground-state stability, we introduced the concept
of σ -criticality, which measures the extent to which changing
the coupling value of a single bond affects the flexibilities of
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other bonds in the infinite-volume edge set Ed . If a bond is
σ -critical, then lowering its flexibility by varying its coupling
(within some open interval) lowers the flexibilities of a posi-
tive density (in Ed ) of other bonds.

This can arise in two ways: σ -criticality of the first kind
occurs when the critical droplet of a bond is space-filling (i.e.,
has a positive-density boundary); σ -criticality of the second
kind occurs when a bond’s critical droplet is not space-filling
but it belongs to the critical droplet boundary of a positive
density of bonds in Ed . One way in which the second kind
could occur is if a positive density of bonds have infinite but
zero-density critical droplets.

A bond can also be σ -subcritical, meaning that lowering
its flexibility also lowers the flexibility of an infinite but
zero-density set of other bonds. One of our main results,
presented in Sec. IX, is that a sufficient condition for ground-
state pair multiplicity to arise is that GSP’s in the support
of κJ have a positive density of edges being σ -critical (of
either kind), and a likely necessary condition is that GSP’s
have a positive density of edges being either σ -critical or
σ -subcritical.

This last result is a general statement for the EA model
and is independent of which picture one assumes describes
the spin glass phase. We now turn to the four pictures
summarized in Table I and how each relates to a different
type of ground-state stability. It is important to emphasize
that Table I refers solely to the large-lengthscale excitations
which dominate the zero- and low-temperature behavior of
the spin glass phase. We already noted in Sec. VIII that
high-energy space-filling interfaces must also be present in the
RSB picture. In principle such interfaces could also coexist
with either TNT-type excitations (i.e., infinite, zero-density,
low-energy excitations) or scaling-droplet-type high-energy
compact excitations. But if this were to happen in either
case it would then be an example of the chaotic pairs pic-
ture, in which κJ is supported on multiple GSP’s and the
low-temperature PBC metastate is supported on many ther-
modynamic states, each of which comprises a single pure state
pair.

To avoid confusion (and adhere to the original defini-
tions of these pictures), when we refer to either the TNT
or scaling-droplet pictures we mean that the excitations they
predict are the only ones that determine the ground-state and
low-temperature properties of the spin glass phase. Specif-
ically, this means that no space-filling excitations of either
energy type [with energy scaling no faster than O(L(d−1)/2)]
are present in either the TNT or scaling-droplet pictures. We
further require, as discussed in the text, that all excitations
must be observable, through either the PY/KM procedures in
the case of RSB and TNT, or through a change of periodic
to antiperiodic boundary conditions in the chaotic pairs or
scaling-droplet pictures.

With these clarifications in mind, we now discuss the re-
lation of each of the four pictures in Table I to ground-state
stability, beginning at the upper left. In Sec. VIII we showed
that a necessary condition for the presence of RSB is that σ -
criticality of either kind be present in GSP’s in the support of
κJ , while a sufficient condition is the presence of σ -criticality
of the first kind. Because of this sufficient condition, none

of the other pictures is compatible with the presence of σ -
criticality of the first kind.

The chaotic pairs picture, then, must be a consequence of
the presence of either σ -criticality of the second kind or σ -
subcriticality.

For both the TNT and scaling-droplet pictures, σ -criticality
of the second kind is also ruled out, since its presence implies
multiplicity of incongruent GSP’s. At this time we cannot
rule out the incompatibility of σ -subcriticality with either
picture—though the argument supporting Claim 9.5 suggests
the possibility that σ -subcriticality might also be a sufficient
condition for the existence of GSP multiplicity in κJ , in which
case its presence too would be incompatible with either the
TNT or scaling-droplet pictures.

The TNT picture is compatible with at least two possibil-
ities. If TNT excitations really are infinite, then they could
in principle be generated from an infinite but zero-density
set of bonds having infinite, zero-density critical droplets.
But it could also be the case—consistent with the numerical
data in Refs. [51,52]—that all critical droplets are finite but
with a size distribution falling off slowly with increasing
length.

As for the scaling-droplet picture, it requires finite critical
droplets only. Its scaling predictions at very low energies
[10,27] imply a power-law falloff in the linear extent of
compact droplet excitations with O(1) energy; this then
implies a similar falloff in size for the critical droplet
distribution.

An interesting possibility, discussed earlier in (Sec. IV), is
the case of an exponential falloff in the distribution of sizes
at large lengthscales. In the discussion following Theorem
4.3 we argued that the absence of infinite critical droplets
coupled with an exponential critical droplet size falloff is
inconsistent with a many-state picture. It might seem that this
contradicts the fact that the highly disordered picture, which
is known to have infinitely many incongruent states above
six dimensions [39], has only finite critical droplets in all
dimensions (though we do not know the distribution of droplet
sizes in that model in any dimension greater than one). In any
case, the coupling distribution for the highly disordered model
is volume-dependent and therefore violates the assumption
behind most of our theorems that the coupling distribution
be i.i.d. over the infinite volume. So no conclusions about
the EA model should be drawn from the highly disordered
model. (However, we expect that the strongly disordered
model should exhibit the same large-lengthscale behavior as
the ordinary EA model.)

A summary of these conclusions and relations is as fol-
lows:

(i) The presence of σ -criticality of either kind implies (i.e.,
is a sufficient condition for) multiple observable ground-state
pairs;

(ii) The presence of σ -subcriticality or either kind of
σ -criticality is (likely) a necessary condition for multiple ob-
servable ground-state pairs;

(iii) The presence of σ -criticality of the first kind implies
RSB;

(iv) RSB requires the presence of σ -criticality of either the
first or second kind (which would imply that all ground states
are marginally stable—see below);
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(v) Chaotic pairs requires the presence of either σ -
criticality of the second kind or σ -subcriticality;

(vi) Both scaling-droplet and TNT require the absence of
either kind of σ -criticality; and

(vii) Scaling-droplet requires finite critical droplets only
(which would imply that all ground states are robustly
stable—see below).

Turning now to ground-state stability, the analysis in this
paper suggests two extreme cases. The first corresponds to a
ground state having a positive density of bonds which are σ -
critical. If the σ -criticality is of the first kind, then changing
the coupling value of a single bond by O(1) can completely
destroy the structure of the original ground state, leading to
a new ground state that is incongruent with the original. If
it is of the second kind, then changing the coupling value of
a single bond can lower the flexibility of a positive density
of other couplings, making the ground state much less stable
to perturbations of arbitrary couplings. It seems appropriate
therefore to refer to ground states with a positive density of
σ -critical bonds as “marginally stable.”3

3The term “marginal stability” has been used in other contexts, for
example, when the Hessian of the interaction potential has a zero
eigenvalue; see, for example, Ref. [67].

The opposite case is where all critical droplets are finite
with σ -criticality and σ -subcriticality both absent. In this case
a coupling perturbation will lead to at most a local droplet
flip, so that any finite number of coupling perturbations leaves
the structure of the infinite ground state, in terms of both
spin configuration and distribution of flexibilities, essentially
intact. As noted above, the latter is guaranteed when a ground
state’s critical size distribution has an exponential falloff of
critical droplet sizes at large lengthscales. Ground states with
this property could justifiably be called “robustly stable”; the
scaling-droplet picture is consistent with this kind of ground-
state stability.

It is interesting that the two extreme cases—all ground
states being marginally stable versus all being robustly
stable—correspond to the two opposite cases along the diag-
onal of Table I: RSB requires marginally stable ground states,
and scaling-droplet likely requires robustly stable ground
states. Future work will aim toward further clarifying and
refining the picture so far developed.
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