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Relationship between Schreiber’s transfer entropy and Liang-Kleeman information
flow from the perspective of stochastic thermodynamics
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Schreiber’s transfer entropy is an important index for investigating the causal relationship between random
variables. The Liang-Kleeman information flow is another analysis to demonstrate the causality within dynamical
systems. Horowitz’s information flow is introduced through multicomponent stochastic thermodynamics. In this
study, I elucidate the relationship between Schreiber’s transfer entropy and the Liang-Kleeman information flow
through Horowitz’s information flow. I consider the case in which the system changes according to the stochastic
differential equation. I find that the Liang-Kleeman and Horowitz information flows differ by a term derived from
the stochastic fluctuation. I also show that Schreiber’s transfer entropy is not less than Horowitz’s information
flow. This study helps unify various indexes that determine the causal relationship between variables.
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I. INTRODUCTION

When one wants to investigate a complicated phenomenon
but does not know how to apply the laws of physics to it,
one typically observes the quantities that seem to be related
to the phenomenon. When the system is in equilibrium, the
existence of dependence among multiple observables can be
determined by examining mutual information in terms of
the information theory [1]. When the system is time varying,
the measured quantities are obtained as time series data [2–4].
In some cases, information about the causal relationships
among the measured quantities from the time series data is
required. When studying aspects beyond the interdependency
of x and y, it is important to know the causal relationship
between x and y, where x is the cause of y. In other words,
to determine if the variable x is required for the prediction
model of the variable y, it is important to identify the causal
relationship between the variables. Granger causality is a con-
ventional method for testing the causal relationship between
two quantities [5]. Schreiber invented transfer entropy to study
the causal relationship between two random processes [6,7].
Transfer entropy has been used extensively to detect causal
relationships, but it may not always successfully do so [8–10].

Liang and Kleeman considered a new approach of infor-
mation flow to develop a method for constructing a causal
relationship [11–18]. Their method is ingenious and divides
the entropy change of a random variable x into a sponta-
neous change of x itself and the external influence from y.
The external influence is evaluated using the difference be-
tween the entropy change and the spontaneous change. The
external influence corresponds to the Liang-Kleeman infor-
mation flow. Schreiber’s transfer entropy is defined by the
Kullback-Leibler divergence between two conditional proba-
bility distributions, P(xt+dt |xt , yt ) and P(xt+dt |xt ), where dt
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represents the time increment. If xt+dt does not depend on
yt , relation P(xt+dt |xt , yt ) = P(xt+dt |xt ) is satisfied; then, the
Kullback-Leibler divergence between them becomes zero.
Thus, based on their definitions, Schreiber’s transfer entropy
and the Liang-Kleeman information flow are considerably dif-
ferent, and their mutual relationship is not clear. Knowledge of
the causal relationship between multiple indexes and when to
use specific indexes is always valuable. Therefore, this study
presents the relationship between Schreiber’s transfer entropy
and the Liang-Kleeman information flow.

A recent major trend in thermodynamics involves treating
information thermodynamically [19]. When the second law
of thermodynamics is formulated using stochastic thermody-
namics, mutual information is added to the formula of the said
law for macroscopic systems. In particular, when considering
the thermodynamics of a system consisting of two variables,
new terms are added to the equation of the second law of
thermodynamics for the entropy changes of each system and
the entropy changes from each environmental reservoir. The
added terms concern the rates of changes in the mutual infor-
mation between the two variables. These rates represent the
information flow between the two systems. It is likely that the
so-called information flow can be used for causal inference
between the two variables. It has been shown that Schreiber’s
transfer entropy can be derived naturally by applying stochas-
tic thermodynamics to the Bayesian network and formulating
the second law of thermodynamics [20,21]. In light of the
above, it seems worthwhile to consider the information flow
from a thermodynamic perspective.

The importance of the Liang-Kleeman information flow in
thermodynamics has been highlighted by Cafaro et al. [22].
They revealed the relationship between the Liang-Kleeman
and Horowitz-Esposito notions of information flow [23–25].
The derivation of the Liang-Kleeman information flow was
proven, first heuristically and then rigorously, but I believe
that a thermodynamic interpretation strengthens its reliability.
Furthermore, the thermodynamic interpretation of Schreiber’s
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transfer entropy has been discussed by Prokopenko et al. [26].
Thus, the thermodynamic interpretations of both the Liang-
Kleeman information flow and Schreiber’s transfer entropy
have been clarified; however, the thermodynamic relation-
ship between the two has not been established. Therefore, I
reexamine the relationship between the Liang-Kleeman and
Horowitz-Esposito notions of information flow. Cafaro et al.
targeted two systems interacting with each other and claimed
that the two representations of the information flow between
these systems are equal. In this study, I consider an arbitrary
number of systems and investigate the relationship between
these two notions of information flow. I elucidate the rela-
tionship between Schreiber’s transfer entropy and Horowitz’s
information flow. As stated previously, establishing a direct
relationship between them can be highly beneficial.

Physical systems are causal. Theoretically, one can con-
sider systems that do not satisfy causality. Concretely, a
coupled chaotic dynamic system [27–29] is a model that does
not satisfy Granger’s first principle of causality [30], but such
a model will not be discussed in this study.

II. MODEL

I consider that the system changes according to a stochastic
differential equation, which is given by [31,32]

d �Xt = �F ( �Xt , t )dt + B( �Xt , t ) · d �W (t ). (1)

I assume an N-dimensional system. In Eq. (1),
�Xt and �F are N-dimensional column vectors de-
noted by �Xt = (X1,t , X2,t , . . . , XN,t )� and �F ( �X , t ) =
(F1( �X , t ), F2( �X , t ), . . . , FN ( �X , t ))�, respectively. The sign
“�” denotes the transpose. The quantity B( �X , t ) is an
N × N matrix, and the sign “·” represents the Itô product
between a matrix and a column vector. In Itô’s equation,
the elements of the vector of the Wiener increment, that is,
dWi(t ), i ∈ {1, 2, . . . , N}, satisfy

dWi(t )dWj (t ) = δi jdt, (2)

where δi j denotes the Kronecker delta. Because �X at time t is
represented by �Xt , the value of �X after dt from t is obtained as

�Xt+dt = �Xt + d �Xt . (3)

As d �W (t ) is a random variable, there exist various paths of �Xt .
When the value �X is measured at time t , the probability dis-
tribution pt (�x) exists. This probability distribution is obtained
as follows:

pt (�x) = 〈δ(�x − �Xt )〉, (4)

where 〈· · · 〉 represents the average over various paths of �Xt ,
and δ(x) denotes Dirac’s delta function. The probability dis-
tribution pt (xk ) is obtained by the following marginalization:

pt (xk ) =
∫

d�x−k〈δ(�x − �Xt )〉 =
∫ N∏

i �=k

dxi

〈
N∏

j=1

δ(x j − Xj,t )

〉

= 〈δ(xk − Xk,t )〉, (5)

where �x−k denotes all elements of �x except for xk .
To consider the time dependence of pt (�x), I introduce

pt+dt (�x) = 〈δ(�x − �Xt+dt )〉. (6)

Substituting Eq. (3) in Eq. (6) and expanding it with respect
to d �Xt , I obtain

pt+dt (�x) = 〈δ(�x − �Xt − d �Xt )〉
= 〈δ(�x − �Xt )〉 − 〈d �X �

t ∇δ(�x − �Xt )
〉

+ 1
2 〈(d �X �

t ∇)2δ(�x − �Xt )〉 + O((d �Xt )
3), (7)

where ∇ = (∂1, ∂2, . . . , ∂N )�. In addition, using Itô’s lemma,
Eq. (7) becomes

pt+dt (�x) = pt (�x) − ∇�[ �F (�x, t )pt (�x)]dt

+ 1
2∇∇� : [B(�x, t )B(�x, t )� pt (�x)]dt + o(dt ), (8)

where “:” denotes A : B =∑i, j ai jb ji. According to [23,33],
I assume that the system is multipartite; thus, the terms con-
taining ∂i∂ j (i �= j) are disregarded. A detailed explanation of
the disregard can be seen in Appendix A. In the multipartite
case, Eq. (8) is written as

pt+dt (�x) = pt (�x) −
N∑

i=1

∂iJi(�x, t )dt + o(dt ), (9)

where Ji(�x, t ) is defined by

Ji(�x, t ) = Fi(�x, t )pt (�x) − 1
2∂i[gii(�x, t )pt (�x)], (10)

and gi j (�x, t ) = (B(�x, t )B(�x, t )�)i j . Equation (9) leads to the
continuity equation of probability. As per the form of Eq. (9),
Ji(�x, t ) represents the ith-direction current of the probabili-
ties. In the multipartite system, the ith-direction current (10)
contains only the ∂i term. Because gi j (�x, t ) is composed of
B(�x, t ), gi j (�x, t ) stems from the stochastic fluctuation. In the
multipartite system, the ith-direction current is not influenced
by the other direction elements. As the formula of the Liang-
Kleeman information flow includes only the gii(�x, t ) term,
the Liang-Kleeman information flow would have implicitly
assumed that the system is multipartite.

III. DEFINITION OF INFORMATION FLOW IN
STOCHASTIC THERMODYNAMICS

In this section, I briefly introduce the current knowledge
on information flow in stochastic thermodynamics. To begin
with, let us consider the case of a bipartite system, which is
formulated by two random variables: X1,t and X2,t . Mutual
information is useful to examine the interdependence of these
two random variables. The mutual information is defined as

I (X1,t ; X2,t ) =
∫

pt (�x) ln

[
pt (�x)

pt (x1)pt (x2)

]
d�x. (11)

The mutual information allows the recognition of the inter-
dependence between them but not the causality. To recognize
the causality between the two random variables, time-shifted
mutual information is useful [34–36]. Using the time-shifted
mutual information, the information flow from variable X2,t to
X1,t is defined as [37]

T2→1 = lim
dt→0

1

dt
[I (X1,t+dt ; X2,t ) − I (X1,t ; X2,t )]. (12)

The time-shifted mutual information I (X1,t+dt ; X2,t ) repre-
sents the interdependence between X1,t+dt and X2,t . The
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positive T2→1 shows that the interdependence increases as the
time of X1,t changes from t to t + dt ; this means that the
effect of X2,t on X1,t increases with time for X1,t . Thus, one
can interpret the positive T2→1 as the information flow from
X2,t to X1,t . It is evident from Eq. (12) that the time derivative
of the mutual information becomes

d

dt
I (X1,t ; X2,t ) = T1→2 + T2→1. (13)

Equation (13) shows that the time derivative of the mutual
information is equal to the sum of the exchange of the infor-
mation flow. Using N = 2 in Eq. (9), one can derive another
formula for information flow, namely,

T2→1 =
∫

J1(�x, t )∂1 ln[pt (x2|x1)]d�x, (14)

where pt (x2|x1) is a conditional probability distribution de-
fined by pt (�x)/pt (x1) [23,37].

The extension of the information flow to a multipartite
system has been given by Horowitz [33]. Let us consider
that a system varies according to the stochastic differen-
tial equation of the N-dimensional system. The system is
divided into two parts: the kth variable Xk,t and �X−k,t =
{X1,t , . . . , Xk−1,t , Xk+1,t , . . . , XN,t }. The mutual information
between Xk,t and �X−k,t is defined as

I (Xk,t ; �X−k,t ) =
∫

pt (�x) ln

[
pt (�x)

pt (xk )pt (�x−k )

]
d�x, (15)

where pt (�x−k ) = ∫ pt (�x)dxk . The derivative of Eq. (15) with
respect to t becomes

d

dt
I (Xk,t ; �X−k,t ) =

∫
Jk (�x, t )∂k ln[pt (�x−k|xk )]d�x

+
∑
l �=k

∫
Jl (�x, t )∂l ln[pt (xk|�x−k )]d�x.

(16)

Each term on the right-hand side of the equation can be
interpreted as the information flow between Xk,t and �X−k,t .
By analogy with Eq. (14), the first term on the right-hand
side of Eq. (16) corresponds to the information flow from
�X−k,t to Xk,t . The second term corresponds to the sum of the
information flow from Xk,t to Xl,t , that is,

d

dt
I (Xk,t ; �X−k,t ) =

∫
Jk (�x, t )∂k ln[pt (�x−k|xk )]d�x +

∑
l �=k

Tk→l ,

(17)
where Tk→l is defined as

Tk→l =
∫

Jl (�x, t )∂l ln[pt (xk|�x−k )]d�x. (18)

Equation (18) has been introduced by Horowitz [33], and
henceforth, I call Eq. (18) Horowitz’s information flow. The
stochastic thermodynamic aspect of Horowitz’s information
flow has been discussed by Horowitz [33].

IV. RESULTS

A. Formulation of Horowitz’s information flow
in a multipartite system

In this section, I demonstrate the properties of Horowitz’s
information flow, namely, Eq. (18). Let us see another for-
mulation of Horowitz’s information flow that is useful for
interpreting it. I consider the following difference between the
two mutual information:

I (Xk,t ; {Xl,t+dt , �X−{k,l},t }) − I (Xk,t ; {Xl,t , �X−{k,l},t })

=
∫

p(x′
l , �x−l ) ln

[
p(x′

l , �x−l )

p(x′
l , �x−{k,l})pt (xk )

]
dx′

l d�x−l

−
∫

pt (�x) ln

[
pt (�x)

pt (�x−k )pt (xk )

]
d�x, (19)

where p(x′
l , �x−l ) is a joint probability distribution defined as

p(x′
l , �x−l ) = 〈δ(x′

l − Xl,t+dt )δ(�x−l − �X−l,t )〉, (20)

and �x−{k,l} represents all elements of vector �x, except for
xk and xl . In Eq. (20), the variables with a prime represent
random variables at time t + dt , and the variables without a
prime represent those at time t . This probability distribution
function is composed of random variables at different times;
thus, the subscript t is not attached to p in Eq. (20). Each term
in Eq. (19) consists of the mutual information between Xk,t

and �X−k,t ; moreover, the lth random variable of the first term
is time shifted. The right-hand side of Eq. (19) becomes

I (Xk,t ; {Xl,t+dt , �X−{k,l},t }) − I (Xk,t ; {Xl,t , �X−{k,l},t })

=
∫

p(x′
l , �x−l ) ln

[
p(x′

l , �x−{k,l}|xk )

p(x′
l , �x−{k,l})

]
dx′

l d�x−l

−
∫

pt (�x) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x

=
∫

p(x′
l , �x−l ) ln[p(x′

l , �x−{k,l}|xk )]dx′
l d�x−l︸ ︷︷ ︸

A

−
∫

p(x′
l , �x−l ) ln[p(x′

l , �x−{k,l})]dx′
l d�x−l︸ ︷︷ ︸

B

−
∫

pt (�x) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x. (21)

First, I estimate the term “A” in Eq. (21). Substituting
Xl,t+dt = Xl,t + dXl,t into Eq. (20), expanding it with respect
to dXl,t , and utilizing Itô’s lemma, Eq. (20) becomes

p(x′
l , �x−l ) = 〈δ(x′

l − Xl,t )δ(�x−l − �X−l,t )〉
− ∂ ′

l [Fl (x
′
l , �x−l , t )〈δ(x′

l − Xl,t )δ(�x−l − �X−l,t )〉]dt

+ 1
2∂ ′2

l [gll (x
′
l , �x−l , t )〈δ(x′

l − Xl,t )

× δ(�x−l − �X−l,t )〉]dt + o(dt )

= pt (x
′
l , �x−l ) − ∂ ′

l Jl (x
′
l , �x−l , t )dt + o(dt )

= pt (x
′
l , �x−l ) − ©dt + o(dt ). (22)
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Comparing Eq. (22) with Eq. (9), the time is advanced from t to t + dt with respect to Xl,t , leading to the appearance of the
l-direction current in Eq. (22). To save space, I introduce the symbol “©”. Using Eq. (22), the conditional probability distribution
p(x′

l , �x−{k,l}|xk ) is derived as

p(x′
l , �x−{k,l}|xk ) = p(x′

l , �x−l )

pt (xk )
= pt (x′

l , �x−l )

pt (xk )
− ©

pt (xk )
dt + o(dt ). (23)

Substituting Eqs. (22) and (23) into A and expanding the result with respect to dt up to the first-order term gives

A =
∫

{pt (x
′
l , �x−l ) − ©dt + o(dt )} ln

[
pt (x′

l , �x−l )

pt (xk )
− ©

pt (xk )
dt + o(dt )

]
dx′

l d�x−l

=
∫

{pt (x
′
l , �x−l ) − ©dt + o(dt )}

{
ln

[
pt (x′

l , �x−l )

pt (xk )

]
− ©

pt (x′
l , �x−l )

dt + o(dt )

}
dx′

l d�x−l

=
∫

pt (x
′
l , �x−l ) ln

[
pt (x′

l , �x−l )

pt (xk )

]
dx′

l d�x−l −
∫

©dx′
l d�x−l dt −

∫
© ln

[
pt (x′

l , �x−l )

pt (xk )

]
dx′

l d�x−l dt + o(dt )

=
∫

pt (�x) ln

[
pt (�x)

pt (xk )

]
d�x −

∫
[∂l Jl (�x, t )] ln

[
pt (�x)

pt (xk )

]
d�xdt + o(dt )

=
∫

pt (�x) ln[pt (�x−k|xk )]d�x −
∫

[∂l Jl (�x, t )] ln[pt (�x−k|xk )]d�xdt + o(dt ). (24)

The approximate expression ln(a + �) � ln a + �/a, which holds when � is sufficiently small, is used during the transfor-
mation from the first line to the second one. In the transformation from the third line to the fourth one, I use the formula∫

∂ ′
l Jl (x′

l , �x−l , t )dx′
l = 0, which holds when limx′

l →±∞ Jl (x′
l , �x−l , t ) = 0. Furthermore, I transform the integral variable from x′

l
to xl . Then, I estimate the term “B” in Eq. (21). By integrating Eq. (22) with respect to xk , I obtain

p(x′
l , �x−{k,l}) =

∫
p(x′

l , �x−l )dxk

= pt (x
′
l , �x−{k,l}) −

∫
∂ ′

l Jl (x
′
l , �x−{k,l}, x′′

k , t )dx′′
k dt + o(dt )

= pt (x
′
l , �x−{k,l}) −

∫
©dx′′

k dt + o(dt ). (25)

For convenience, the integral variable is set to x′′
k to distinguish it from the other variables in the second line of Eq. (25).

Substituting Eqs. (22) and (25) into B, we arrive at

B =
∫

{pt (x
′
l , �x−l ) − ©dt + o(dt )} ln

[
pt (x

′
l , �x−{k,l}) −

∫
©dx′′

k dt + o(dt )

]
dx′

l d�x−l

=
∫

{pt (x
′
l , �x−l ) − ©dt + o(dt )}

{
ln[pt (x

′
l , �x−{k,l})] −

∫ ©dx′′
k

pt (x′
l , �x−{k,l})

dt + o(dt )

}
dx′

l d�x−l

=
∫

pt (x
′
l , �x−l ) ln[pt (x

′
l , �x−{k,l})]dx′

l d�x−l −
∫

pt (x′
l , �x−l )

pt (x′
l , �x−{k,l})

∫
©dx′′

k dx′
l d�x−l dt

−
∫

© ln[pt (x
′
l , �x−{k,l})]dx′

l d�x−l dt + o(dt ). (26)

Regarding the underlined term in Eq. (26), by integrating with respect to xk , I obtain∫
pt (x′

l , �x−l )

pt (x′
l , �x−{k,l})

∫
©dx′′

k dx′
l d�x−l dt =

∫
pt (x′

l , �x−l )

pt (x′
l , �x−{k,l})

dxk

∫
©dx′′

k dx′
l d�x−{k,l}dt

=
∫

©dx′′
k dx′

l d�x−{k,l}dt

=
∫

∂ ′
l Jl (x

′
l , �x−{k,l}, x′′

k , t )dx′′
k dx′

l d�x−{k,l}dt

= 0. (27)
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In the last line, I assume that Jl (x′
l , �x−{k,l}, x′′

k , t ) becomes 0 at x′
l → ±∞. By transforming the integral variable from x′

l to xl ,
formula B becomes

B =
∫

pt (�x) ln[pt (�x−k )]d�x −
∫

[∂l Jl (�x, t )] ln[pt (�x−k )]d�xdt + o(dt ). (28)

Substituting Eqs. (24) and (28) into Eq. (21), I obtain

I (Xk,t ; {Xl,t+dt , �X−{k,l},t }) − I (Xk,t ; {Xl,t , �X−{k,l},t })

=
∫

pt (�x) ln[pt (�x−k|xk )]d�x −
∫

[∂l Jl (�x, t )] ln[pt (�x−k|xk )]d�xdt︸ ︷︷ ︸
A

−
∫

pt (�x) ln[pt (�x−k )]d�x +
∫

[∂l Jl (�x, t )] ln[pt (�x−k )]d�xdt︸ ︷︷ ︸
B

−
∫

pt (�x) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x + o(dt )

= −
∫

[∂l Jl (�x, t )] ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�xdt + o(dt )

=
∫

Jl (�x, t )∂l ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�xdt + o(dt )

=
∫

Jl (�x, t )∂l ln[pt (xk|�x−k )]d�xdt + o(dt )

= Tk→l dt + o(dt ). (29)

As a result, I obtain the following formula of Horowitz’s information flow:

Tk→l = lim
dt→0

1

dt
[I (Xk,t ; {Xl,t+dt , �X−{k,l},t }) − I (Xk,t ; {Xl,t , �X−{k,l},t })]. (30)

This formula is useful in understanding Horowitz’s information flow. Using the following identity of the mutual information,

I (X ; {Y, Z}) = I (X ; Z ) + I (X ;Y |Z ), (31)

Eq. (30) becomes

Tk→l = lim
dt→0

1

dt
[I (Xk,t ; �X−{k,l},t ) + I (Xk,t ; Xl,t+dt | �X−{k,l},t ) − I (Xk,t ; �X−{k,l},t ) − I (Xk,t ; Xl,t | �X−{k,l},t )]

= lim
dt→0

1

dt
[I (Xk,t ; Xl,t+dt | �X−{k,l},t ) − I (Xk,t ; Xl,t | �X−{k,l},t )]. (32)

Equation (32) corresponds to Eq. (12), and it can been seen that Horowitz’s information flow is formulated by the conditional
time-shifted mutual information. Furthermore, using the following identity of the conditional mutual information and the
conditional Shannon entropy,

I (X ;Y |Z ) = S(Y |Z ) − S(Y |{X, Z}), (33)

Eq. (32) can be transformed into

Tk→l = lim
dt→0

1

dt
[S(Xl,t+dt | �X−{k,l},t ) − S(Xl,t+dt | �X−l,t ) − S(Xl,t | �X−{k,l},t ) + S(Xl,t | �X−l,t )]

= d

dτ
S(Xl,t+τ | �X−{k,l},t )

∣∣∣∣
τ=0

− d

dτ
S(Xl,t+τ | �X−l,t )

∣∣∣∣
τ=0

. (34)

Horowitz’s information flow is represented by the difference of the conditional Shannon entropy. In the case of the bipartite
system, Eq. (34) becomes

T2→1 = d

dτ
S(X1,t+τ )

∣∣∣∣
τ=0

− d

dτ
S(X1,t+τ |X2,t )

∣∣∣∣
τ=0

, (35)

and it reproduces the information flow of the bipartite system. The first term on the right-hand side of Eq. (35) represents the time
derivative of the entropy of the marginal probability of X1,t , and the second term represents the time derivative of the entropy
of the conditional probability of X1,t , given X2,t . If I map the condition X2,t onto the frozen random variable X2,t , then Eq. (35)
is consistent with the Liang-Kleeman information flow. For the information flow of the multipartite system, namely, Eq. (34),
each term consists of the time derivative of the entropy of the conditional probability of Xl,t , given other random variables. The
difference between the two terms is that the first term does not include Xk,t in the given random variables, unlike the second
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term. For the multipartite system, the Liang-Kleeman information flow is formulated in a form similar to that of Eq. (35). For
the multipartite system, Horowitz’s information flow does not accord with the Liang-Kleeman information flow.

B. Liang-Kleeman information flow and Horowitz’s information flow

In this section, I demonstrate the relationship between the Liang-Kleeman information flow and Horowitz’s information flow.
First, let us consider the bipartite system. Substituting Eq. (10) in Eq. (14) and repeating the integration by parts, I derive

T2→1 =
∫ {

F1(�x, t )pt (�x) − 1

2
∂1[g11(�x, t )pt (�x)]

}
∂1 ln[pt (x2|x1)]d�x

=
∫ {

F1(�x, t )pt (�x)
1

pt (x2|x1)
∂1[pt (x2|x1)] − 1

2
∂1[g11(�x, t )pt (�x)]

1

pt (x2|x1)
∂1[pt (x2|x1)]

}
d�x

=
∫

F1(�x, t )pt (x1)∂1[pt (x2|x1)]d�x + 1

2

∫
g11(�x, t )pt (�x)∂1

{
1

pt (x2|x1)
∂1[pt (x2|x1)]

}
d�x

= −
∫

pt (x2|x1)∂1[F1(�x, t )pt (x1)]d�x − 1

2

∫
g11(�x, t )pt (�x)

{
1

pt (x2|x1)
∂1[pt (x2|x1)]

}2

d�x

+ 1

2

∫
g11(�x, t )pt (�x)

1

pt (x2|x1)
∂2

1 [pt (x2|x1)]d�x

= −
∫

pt (x2|x1)∂1[F1(�x, t )pt (x1)]d�x − 1

2

∫
g11(�x, t )pt (�x){∂1 ln[pt (x2|x1)]}2d�x

+ 1

2

∫
g11(�x, t )pt (x1)∂2

1 [pt (x2|x1)]d�x

= −
∫

pt (x2|x1)∂1[F1(�x, t )pt (x1)]d�x + 1

2

∫
pt (x2|x1)∂2

1 [g11(�x, t )pt (x1)]d�x

− 1

2

∫
g11(�x, t )pt (�x){∂1 ln[pt (x2|x1)]}2d�x, (36)

where the property of pt (�x) becoming 0 at |xi| → ∞ is utilized during the integration by parts. The first and second terms in
the last line of Eq. (36) are in accordance with the Liang-Kleeman information flow. However, an extra term appears in T2→1.
Because the extra term contains g11(�x, t ), it originates from the stochastic fluctuation.

For the multipartite system, substituting Eq. (10) for Eq. (18) and repeating the integration by parts as is in the case of Eq. (36),
I obtain

Tk→l = −
∫

pt (xk|�x−k )∂l [Fl (�x, t )pt (�x−k )]d�x + 1

2

∫
pt (xk|�x−k )∂2

l [gll (�x, t )pt (�x−k )]d�x

− 1

2

∫
gll (�x, t )pt (�x){∂l ln[pt (xk|�x−k )]}2d�x. (37)

The Liang-Kleeman information flow of the multipartite system is given by

T (LK)
k→l = −

∫
pt (xk|xl )∂l [Fl (�x, t )pt (�x−k )]d�x + 1

2

∫
pt (xk|xl )∂

2
l [gll (�x, t )pt (�x−k )]d�x. (38)

The first two terms in Eq. (37) are identical to the Liang-Kleeman information flow, except for the underlined parts, which differ
from each other. An extra term appears in Horowitz’s information flow (i.e., compared to the expression for the Liang-Kleeman
information flow). The same situation is observed in the case of the bipartite system.

The information flow of the bipartite system, defined by Eq. (14), satisfies Eq. (13). Horowitz’s information flow satisfies
Eq. (17). Equations (14) and (18) originate from the time derivative of the mutual information. Because the Liang-Kleeman
information flow does not accord with either Eq. (14) or Eq. (18), the Liang-Kleeman information flow is incompatible with the
time derivative of the mutual information, at least with respect to the terms generated by the stochastic fluctuations.

C. Schreiber’s transfer entropy and Horowitz’s information flow

In this section, I investigate the relationship between Schreiber’s transfer entropy and Horowitz’s information flow, as defined
by Eq. (30). Schreiber’s transfer entropy from k to l is defined as

T (S)
k→l =

∫
p(x′

l , �x−k, xk ) ln

[
p(x′

l |�x−k, xk )

p(x′
l |�x−k )

]
dx′

l d�x−kdxk, (39)
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where p(x′
l , �x−k, xk ) is a joint probability distribution defined as

p(x′
l , �x−k, xk ) = p(x′

l , �x) = 〈δ(x′
l − Xl,t+dt )δ(�x − �Xt )〉. (40)

Similar to the notation in Eq. (20), the variables with a prime represent random variables at time t + dt , and the variables without
a prime represent those at time t in Eq. (40). This probability distribution function is composed of random variables at different
times; thus, subscript t is not attached to p in Eq. (40). Equation (39) is transformed into

T (S)
k→l =

∫
p(x′

l , �x−k, xk ) ln

[
p(x′

l , �x−k, xk )

pt (�x−k, xk )

pt (�x−k )

p(x′
l , �x−k )

]
dx′

l d�x−kdxk

=
∫

p(x′
l , �x−k, xk ) ln

[
p(x′

l , �x−k, xk )

p(x′
l , �x−k )

pt (�x−k )

pt (�x−k, xk )

pt (xk )

pt (xk )

]
dx′

l d�x−kdxk

=
∫

p(x′
l , �x−k, xk ) ln

[
p(x′

l , �x−k|xk )

p(x′
l , �x−k )

]
dx′

l d�x−kdxk −
∫

pt (�x−k, xk ) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x−kdxk

=
∫

p(x′
l , �x−{k,l}, xl , xk ) ln

[
p(x′

l , �x−{k,l}, xl |xk )

p(x′
l , �x−{k,l}, xl )

]
dx′

l d�x−{k,l}dxl dxk −
∫

pt (�x) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x. (41)

For the first term in the last line of Eq. (41), I select xl from �x−k , provided k �= l . Applying the log-sum inequality for xl to the
first term of Eq. (41), I can extract xl , and Eq. (41) becomes

T (S)
k→l �

∫
p(x′

l , �x−{k,l}, xk ) ln

[
p(x′

l , �x−{k,l}|xk )

p(x′
l , �x−{k,l})

]
dx′

l d�x−{k,l}dxk −
∫

pt (�x) ln

[
pt (�x−k|xk )

pt (�x−k )

]
d�x

= I (Xk,t ; {Xl,t+dt , �X−{k,l},t }) − I (Xk,t ; {Xl,t , �X−{k,l},t })

= Tk→l dt + o(dt ), (42)

where I utilize Eq. (30) from the second line in the last line.
Equation (42) shows that Schreiber’s transfer entropy rate is
an upper bound of Horowitz’s information flow.

Let us discuss the case where the equality sign holds.
From the property of the log-sum inequality, the equality
sign of Eq. (42) holds if and only if p(x′

l , �x−{k,l}, xl |xk )/
p(x′

l , �x−{k,l}, xl ) are equal for all xl . Introducing a constant
c, which does not depend on xl , the equality condition be-
comes p(x′

l , �x−{k,l}, xl |xk ) = c p(x′
l , �x−{k,l}, xl ). For the sake

of explanation, let us assume that c does not depend on
the other random variables. After marginalization, the equa-
tion becomes pt (xl , xk ) = pt (xl )pt (xk ). In this case, the
independence of xk from the other random variables is pre-
scribed. In the general case for c, the probability distribution
condition is more complicated. Horowitz’s information flow
contains a condition relating to the dynamics, but Schreiber’s
transfer entropy does not. I consider that this condition about
dynamics is why Schreiber’s transfer entropy is not lower than
Horowitz’s information flow.

D. Applications

1. Linear stochastic system

To examine the effectiveness of Horowitz’s information
flow, I apply it to a linear stochastic system. The linear
stochastic system is prescribed by the following stochastic
differential equation:

d �Xt = A �Xt dt + B · d �W (t ), (43)

where A and B are N × N constant matrices. The linear
stochastic system bears the following useful characteristic.
When the initial distribution is a normal distribution, pt (�x) is

a normal distribution forever, namely,

pt (�x) = 1√
(2π )N det�

exp

[
−1

2
(�x − �μ)��−1(�x − �μ)

]
.

(44)

The mean vector �μ and covariance matrix � of the normal
distribution change according to the following equations, re-
spectively:

d �μ
dt

= A�μ, (45)

d�

dt
= A� + �A� + BB�. (46)

Substituting Eq. (44) with Eq. (37), I derive an analytic for-
mula of Horowitz’s information flow for the linear stochastic
system. The formula is given by

Tk→l = −alk
Clk

Ckk
− 1

2
gll

Clk

det�

Clk

Ckk
, (47)

where Ci j is an (i j) cofactor of the covariance matrix �.
The difference is that the Liang-Kleeman information flow is
represented by elements of the covariance matrix [17], while
Horowitz’s information flow is represented by the cofactor
of the covariance matrix. The appearance of the cofactor in
Eq. (47) originates from pt (xk|�x−k ) in Eq. (37). The second
term on the right-hand side of Eq. (47) corresponds to the last
term in Eq. (37) and stems from the stochastic fluctuation. The
brief derivation of Eq. (47) can be found in Appendix B.
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FIG. 1. Temporal changes in information flow: (a) Horowitz’s
information flow and (b) Liang-Kleeman information flow.

These two formulas of the information flow are compared
using an example. The values of parameters are set to

A =
⎡
⎣ 1 −1 0

1 0 −5
−1 1 −1

⎤
⎦, B =

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦. (48)

Figure 1 shows time evolution of the information flow. The
characteristic difference between the two types of informa-
tion flow is that Horowitz’s information flow [Fig. 1(a)]
approaches a constant value after a transition period, while the
Liang-Kleeman information flow [Fig. 1(b)] oscillates in time.
Because of a13 = 0, there does not exist the information flow
from 3 to 1. Figure 1 shows that the Liang-Kleeman informa-
tion flow from 3 to 1 is zero; similar to Horowitz’s information
flow, T3→1 is almost zero compared to other Horowitz
information flows. Each of Horowitz’s information flows,
in order of magnitude, is T2→3 > T1→3 > T1→2 > T3→1 >

T3→2 > T2→1. If we consider the center of the oscillation with
respect to the Liang-Kleeman information flow as the value of

the information flow and arrange each of the Liang-Kleeman
information flows in order of magnitude, T (LK)

1→3 > T (LK)
1→2 >

T (LK)
2→3 > T (LK)

3→1 > T (LK)
3→2 > T (LK)

2→1 is obtained. Comparing these
two types of information flow, the only difference is the
position of T (LK)

2→3 . Otherwise, the order is the same. For the
Liang-Kleeman information flow, the amplitude of T (LK)

2→3 is
the largest. Hence, it is questionable to use the center of the
oscillation as the representative value of the information flow.

For the normal distribution, the analytic formula of
Schreiber’s transfer entropy has already been derived in
[38–40]. Schreiber’s transfer entropy rate of the linear
stochastic model was evaluated with the parameters given by
Eqs. (48); however, Schreiber’s transfer entropy rate violently
oscillates in time. I consider that the failure of the evaluation
of Schreiber’s transfer entropy rate is due to the nonsta-
tionarity of the system. On employing the above-mentioned
parameter values, the mean vector �μ and covariance matrix �

are time varying; thus, the system is nonstationary.

2. Stochastic gradient system

The stochastic gradient system can be considered as an-
other application of Horowitz’s information flow [41,42].
Here, the drift vector �F ( �X , t ) in Eq. (1) is given by �F ( �X , t ) =
−∇V ( �X ), where V is a potential function. For simplicity, let
B( �X , t ) be a constant times the identity matrix, i.e., b × I ,
and then one obtains p(�x) ∝ exp[−2V (�x)/b2] as the stationary
probability distribution. To compare Horowitz’s information
flow with the results in [17,18], I adopted the following three-
dimensional case as a potential function:

V (�x) = 1
2

(
x2

1x2
2 + x2

2x2
3 + x2

1 + x2
2 + x2

3

)
. (49)

By differentiating the potential function, the drift vector is
obtained as

F1 = − x1x2
2 − x1, (50)

F2 = − x2x2
1 − x2x2

3 − x2, (51)

F3 = − x3x2
2 − x3. (52)

As is clear from the formulas, the equations are nonlinear.
Considering the symmetry of the system, the following rela-
tionships of the information flow are obtained:

T1→2 = T3→2, T2→1 = T2→3, T3→1 = T1→3. (53)

Substituting the stationary probability distribution, i.e.,
Eq. (49), in Eq. (37), Horowitz’s information flow is derived.
The brief derivation of Horowitz’s information flow is avail-
able in Appendix C. It is worth noting that analytically T3→1 =
0. As the first element of the drift vector [i.e., Eq. (50)] does
not depend on x3, the variable x3 does not cause x1 imme-
diately. Hence, one can observe the principle of nil causality
[17], not only in the Liang-Kleeman information flow but also
in Horowitz’s information flow. Regarding the other Horowitz
information flow, T1→2 and T2→1, the formulas are available
in Appendix C. These two can be obtained by performing nu-
merical integration. Figure 2(a) shows Horowitz’s information
flow of the stochastic gradient system. It can be observed that,
as b increases, Horowitz’s information flow also increases
except for T3→1.
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FIG. 2. Information flow and Schreiber’s transfer entropy rate for
a stochastic gradient system as a function of b: (a) Horowitz’s infor-
mation flow; (b) Liang-Kleeman information flow and Schreiber’s
transfer entropy rate. T (S)

k→l/dt implies limdt→0 T (S)
k→l/dt .

The Liang-Kleeman information flow of the stochastic
gradient system is shown in Fig. 2(b). Instead of perform-
ing all the integrals numerically, as in [18], I performed
the calculations analytically as far as possible to estimate
the Liang-Kleeman information flow. I analytically demon-
strate T (LK)

3→1 = 0. The detailed calculation is presented in
Appendix D. With regard to |T (LK)

1→2 | and |T (LK)
2→1 |, it is evident

from Fig. 2(b) that, as b increases, these two information flows
increase with a smaller value of b, as compared to the case of
Horowitz’s information flow.

Schreiber’s transfer entropy rate is also depicted in
Fig. 2(b). The formulas for Schreiber’s transfer entropy rate
are presented in Appendix E. Schreiber’s transfer entropy
is a quantity with the order of magnitude of dt . I compare
the other information flows with Schreiber’s transfer entropy
divided by dt and taken to the dt → 0 limit. With an increase
in b, as is evident from the figure, Schreiber’s transfer entropy
rate becomes nonzero for small values of b, as compared to the

case of Horowitz’s information flow. Thus, it can be confirmed
that Eq. (42) is satisfied.

V. SUMMARY AND DISCUSSION

The relationship between Schreiber’s transfer entropy and
the Liang-Kleeman information flow, which are indicators of
causality between variables, was clarified through Horowitz’s
information flow. I initially examined Horowitz’s information
flow derived from the time derivative of the mutual infor-
mation [i.e., Eq. (18)]. I derived an alternative formula for
Horowitz’s information flow, which helped the interpreta-
tion. The alternative formula demonstrates that Horowitz’s
information flow is a reasonable extension from the bipartite
system to a multipartite one. As for the deterministic term
of the stochastic differential equation, Horowitz’s information
flow is in accordance with the Liang-Kleeman information
flow. However, considering the stochastic fluctuation, I rec-
ognized the disagreement between the two formulas. Thus,
I considered that the Liang-Kleeman information flow is not
compatible with the time derivative of the mutual information.

I also examined the relationship between Schreiber’s trans-
fer entropy and Horowitz’s information flow. Schreiber’s
transfer entropy is defined by the Kullback-Leibler divergence
of the conditional probability distributions of a random vari-
able at time t + dt , given the random variables at time t .
I demonstrated the inequality between Schreiber’s transfer
entropy rate and Horowitz’s information flow. The appear-
ance of the rate can be attributed to the Kullback-Leibler
divergence of the conditional probabilities of minute time
changes. Schreiber’s transfer entropy rate is the upper limit
of Horowitz’s information flow.

In [33], Horowitz demonstrated inequality between
Schreiber’s transfer entropy rate and the information flow. In
this inequality, Schreiber’s transfer entropy is defined by that
from Xk to �X−k , and the information flow is represented by∑

l �=k Tk→l . In this study, I divided a collection of random
variables and derived the formula from one random variable
for another random variable. On this point, the inequality I
proved and that of Horowitz are very different from each
other.

I formulated Horowitz’s information flow for a linear
stochastic system. It was found that determining whether the
time derivative of xl is independent of xk is possible not only
by evaluating the Liang-Kleeman information flow but also
via Horowitz’s information flow. In this case, it was found that
the Liang-Kleeman information flow is exactly zero, whereas
the Horowitz information flow slightly deviates from zero
due to the stochastic fluctuation. Although the Liang-Kleeman
information flow is expressed using covariance, Horowitz’s
information flow is expressed using the cofactor of the covari-
ance matrix. Given that the partial correlation is formulated
by the inverse of the correlation matrix, Horowitz’s infor-
mation flow is expressed using partial correlation. This is
the difference between the two information flows. Although
I calculated Schreiber’s transfer entropy rate for the linear
stochastic system, a stable value of Schreiber’s transfer en-
tropy rate could not be obtained because the system is not in
the steady state at the calculated parameter values.
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The Liang-Kleeman and Horowitz information flows are
dynamic quantities because they are derived from the time
derivative of entropy or mutual information, and Schreiber’s
transfer entropy is a static quantity because it is defined
by conditional mutual information. Dynamic quantities are
considered to be robust with respect to nonstationarity. For
this reason, in the linear stochastic system case studied here,
the Liang-Kleeman and Horowitz information flows could
be evaluated, but Schreiber’s transfer entropy could not be
evaluated. I consider that further research is needed on this.

I also examined Horowitz’s information flow for a stochas-
tic gradient system. For the considered model, it was
analytically shown that, when a variable x does not directly
depend on a variable y, Horowitz’s information flow, Ty→x,
is zero. Therefore, both the Liang-Kleeman and Horowitz
information flows exhibit the principle of nil causality. Unlike
the considered linear stochastic system, which is in a nonsta-
tionary state, the stochastic gradient system is in a stationary
state; thus, Schreiber’s transfer entropy rate stabilizes and can
be determined. For the considered stochastic gradient system,
it was analytically shown that Horowitz’s information flow
and Schreiber’s transfer entropy rate satisfy the inequality.

Let us make a comparison of the three methods:
Schreiber’s transfer entropy rate, the Liang-Kleeman infor-
mation flow, and Horowitz’s information flow. As for any of
the three methods, if the evolution of a variable x does not
depend on a variable y, each quantity from y to x becomes
zero. Whereas Schreiber’s transfer entropy rate is numerically
and analytically cumbersome to estimate, Schreiber’s transfer
entropy is considered versatile because it is equivalent to the
Granger causality for linear Gaussian stochastic process. The

Liang-Kleeman and Horowitz information flows have similar
derivation processes. Because Horowitz’s information flow is
derived from the time derivative of mutual information, I con-
sider that Horowitz’s information flow is the most reasonable
in terms of derivation. Considering the stochastic gradient
system results, Horowitz’s information flow is less sensitive
than the other two, because it cannot be greater than zero
without a larger stochastic fluctuation than the other two.

APPENDIX A: EXPLANATION OF DISREGARD OF
TERMS CONTAINING ∂i∂ j (i �= j)

In this Appendix, I demonstrate that terms containing
∂i∂ j (i �= j) do not appear in Eq. (8) for the multipartite
case. When (B( �Xt , t )B( �Xt , t )�)i j = 0 (i �= j), terms contain-
ing ∂i∂ j do not appear in Eq. (8). Let us consider the ith
element of the stochastic fluctuation term of Eq. (1), that is,∑

k Bik ( �Xt , t )dWk (t ). The product of the ith and jth elements
of the stochastic fluctuation term becomes∑

k

Bik ( �Xt , t )dWk (t ) ×
∑

l

B jl ( �Xt , t )dWl (t )

=
∑

k

Bik ( �Xt , t )Bjk ( �Xt , t )dt

= (B( �Xt , t )B( �Xt , t )�)i jdt, (A1)

where Eq. (2) is used in the transformation from the first to the
second line. Since the different components of the stochastic
fluctuation term are not correlated with each other in the mul-
tipartite case, Eq. (A1) shows that (B( �Xt , t )B( �Xt , t )�)i j = 0
(i �= j). This is why the ∂i∂ j terms do not appear in the multi-
partite case.

APPENDIX B: DERIVATION OF EQ. (47)

To ensure clarity, I will proceed with the derivation using a concrete example. Let us consider the case of N = 3 and derive
the formula of T2→1. The marginal probability distribution pt (�x−2) is given by

pt (�x−2) =
∫

pt (�x)dx2 = pt (x1, x3)

= 1√
(2π )2M22

exp

{
− 1

2M22
[�33(x1 − μ1)2 + �11(x3 − μ3)2 − 2�13(x1 − μ1)(x3 − μ3)]

}
, (B1)

where Mi j is a minor of the covariance matrix �. The minor of the covariance matrix and the cofactor are associated by the
equation Ci j = (−1)i+ jMi j . Given that F1 = a11x1 + a12x2 + a13x3, ∂1[F1 pt (�x−2)] becomes

∂1[F1 pt (�x−2)] = a11 pt (�x−2) + (a11x1 + a12x2 + a13x3)

{
− 1

M22
[�33(x1 − μ1) − �13(x3 − μ3)]

}
pt (�x−2). (B2)

By substituting Eq. (B2) for the first term of the right-hand side of Eq. (37), I obtain

−
∫

pt (x2|�x−2)∂1[F1 pt (�x−2)]d�x = −
∫

pt (�x)

{
a11 − 1

M22
(a11x1 + a12x2 + a13x3)[�33(x1 − μ1) − �13(x3 − μ3)]

}
d�x

= −
∫

pt (�x)

{
a11 − 1

M22
[a11(x1 − μ1) + a11μ1][�33(x1 − μ1) − �13(x3 − μ3)]

− 1

M22
[a12(x2 − μ2) + a12μ2][�33(x1 − μ1) − �13(x3 − μ3)]

− 1

M22
[a13(x3 − μ3) + a13μ3][�33(x1 − μ1) − �13(x3 − μ3)]

}
d�x
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= − a11 + 1

M22
a11(�11�33 − �13�13) + 1

M22
a12(�12�33 − �23�13)

+ 1

M22
a13(�13�33 − �13�33)

= a12
M12

M22
= −a12

C12

C22
. (B3)

As g11 is assumed to be constant, the second term of Eq. (37) becomes zero as follows:

1

2

∫
pt (x2|�x−2)∂2

1 [g11 pt (�x−2)]d�x = 1

2

∫
∂2

1 [g11 pt (�x−2)]d�x−2 = 1

2

∫
∂1[g11 pt (�x−2)]x1=∞

x1=−∞d�x−{1,2} = 0. (B4)

The conditional probability pt (x2|�x−2) becomes

pt (x2|�x−2) = pt (�x)

pt (�x−2)

=
√

M22

2πdet�
exp

{
−1

2

1

det�

[
(x1 − μ1)2

(
C11 − det�

M22
�33

)
+ (x2 − μ2)2C22 + (x3 − μ3)2

(
C33 − det�

M22
�11

)

+ 2(x1 − μ1)(x2 − μ2)C12 + 2(x1 − μ1)(x3 − μ3)

(
C13 + det�

M22
�13

)
+ 2(x2 − μ2)(x3 − μ3)C23

]}

=
√

M22

2πdet�
exp

{
−1

2

1

det�

[
(x1 − μ1)2 M12M12

M22
+ (x2 − μ2)2M22 + (x3 − μ3)2 M23M23

M22

− 2(x1 − μ1)(x2 − μ2)M12 + 2(x1 − μ1)(x3 − μ3)
M12M23

M22
− 2(x2 − μ2)(x3 − μ3)M23

]}

=
√

M22

2πdet�
exp

{
− 1

2

M22

det�

[
(x1 − μ1)

M12

M22
− (x2 − μ2) + (x3 − μ3)

M23

M22

]2}
. (B5)

Using Eq. (B5), I derive

∂1 ln[pt (x2|�x−2)] = − M12

det�

[
(x1 − μ1)

M12

M22
− (x2 − μ2) + (x3 − μ3)

M23

M22

]
. (B6)

The third term of Eq. (37) becomes

− 1

2

∫
g11 pt (�x)

{
∂1 ln[pt (x2|�x−2)]

}2

d�x

= −1

2

∫
g11 pt (�x)

(
M12

det�

)2[
(x1 − μ1)

M12

M22
− (x2 − μ2) + (x3 − μ3)

M23

M22

]2

d�x

= −1

2
g11

(
M12

det�

)2(
�22 + �11

M12

M22

M12

M22
+ �33

M23

M22

M23

M22
− 2�12

M12

M22
+ 2�13

M12

M22

M23

M22
− 2�23

M23

M22

)

= −1

2
g11

(
M12

det�

)2

⎛
⎜⎜⎝�22︸︷︷︸

A

+ �11
M12

M22

M12

M22︸ ︷︷ ︸
B

+ �33
M23

M22

M23

M22︸ ︷︷ ︸
C

− �12
M12

M22︸ ︷︷ ︸
A

− �12
M12

M22︸ ︷︷ ︸
B

+ �13
M12

M22

M23

M22︸ ︷︷ ︸
B

+ �13
M12

M22

M23

M22︸ ︷︷ ︸
C

− �23
M23

M22︸ ︷︷ ︸
A

− �23
M23

M22︸ ︷︷ ︸
C

⎞
⎟⎟⎠. (B7)

Summarizing the terms with the same symbol, I obtain the following equations:

A = �22 − �12
M12

M22
− �23

M23

M22
= �22M22 − �12M12 − �23M23

M22
= �12C12 + �22C22 + �32C32

M22
= det�

M22
, (B8)

B = �11
M12

M22

M12

M22
− �12

M12

M22
+ �13

M12

M22

M23

M22
= �11M12 − �12M22 + �13M23

M22

M12

M22
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= −�11C21 − �12C22 − �13C23

M22

M12

M22
= 0, (B9)

C = �33
M23

M22

M23

M22
+ �13

M12

M22

M23

M22
− �23

M23

M22
= �33M23 + �13M12 − �23M22

M22

M23

M22

= −�13C12 − �23C22 − �33C32

M22

M23

M22
= 0, (B10)

where I quoted a formula of the cofactor expansion of the determinant. As a result, Eq. (B7) becomes

−1

2

∫
g11 pt (�x){∂1 ln[pt (x2|�x−2)]}2d�x = −1

2
g11

(
M12

det�

)2 det�

M22
= −1

2
g11

C12

det�

C12

C22
. (B11)

Combining them, I obtain

T2→1 = −a12
C12

C22
− 1

2
g11

C12

det�

C12

C22
. (B12)

Generalizing this result, I obtain Eq. (47).

APPENDIX C: HOROWITZ’S INFORMATION FLOW IN THE CASE OF A STOCHASTIC GRADIENT SYSTEM

I estimated Horowitz’s information flow of a stochastic gradient system. For clarity, I proceeded to the calculation precisely.
By using Eq. (37), T3→1 becomes

T3→1 = −
∫

p(x3|�x−3)∂1[F1(�x)p(�x−3)]d�x + 1

2

∫
p(x3|�x−3)∂2

1 [g11 p(�x−3)]d�x − 1

2

∫
g11 p(�x){∂1 ln[p(x3|�x−3)]}2d�x.

(C1)

The stationary probability distribution is given by

p(�x) = 1

Z
exp

[
− 2V (�x)

b2

]
= 1

Z
exp

[
−
(
x2

1x2
2 + x2

2x2
3 + x2

1 + x2
2 + x2

3

)
b2

]
, (C2)

where Z is a normalization constant and the subscript t of the probability distribution is omitted because of stationarity. To
evaluate Eq. (C1), the marginal probability distribution is required. The marginal probability distribution, p(�x−3), is obtained as

p(�x−3) = p(x1, x2) =
∫ ∞

−∞
p(�x)dx3 = 1

Z

√
πb2

x2
2 + 1

exp

[
−
(
x2

1x2
2 + x2

1 + x2
2

)
b2

]
. (C3)

The component of the first term in Eq. (C1) is transformed into

∂1[F1(�x)p(�x−3)] = ∂1
[−x1

(
x2

2 + 1
)
p(�x−3)

]
= − (x2

2 + 1
)
p(�x−3) − x1

(
x2

2 + 1
)
∂1 p(�x−3)

= − (x2
2 + 1

)
p(�x−3) − x1

(
x2

2 + 1
)[−(2x1x2

2 + 2x1
)

b2

]
p(�x−3)

=
[
−(x2

2 + 1
)+ 2

b2
x2

1

(
x2

2 + 1
)2]

p(�x−3). (C4)

Substituting Eq. (C4) in the first term in Eq. (C1), the first term becomes

(the first term) = −
∫

p(x3|�x−3)

[
− (x2

2 + 1
)+ 2

b2
x2

1

(
x2

2 + 1
)2]

p(�x−3)d�x

= −
∫ [

− (x2
2 + 1

)+ 2

b2
x2

1

(
x2

2 + 1
)2]

p(�x−3)dx1dx2

= −
∫ [

− (x2
2 + 1

)+ 2

b2

b2

2
(
x2

2 + 1
)(x2

2 + 1
)2]

p(x2)dx2

= 0. (C5)

From the first line to the second line, the integration with respect to x3 is performed. From the second line to the third line,
the integration with respect to x1 is performed, and then x2

1 is replaced by b2/2(x2
2 + 1). The second term in Eq. (C1) is easily
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shown to be zero in the same manner as Eq. (B4). Dividing Eq. (C2) by Eq. (C3), I derived the following conditional probability
distribution:

p(x3|�x−3) = p(�x)

p(�x−3)
=
√

x2
2 + 1

πb2
exp

[
−
(
x2

2x2
3 + x2

3

)
b2

]
. (C6)

Quoting Eq. (C6), the component of the third term in Eq. (C1) becomes

∂1 ln[p(x3|�x−3)] = 0. (C7)

Therefore, the third term in Eq. (C1) also becomes zero. Considering that each term is zero, I concluded that T3→1 is zero.
Let us discuss Eq. (C7). Equation (C7) leads to the relationship p(x3|�x−3) = p(x3|x1, x2) = p(x3|x2), indicating that x1 and x3

are conditionally independent. Conversely, if the variables are conditionally independent, the third term in Eq. (C1) is considered
to be zero.

Similarly, the other Horowitz information flow is derived as

T1→2 =
∫ [

b2
(−3x2

2 + 1
)

(
x2

2 + 1
)2 + −3x2

2 + 1

x2
2 + 1

− 2

b2
x2

2

]
p(x2)dx2, (C8)

T2→1 =
∫ [

− 3b2x2
1

2
(
x2

1 + x2
3 + 1

)2 + b2 − 4x2
1

2
(
x2

1 + x2
3 + 1

) + 1 − 2

b2
x2

1

]
p(�x−2)dx1dx3, (C9)

where the marginal probability distributions are given by

p(x2) =
∫ ∞

−∞
p(�x)dx1dx3 = 1

Z

πb2

x2
2 + 1

exp

[
−x2

2

b2

]
, (C10)

p(�x−2) =p(x1, x3) =
∫ ∞

−∞
p(�x)dx2 = 1

Z

√
πb2

x2
1 + x2

3 + 1
exp

[
−
(
x2

1 + x2
3

)
b2

]
. (C11)

Numerical integration was performed to estimate Eqs. (C8) and (C9) for various values of b.

APPENDIX D: LIANG-KLEEMAN INFORMATION FLOW IN THE CASE OF A STOCHASTIC GRADIENT SYSTEM

In this Appendix, I demonstrate the Liang-Kleeman information flow of the stochastic gradient system. First, I evaluate T (LK)
3→1 ,

which is defined as

T (LK)
3→1 = −

∫
p(x3|x1)∂1[F1(�x)p(�x−3)]d�x + 1

2

∫
p(x3|x1)∂2

1 [g11 p(�x−3)]d�x. (D1)

Based on Eq. (C4), the first term of Eq. (D1) becomes

(the first term) = −
∫

p(x3|x1)

[
− (x2

2 + 1
)+ 2

b2
x2

1

(
x2

2 + 1
)2]

p(�x−3)d�x

= −
∫ [

− (x2
2 + 1

)+ 2

b2
x2

1

(
x2

2 + 1
)2]

p(�x−3)dx1dx2

= −
∫ [

− (x2
2 + 1

)+ 2

b2

b2

2
(
x2

2 + 1
)(x2

2 + 1
)2]

p(x2)dx2

= 0. (D2)

The second term of Eq. (D1) becomes zero in the same manner as Eq. (B4). As a result, it can be analytically shown that T (LK)
3→1

is zero. For T (LK)
1→2 , the derivation is more complicated than that for T (LK)

3→1 . The Liang-Kleeman information flow T (LK)
1→2 is defined

by

T (LK)
1→2 = −

∫
p(x1|x2)∂2[F2(�x)p(�x−1)]d�x + 1

2

∫
p(x1|x2)∂2

2 [g22 p(�x−1)]d�x, (D3)

where p(x1|x2) and p(�x−1) are respectively given by

p(x1|x2) = p(x1, x2)

p(x2)
=
√

x2
2 + 1

πb2
exp

[
−
(
x2

1x2
2 + x2

1

)
b2

]
, (D4)

p(�x−1) = p(x2, x3) =
∫ ∞

−∞
p(�x)dx1 = 1

Z

√
πb2

x2
2 + 1

exp

[
−
(
x2

2x2
3 + x2

2 + x2
3

)
b2

]
. (D5)
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For the same reason as T (LK)
3→1 , the second term of Eq. (D3) becomes zero. Substituting Eqs. (51), (D4), and (D5) into Eq. (D3)

yields

T (LK)
1→2 =

∫
p(x1|x2)∂2

[(
x2x2

1 + x2x2
3 + x2

)
p(�x−1)

]
d�x

=
∫

p(x1|x2)
[(

x2
1 + x2

3 + 1
)
p(�x−1) + (x2x2

1 + x2x2
3 + x2

)
∂2 p(�x−1)

]
d�x

=
∫

p(x1|x2)

{(
x2

1 + x2
3 + 1

)
p(�x−1) + (x2x2

1 + x2x2
3 + x2

)[− x2

x2
2 + 1

− 2
(
x2

3 + 1
)

b2
x2
]
p(�x−1)

}
d�x

=
∫

p(x1|x2)
(
x2

1 + x2
3 + 1

)[
1 − x2

2

x2
2 + 1

− 2
(
x2

3 + 1
)

b2
x2

2

]
p(�x−1)d�x

=
∫ (

x2
1 + x2

3 + 1
)[ 1

x2
2 + 1

− 2
(
x2

3 + 1
)

b2
x2

2

]
p(�x)d�x, (D6)

where the relationship p(x1|x2)p(�x−1) = p(�x), which is apparent from Eqs. (D4) and (D5), is employed. Integrating over x1 and
x3, I can replace x2

1 and x2
3 with b2/2(x2

2 + 1) and x4
3 with 3b4/4(x2

2 + 1)
2
. After tedious calculations, the following is obtained:

T (LK)
1→2 =

∫ [
b2

(
2x2

2 − 1
)

(
x2

2 + 1
)2 + 3x2

2 − 1

x2
2 + 1

+ 2

b2
x2

2

]
p(x2)dx2, (D7)

where p(x2) is given by Eq. (C10). As we cannot evaluate the analytical calculations any further, we need to evaluate Eq. (D7)
numerically. For T (LK)

2→1 , the Liang-Kleeman information flow is defined by

T (LK)
2→1 = −

∫
p(x2|x1)∂1[F1(�x)p(�x−2)]d�x + 1

2

∫
p(x2|x1)∂2

1 [g11 p(�x−2)]d�x. (D8)

Utilizing Eqs. (50) and (C11), I obtain

T (LK)
2→1 =

∫
p(x2|x1)

(
x2

2 + 1
)(− x2

3 + 1

x2
1 + x2

3 + 1
+ 2

b2
x2

1

)
p(�x−2)d�x, (D9)

and evaluate it numerically to obtain Fig. 2(b).

APPENDIX E: SCHREIBER’S TRANSFER ENTROPY RATE IN THE CASE OF A STOCHASTIC GRADIENT SYSTEM

Estimating Schreiber’s transfer entropy rate is more complicated than those of the two information flows. The first step is
to calculate the transition probability distributions [43]. By expanding Eq. (40) with respect to dXl,t , the distribution can be
transformed as follows:

p(x′
l , �x) = 〈δ(x′

l − Xl,t+dt )δ(�x − �Xt )〉
= 〈δ(x′

l − Xl,t − dXl,t )δ(�x − �Xt )〉
= 〈δ(x′

l − Xl,t )δ(�x − �Xt )〉 − 〈dXl,t∂
′
lδ(x′

l − Xl,t )δ(�x − �Xt )〉 + 1
2 〈(dXl,t∂

′
l )2δ(x′

l − Xl,t )δ(�x − �Xt )〉 + O((dXl,t )
3)

= 〈δ(x′
l − Xl,t )δ(�x − �Xt )〉 − 〈Fl ( �Xt )∂

′
lδ(x′

l − Xl,t )δ(�x − �Xt )〉dt + 1
2 〈b2∂ ′2

l δ(x′
l − Xl,t )δ(�x − �Xt )〉dt + o(dt )

= 〈δ(x′
l − Xl,t )δ(�x − �Xt )〉 − 〈∂ ′

l Fl (�x′)δ(x′
l − Xl,t )δ(�x − �Xt )〉dt + 1

2 〈b2∂ ′2
l δ(x′

l − Xl,t )δ(�x − �Xt )〉dt + o(dt )

= δ(x′
l − xl )〈δ(�x − �Xt )〉 − ∂ ′

l [Fl (�x′)δ(x′
l − xl )]〈δ(�x − �Xt )〉dt + 1

2 b2∂ ′2
l δ(x′

l − xl )〈δ(�x − �Xt )〉dt + o(dt )

= δ(x′
l − xl )pt (�x) − ∂ ′

l [Fl (�x′)δ(x′
l − xl )]pt (�x)dt + 1

2 b2∂ ′2
l δ(x′

l − xl )pt (�x)dt + o(dt ). (E1)

Hence, the transition probability distribution is given by

p(x′
l |�x) = p(x′

l , �x)

pt (�x)
= δ(x′

l − xl ) − ∂ ′
l [Fl (�x′)δ(x′

l − xl )]dt + 1

2
b2∂ ′2

l δ(x′
l − xl )dt + o(dt ). (E2)

By performing the integration using the Fourier integral representation of the Dirac delta function, for a small dt , I obtain

p(x′
l |�x) = 1√

2πb2dt
exp

{
− [x′

l − xl − Fl (�x)dt]2

2b2dt

}
. (E3)
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Using Eq. (50), the transition probability distribution to x′
1 becomes

p(x′
1|�x) = 1√

2πb2dt
exp

{
− [x′

1 − x1 + x1
(
x2

2 + 1
)
dt]2

2b2dt

}
. (E4)

As the right-hand side of Eq. (E4) does not depend on x3, p(x′
1|�x) = p(x′

1|�x−3) is satisfied. Thus, Schreiber’s transfer entropy
from x3 to x1 becomes

T (S)
3→1 =

∫
p(x′

1, �x) ln

[
p(x′

1|�x)

p(x′
1|�x−3)

]
dx′

1d�x = 0. (E5)

For Schreiber’s transfer entropy from x1 to x2 and from x2 to x1, the analytic derivation is complicated and protracted; hence, I
only present the results:

T (S)
1→2 =

∫ ∞

−∞

b2

4

x2
2(

x2
2 + 1

)2 p(x2)dx2dt + o(dt ), (E6)

T (S)
2→1 =

∫ ∞

−∞

∫ ∞

−∞

b2

4

x2
1

(x2
1 + x2

3 + 1)2
p(x1, x3)dx1dx3dt + o(dt ). (E7)

Schreiber’s transfer entropy rate in Fig. 2(b) is estimated via the numerical integration of Eqs. (E6) and (E7).
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