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Electrical conductivity of nanorod-based transparent electrodes:
Comparison of mean-field approaches
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We mimic nanorod-based transparent electrodes as random resistor networks (RRNs) produced by the
homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate.
We suppose that the number density (the number of objects per unit area of the surface) of these sticks
exceeds the percolation threshold, i.e., the system under consideration is a conductor. We computed the
electrical conductivity of random resistor networks versus the number density of conductive fillers for the
wire-resistance-dominated case, for the junction-resistance-dominated case, and for an intermediate case. We
also offer a consistent continuous variant of the mean-field approach. The results of the RRN computations
were compared with this mean-field approach. Our computations suggest that, for a qualitative description of
the behavior of the electrical conductivity in relation to the number density of conductive wires, the mean-field
approximation can be successfully applied when the number density of the fillers n > 2nc, where nc is the
percolation threshold. However, note the mean-field approach slightly overestimates the electrical conductivity.
We demonstrate that this overestimate is caused by the junction potential distribution.
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I. INTRODUCTION

Transparent electrodes are important components of mod-
ern optoelectronic devices such as touch screens, heaters, and
solar cells [1–6]. Numerous efforts are currently underway
to identify the main factors affecting the effective electrical
conductivity, transparency, and haze of such films [7,8]. To
characterize both the sheet resistance, R�, and the trans-
parency, T , of transparent electrodes, different figures of merit
(FoMs) are used [1,9–12].

One of the most widely used kinds of transparent electrode
consists of a transparent, poorly conductive film containing
randomly distributed highly conductive elongated fillers such
as nanowires, nanotubes, or nanorods [2,13–19]. Transparent
electrodes should simultaneously have both high conduc-
tivity and high transparency. However, high transparency
and high conductivity are mutually exclusive properties,
since high transparency requires a low concentration of con-
ductive fillers, while high conductivity implies their high
concentration.

The simplest consideration suggests that the transmittance
of a film is proportional to the expected fraction of its surface
not covered by randomly deposited opaque objects

T = T0e−na, (1)

where each object has an area a (see, e.g., Ref. [20]). Here, n
is the number density, i.e., the number of objects, N , per unit
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area of the surface, A:

n = N

A
. (2)

At low coverage (na � 1), (1) can be written as

T ≈ T0(1 − na). (3)

Such linear dependency of the transparency on the surface
coverage is consistent with experimental data [21,22].

There are two main approaches to describe the electrical
conductivity of random nanowire networks, viz., an exact one,
based on the solution of huge systems of linear equations from
Kirchhoff’s rules and Ohm’s laws (see, e.g., Refs. [23,24]),
and a mean-field approach (MFA) (see, e.g., Refs. [25,26]).
Rather than study all the conductors in a system, an MFA
involves considering a single conductor, placed in the mean
electric field that is produced by all the other conductors.
However, even within an MFA, different variants can be
used.

Thus, Ref. [25] consistently uses a discrete consideration,
viz., the contacts on the wire are discretely arranged, while the
electrical current between any pair of nearest contacts is con-
stant. By contrast, Ref. [26] uses a hybrid discrete-continuous
approach, viz., the contacts on the wire are discretely ar-
ranged, while the electrical current in the whole wire changes
continuously except for the two end segments where electri-
cal currents are absent. (See Supplemental Material [27] for
a sketch of the current distribution in a conductive wire in
different variants of the MFA.)

Based on a geometrical consideration of a thin film of
randomly deposited conductive wires, a formula for the sheet
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resistance has been proposed [25],

R� = π

2
√

NE

(
4ρ

πD2
+ Rj

d

)
, (4)

where ρ is the electrical resistivity of the wire material, D
is the wire diameter, while the wire length, l , is assumed
to be unity, Rj is the junction resistance, and NE = n[Cn +
exp(−Cn) − 1] is the number density of wire segments,

d = 1 − exp(−Cn)

Cn
− exp(−Cn)

is the mean segment length, and C = 2/π . Here, the number
density of the conductive wires, n, is supposed to be high. The
sheet resistance can be rewritten as follows:

R� = π

2d
√

NE
(Rn + Rj )

= π

2d
√

NE
(dRs + Rj ),

where Rn is the averaged value of the electrical resistance
between two junctions and Rs is the wire resistance.

An alternative formula has been proposed in Ref. [26]:

R� = Rs

nl2

×
[

rm

2
−

√
Rjrm

RsCnl2
tanh

(√
RsCnl2rm

4Rj

)]−1

, (5)

where

rm = na − 1 + Rj
(
Rj + Rs

na+1

)−1

na + 1
, na = nCl2/2.

(We have changed the original notation to provide uniformity
throughout this text.)

The effect of junction resistance on the conductivity of
nanowire- and nanotube-based conductive networks has been
analyzed [28–31]. Typically, in untreated nanowire-based
networks, the wire-to-wire junction resistances dominate
over the resistance of the nanowires, themselves (see, e.g.,
Refs. [32,33]).

Poorly conductive films containing randomly distributed
highly conductive, elongated fillers are kinds of inhomoge-
neous media. For several decades, the physical properties of
inhomogeneous media have aroused the interest of the sci-
entific community [34]. Most attention has been paid to the
electrical properties of binary materials. There are different
theories and models relating to the electrical conductivity of
mixtures of conducting and insulating species. The effective
medium approximation [35] provides a good description of
the physical properties at any concentration except for the
fairly narrow region around the percolation threshold. The
so-called generalized effective medium equation accounts for
the position of the percolation threshold and the values of
the conductivity exponents below and above percolation [34].
Another tool used to describe the composites is percolation
theory [36].

The goal of the present paper is an investigation of the elec-
trical properties of 2D disordered systems with an insulating
host matrix and conductive rodlike fillers (zero-width sticks).

The number density of the conductive fillers ranges from
the percolation threshold, nc, to ≈20nc. The system under
consideration is treated as a random resistor network (RRN).
The potentials and currents in any RRN can be found using
Ohm’s law and Kirchhoff’s rules [24,37–40]. By contrast,
we consider a particular kind of MFA. Here, our approach
is consistently continuous, i.e., the contacts are continuously
spread over the conductor; the electrical current changes con-
tinuously in each conductive wire. This consideration implies
a very high concentration of conductors. Three limiting cases
represent our focus, viz.,

(1) Unwelded wires. The junction resistance dominates
over the wire resistance (Rj � Rs).

(2) Welded wires (see Ref. [41] for a review of welding
techniques). The junction resistance and the wire resistance
are of the same order (in our study, Rj = Rs).

(3) Speculative case. The wire resistance dominates over
the junction resistance (Rj � Rs).

The rest of the paper is constructed as follows. Section II
describes some technical details of the simulation and our
variant of the MFA. Section III presents our main findings.
In Sec. IV, we discuss the reliability of the presented results.
Section V summarizes the main results.

II. METHODS

A. Sampling

The particular case of a plane graph involves a situation
with N zero-width sticks of length l , the centers of which
are assumed to be independent and identically distributed
(i.i.d.) within a square domain D of size L × L with periodic
boundary conditions; D ∈ R2, i.e., x, y ∈ [0; L], where (x, y)
are the coordinates of the center of the stick under consid-
eration. Their orientations are assumed to be equiprobable.
Hence, a homogeneous and isotropic network is produced.
The relation L > l is assumed. In our simulations, without
loss of generality, sticks of unit length were used (l = 1).
These sticks were randomly deposited onto D until the desired
number density was reached. For basic computations, we used
a system of size L = 32. Each stick was treated as a resistor
with a specified electrical conductivity, σs, i.e., an RRN was
considered.

To detect the percolation cluster, the union-find algorithm
[42,43] modified for continuous systems [44,45] was applied.
When a percolation cluster was found, all other clusters were
removed since they cannot contribute to the electrical conduc-
tivity. An adjacency matrix was formed for the percolation
cluster. With this adjacency matrix in hand, Kirchhoff’s cur-
rent law was used for each junction of the sticks, and Ohm’s
law for each circuit between any two junctions. The obtained
set of linear equations with a sparse matrix has been solved
using Eigen [46], a C++ template library for linear algebra.
Since only square samples were considered, the electrical
conductivity is simply the inverse of the sheet resistance, i.e.,
σ = R−1

� .
The computer experiments were repeated 100 times for

each value of the number density. The error bars in the fig-
ures correspond to the standard deviation of the mean. When
not shown explicitly, they are of the order of the marker size.
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FIG. 1. The conductive linear wire is placed in an external elec-
trical field with a coordinate-dependent potential V (x). The wire is
characterized by its resistance per unit length, R, and its leakage
conductivity per unit length, G.

B. Mean-field approximation

Let there be a linear conductive wire, the lateral surface of
which is covered by an isolator. The conductive wire is charac-
terized by the resistance, R, while the isolator is characterized
by the leakage conductivity, G. Both quantities refer to the
unit length of the conductive wire. This wire is placed in an
external electrical field with a coordinate-dependent potential
V (x). Consider a line segment of the wire, located between
points of which the coordinates are x and x + dx (Fig. 1).

In this line segment, the potential difference is u(x + dx) −
u(x) = du(x)

dx dx, while the voltage drop is i(x)Rdx. According
to Ohm’s law,

du(x)

dx
+ i(x)R = 0, (6)

since no electromotive force acts in this line segment. The
change in the electrical current in this line segment i(x +
dx) − i(x) = di(x)

dx dx is due to a loss of charge caused by the
imperfect isolator [u(x) − V (x)]Gdx. Hence,

di(x)

dx
+ [u(x) − V (x)]G = 0. (7)

The set of ordinary differential equations (ODEs) (6) and (7)
can be treated as a type of stationary telegraph equations.

Differentiating ODE (6) with respect to x and substituting
ODE (7) into ODE (6), one can obtain an inhomogeneous
linear ODE of the second order,

d2u(x)

dx2
− λ2u(x) = −λ2V (x), (8)

where λ = √
RG. The solution to this ODE is equal to the sum

of the general solution of the homogeneous ODE,

u0(x) = A1 exp(λx) + A2 exp(−λx),

and a particular solution of the inhomogeneous ODE u∗(x)
that depends on the particular type of the function V (x).

Let a linear wire of length l be located at an angle α to a
uniform electric field E = V0/L. The potential of this field is
V (x) = −xE cos α, when the axis x is directed along the wire,
while the axis origin coincides with the wire center. For this
particular sort of V (x), u∗(x) = −xE cos α. Thus,

u(x) = A1 exp(λx) + A2 exp(−λx) − xE cos α.

Since

i(x) = − 1

R

du(x)

dx
, (9)

according to (6),

i(x) = E

R
cos α − λ

R
[A1 exp(λx) − A2 exp(−λx)]. (10)

In our consideration, the leakage current is associated ex-
clusively with the lateral surface of the wire, therefore there
should be no electrical current at the ends of the wire, i.e.,
i(−l/2) = i(l/2) = 0. Thus,

i(x; λ, α) = E

R

[
1 − cosh(λx)

cosh
(

λl
2

)]
cos α. (11)

The electrical current depends both on the coordinate x and on
the parameters λ and α. The electrical current averaged along
the wire length is

〈i(λ, α)〉 = 1

l

∫ l
2

− l
2

i(x; λ, α) dx,

i.e.,

〈i(λ, α)〉 = E

R

[
1 − 2

lλ
tanh

(
λl

2

)]
cos α.

Now we can turn to considering the system described in
Sec. II A. When the system under consideration is dense (n �
2nc), the potential drop along the system is linear [26,47–49].
Instead of a consideration of the RRN produced by all the
sticks, here, there is consideration of only one stick in the
mean-field produced by all the other sticks. Since all ori-
entations of a stick are equiprobable, the number of sticks
intersecting a line of width L perpendicular to the field is
nlL cos α. The total electrical current in the sticks of all orien-
tations through a cross section of the system is

〈I (λ)〉 = 1

π

∫ π/2

−π/2

EnlL

R

[
1 − 2

lλ
tanh

(
λl

2

)]
cos2 α dα

= EnlL

2R

[
1 − 2

lλ
tanh

(
λl

2

)]
.

When the resistance of the stick is Rs, the resistance per the
unit length is

R = Rs

l
.

When the junction resistance between any two sticks is Rj, the
leakage conductivity per unit length is

G = k

lRj
,

where k is the number of junctions between the given stick
and other sticks.

The number of junctions obeys a binomial distribution,
which transforms at high concentrations of conductors into
the Poisson distribution k ∼ Pois(Cnl2), where C = 2/π . The
probability distribution function (PDF) is

p(k) = (Cnl2)k e−Cnl2

k!
≈ 1√

2πCnl2
exp

[
− (k − Cnl2)2

2Cnl2

]
.
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When the values of n are large, i.e., for the very case when
the MFA is appropriate, the PDF is a narrow peak. Therefore,
the average value of the term depending on the number of
junctions can be calculated approximately by substituting the
mathematical expectation of the number of junctions, i.e.,
Cnl2, 〈

2

λkl
tanh

(
λkl

2

)〉

=
∑

k

p(k)
2

λkl
tanh

(
λkl

2

)

≈ 2

〈λk〉l tanh

( 〈λk〉l
2

)
, where λ2

k = kRs

l2Rj
.

Here, the subscript k is intended to indicate the dependence of
the parameter λ on the number of interstick junctions.

Then, the electrical conductivity of the system under con-
sideration is

σ = nl2

2Rs

[
1 −

√
4Rj

nl2RsC
tanh

(√
nl2RsC

4Rj

)]
. (12)

This formula is closely related to formula (5), which can be
rewritten as

σ = rmnl2

2Rs

×
[

1 −
√

4Rj

rmnl2RsC
tanh

(√
rmnl2RsC

4Rj

)]
. (13)

Formulas (12) and (13) coincide up to the replacement n →
rmn, where only one adjustable parameter rm (the so-called
effective wire length) is near to unity when n � 1. Both
formulas are based on the assumption that all conductors
contribute to the electrical conductivity, i.e., all conductors
belong to the percolation cluster. This assumption is valid for
n � 1.5nc [25,50].

C. Figure of merit

FoMs can be defined in different ways, e.g.,

�TC = T

R�
(14)

(see Ref. [9] for details) and

�TC = T 10

R�
(15)

(see Ref. [10] for details). An analysis of the advantages and
disadvantages of each of these FoMs can be found in Ref.
[51]. Another FoM has often been used over the past few years
(see, e.g., Refs. [1,11,12]),

�TC = σDC

σopt(λ)
, (16)

where the transparency, T (λ), the optical conductance,
σopt(λ), the DC film conductance, σDC, and the sheet resis-
tance, R�, are connected as follows:

T (λ) =
[

1 + 1

2R�

√
μ0

ε0

σopt(λ)

σDC

]−2

. (17)

FIG. 2. Comparison of the dependencies of the electrical con-
ductivity, σ , on the number density, n, for L = 32, Rs = 0, Rj = 1
arbitrary units. Solid symbols correspond to our simulation results.
The solid line corresponds to the least squares fit σ/σj = 0.019 +
0.21(n − nc ) + 0.026(n − nc )2. The dashed curve corresponds to the
MFA (12).

Here, ε0 and μ0 are the electrical and magnetic constants,
respectively, and λ is the wave length. In this way, Eq. (16)
transforms into

�TC = 188.5

R�

√
T (λ)

1 − √
T (λ)

. (18)

For typical nanorods with aspect ratios up to 103 (see,
e.g., Refs. [26,52]) deposited onto a transparent substrate with
number densities of up to ≈10nc, the linear dependency of
the transmittance on the number density of the deposited
nanorods (3) is not only valid, but can even be simplified to
T ≈ T0. Hence, the FoMs (14) and (15) can be considered
to be approximately inversely proportional to the sheet resis-
tance,

�TC = �0

R�
,

where �0 is a constant.

III. RESULTS

Figure 2 shows the dependency of the electrical conduc-
tivity, σ , on the number density for the junction-resistance-
dominated case (Rj � Rs). The electrical conductivity can
be fitted by the second-order polynomial σ/σj = 0.019 +
0.21(n − nc) + 0.026(n − nc)2.

When Rj � Rs, while the number density is not very large
such as nl2RsC � 4Rj, formula (12) simplifies to

σ = Cn2l4

24Rj
, (19)

i.e., σ ≈ 0.0265n2l4/Rj, which is fairly consistent with the
direct, RRN, computations of the electrical conductivity.
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FIG. 3. Comparison of the dependencies of the electrical con-
ductivity, σ , on the number density, n, for L = 32, Rs = 1 arbitrary
units, Rj = 1 arbitrary units. Solid symbols correspond to our sim-
ulation results. The solid line corresponds to the least-squares fit
σ/σj = −4.15 + 0.417(n − nc ). The dashed curve corresponds to
formula (12).

When n � 1, formula (4) simplifies to

σ =
√

C

Rj
≈ 0.8

Rj
, (20)

i.e., the predicted asymptotic behavior of the electrical con-
ductivity radically differs from the results of the direct com-
putations. For this limiting case, formula (5) (see Ref. [26])
predicts

σ = Cn2

24Rj

(
Cn

Cn + 2

)2

.

When n � 1, this formula simplifies to σ ≈ 0.0265n2/Rj.
Figure 3 shows the dependency of the electrical conductiv-

ity, σ , on the number density for the case when both the wire
resistances and the junction resistances are equally important
(Rj = Rs = 1 arbitrary units). The electrical conductivity can
be fitted by the line σ/σj = −4.15 + 0.417(n − nc). When
n � 1, the MFA prediction (12) tends to

σ = nl2

2
, (21)

which is fairly consistent with the direct computations of the
electrical conductivity. Formula (5) (see Ref. [26]) demon-
strates similar limiting behavior. By contrast, formula (4)
(Ref. [25]) tends to the limit value (20) when n � 1.

Figure 4 shows the dependency of the electrical conductiv-
ity, σ , on the number density for a wire-resistance-dominated
case (Rs � Rj). When n � 2nc, the electrical conductivity can
be fitted by the linear function σ/σs =−0.65+0.497(n − nc).
When n � 1, formula (4) simplifies to

σ = C3/2n

Rs
,

FIG. 4. Comparison of the dependencies of the electrical conduc-
tivity, σ , on the number density, n, for L = 32, Rs = 1 arbitrary units,
Rj = 0. Solid symbols correspond to our simulation results. The
solid line corresponds to the linear least squares fit σ/σs = −0.26 +
0.49(n − nc ). The dashed curve corresponds to formula (12).

i.e., in our computation, σ ≈ 0.508n, since Rs = 1. For the
wire-resistance-dominated case, formula (5) simplifies to

σ = n

2Rs

Cn − 2

Cn + 2
.

When n � 1, the asymptotic behavior of the electrical con-
ductivity is

σ ≈ n

2Rs
,

i.e., in our computation, σ ≈ 0.5n, since Rs = 1. Our simula-
tion results are comparable to our MFA predictions Eq. (12),
as well with the predictions of other authors (4) (see Ref. [25])
and (5) (see Ref. [26]). Although the dependencies are pre-
sented by almost parallel lines, formula (12) overestimates the
electrical conductivity.

The significant difference between our simulation and the
theoretical predictions (both (12) and (4) (see Ref. [25])) may
reflect a more complex network structure than that supposed
in Ref. [25]. The use of an adjusted parameter [26] leads to
behavior closer to our simulations in both the limiting cases,
however the adjusted parameter has hardly any clear theoreti-
cal background. The differences between the MFA predictions
and the direct computations of the electrical conductivity are
discussed in Sec. IV.

A simple estimate of the FoM can be performed for
the wire-resistance-dominated case. When the aspect ratio
(length-to-width ratio) of conductive rods is ε, the maximum
of the FoM corresponds to the number density n ≈ ε for
formula (14) while n ≈ ε/10 for formula (15). Formula (16)
predicts the maximums of the FoMs n ≈ 53 (for ε = 100) and
n ≈ 163 (for ε = 1000).
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FIG. 5. Finite-size effect for a junction-resistance-dominated case.

IV. DISCUSSION

Section III evidenced that the MFA overestimates the elec-
trical conductivity. (Despite some reasoning and computations
[26] intended to justify the adjustable parameter rm in formula
(5), this parameter can hardly be accepted as rigorously intro-
duced. Omitting this rather unclear parameter, our approach
and formula (5) are exactly identical.) Discrepancies between
direct computations of the electrical conductivity and its eval-
uation within the MFA may be due to several reasons:

(1) Inaccurate evaluation of the number of wires that con-
tribute to the electrical conductivity.

(2) Finite-size effect.
(3) Inaccurate evaluation of the mean values.
(4) Nonlinear variation of the electrical potential along the

samples.
(5) Difference between the average electrical current in a

stick obtained within the MFA and the actual average electri-
cal current in the real system.

Our evaluation is based on the assumption that all con-
ductive sticks contribute to the electrical conductivity, i.e.,
all sticks belong to the percolation cluster, and that this does
not contain dead ends other than the ends of the sticks. Two
independent studies [25,50] completely confirm this assump-
tion, namely, even when n ≈ 2nc, only a negligible fraction of
the sticks does not belong to the percolation cluster. More-
over, the percolation cluster is identical to its geometrical
backbone, excepting all the stick ends. Hence, the observed
overestimation in the electrical conductivity may be due to
significant differences between the geometrical backbone and
the current-carrying part of the percolation cluster. This possi-
bility, although it looks rather unlikely, nonetheless, needs to
be further checked.

Figure 5 demonstrates the finite-size effect for a junction-
resistance-dominated case. The system size shown was L =
8, 16, 32. For the two other cases tested, the differences in
the electrical conductivity, for systems of different sizes, were
within the marker size, i.e., smaller than the statistical error
(see Supplemental Material [27]).

FIG. 6. Relative deviation between 2
〈λk 〉l tanh( 〈λk 〉l

2 ) and

〈 2
λk l tanh( λk l

2 )〉 for different ratios between the stick resistance and
junction resistance.

Figure 6 evidenced that the estimate used for the mean
value is fairly reasonable for dense systems, i.e., for the very
case when the MFA is assumed to be valid. A larger electrical
contrast (ratio between the wire resistance and the junction
resistance) does not change the relative error. The exact mean
value 〈 2

λk l tanh( λk l
2 )〉 has been found using MAPLE.

The linearity of the electrical potential in the samples can
be confirmed by computation. Figure 7 demonstrates one
example of how the electrical potential depends on the po-
sition of the junctions. Additional examples (for other ratios
between the wire resistance and junction resistance and for
other filler concentrations) are presented in the Supplemental
Material [27]. Similar results has also been published else-
where [26,47,53].

FIG. 7. The normalized potential, U/	U , of each junction of the
network is plotted against its normalized position, x/L, in one par-
ticular sample at n − nc = 10 for the junction-resistance-dominated
case. The potential difference, 	U , is applied along the x axis. A
line is presented for comparison. Inset: Distribution of the junction
potentials relative to the line U/	U = x/L.
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FIG. 8. Distribution of the electrical current in a sample (solid
fill) in comparison with the prediction of the mean-field ap-
proach (hatching) for the case when Rs = Rj = 1 (arbitrary units);
n − nc = 10.

The fact that the values of the potentials of the junc-
tions are located not exactly on a straight line, but within
a certain band, causes significant distortion of the current
distribution in comparison with the predictions from the MFA.
Figure 8 demonstrates the current distribution in a sample
for the case when Rs = Rj = 1; n − nc = 10. Instead of the
expected compact distribution with i ∈ [0; imax] predicted by
the MFA (hatching), a diffuse distribution even with negative
currents appears (solid fill). To generate the reference current
distribution (MFA), the electrical current was calculated using
formula (11) for 106 independent random values of x and α.

The difference between the actual distribution of the cur-
rents and the predictions of the MFA leads to a decrease in
the mean electrical current in the single conductive wire as
compared with the predictions of the MFA. Figure 9 demon-
strates the dependencies of the mean electrical current against
position in the conductive wire for two values of the number
density n = 15.6 and n = 100 when the wire resistance and
the junction resistance are equal. The solid curves correspond
to the evaluation obtained within the MFA

〈i(x)〉 = 1

π

∫ π/2

−π/2
i(x; 〈λ〉, α) dα

= 2lV0

πLRs

⎡
⎣1 −

cosh
(√

Cn Rs
Rj

x
)

cosh
(

l
2

√
Cn Rs

Rj

)
⎤
⎦,

while the dashed curves correspond to the simulation.
The MFA overestimates the electrical current. In the mid-

dle of the wire, the excess is about 50% when n = 15.6.
However, this effect decreases as the number density of the
conductive wires increases. Thus, for n = 100, the excess is
only 5%. This excess of the mean current corresponds to the
excess of the electrical conductivity obtained within the MFA
over the simulation results.

FIG. 9. Dependencies of the electrical current, i, on the position
in the conductive wire, where 0 corresponds to the wire center. The
current is averaged over all the wires in one sample. The dashed
curves correspond to the evaluation obtained within the mean-field
approach while the solid curves correspond to the simulation. The
wire resistance and the junction resistance are equal, Rs = Rj = 1
(arbitrary units); n = 15.6 (two bottom curves) and n = 100 (two
upper curves).

V. CONCLUSION

We have considered RRNs produced by the homogeneous,
isotropic, and random deposition of conductive sticks onto an
insulating substrate. Using Kirchhoff’s rules and Ohm’s law,
the electrical conductivity of such networks was calculated
for a wide range of number densities of conductive wires
from the percolation threshold up to n = 100. Moreover, the
electrical properties of such networks have been studied using
consistent continuous consideration within a MFA. For dif-
ferent values of the wire resistance and junction resistance,
the dependencies of the electrical conductivity on the number
density of the conductive fillers have been obtained. Our study
suggests that, for a qualitative description of the behavior of
the electrical conductivity of random nanowire networks, the
MFA can be successfully applied when the concentration of
fillers n � 2nc. However, although the MFA overestimates
the electrical conductivity, the relative deviation decreases
as the number density of the conductive wires increases,
since our continuous consideration within the MFA assumes
a high number density of conductive wires. Estimates of the
concentration of fillers corresponding to the optimum of the
FOM indicate that the mean-field approximation is excellent
and appropriate for practical purposes, since the optimum
corresponds to the concentrations for which the theoretical
estimates almost coincide with direct computer calculations
based on Kirchhoff’s rules.

Our study evidenced that the overestimation of the electri-
cal conductivity within the MFA as compared to the direct
computations is due to changes of the electrical potential
along the RRN not being not strictly linear. If the magnitude
of the deviation from the linear law could be known a priori,
this would offer the possibility for introducing an appropriate
correction into the consideration by the MFA. However, at
present, we can see no way for performing such an a priori
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assessment. This is, probably, a promising topic for further
research.

The proposed MFA can be easily applied to systems with
conductive fillers having other shapes, e.g., rings [54]. The
presented computations for the junction-resistance-dominated
case are closely related to the recently published study
Ref. [55].
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