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Energy conductance across a mesoscopic junction in a nonequilibrium spin-boson model under the
influence of telegraph noise
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A spin-boson model in the presence of a telegraph noise (TN) source is employed to calculate the energy
conductance between a tunnel junction and two bosonic baths. A polaron-transformed coupling term with
the bosonic baths allows for treating quantum damping to arbitrary orders of strength. However, the polaron
transformation yields a dressed tunneling frequency which is assumed small and treated perturbatively as is
familiar in the noninteracting blip approximation in the context of the nonequilibrium spin-boson model. While
the coupling with the bosonic baths leads to decoherence in an otherwise coherent tunneling process, the TN
induces a different kind of fluctuation, that is, in the asymmetry of the underlying two-level system. It is the
interplay of these two different relaxation effects, one triggered by the two quantum (bosonic) baths and the
other through a classical bath (creating a TN), that is investigated here in detail. The TN that mimics the classical,
fluctuating environment makes a nontrivial contribution to the self-energy that helps compute the imaginary part
of the spin susceptibility which, in turn, determines the energy transfer across the junction. The range of validity
of the TN is clarified at the outset and its efficacy in tuning the environmental influence is pointed out. The
present paper complements an earlier similar study—albeit for fermionic baths—and provides additional input
in terms of the TN to a previous investigation of energy transfer between a nanojunction and bosonic reservoirs
without, however, the noisy environment.
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I. INTRODUCTION

A mesoscopic junction is a nanodevice that may comprise
a pair of quantum dots or a qubit which, when in contact
with quantum reservoirs through leads, can exchange particles
and energy. Such a device can store quantum information
through coherent processes involving the quantum phase. The
undertaken investigation is expected therefore to have some
relevance in the currently pursued topic of transport phenom-
ena in mesoscopic junctions. While quantum dissipation due
to the coupling with reservoirs can lead to decoherence, a
more undesirable element is the omnipresence of an envi-
ronment which for most purposes is classical and noisy. An
understanding of the effect of such an environment is crucial
for effective control of the consequent incoherence inflicted
on the mesoscopic device.

Fabrication of nanoscale conductors such as molecular
junctions has been achieved in chemical laboratories [1,2].
From the perspective of experiments, multiple techniques
have been developed to measure energy transfer at a mi-
croscopic level such as the time-domain thermo-reflectance
method [3], scanning thermal microscopy [4], and laser Ra-
man scattering thermometry [5,6].

On the theoretical side, we have recently investigated the
influence of telegraphic noise (TN) on heat currents in an
electronic junction that is connected via leads to two fermionic
reservoirs [7], henceforth referred to as paper I; see also
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[8]. The TN is an elementary fluctuator that randomly jumps
between two states [9,10], the possible sources for which
are discussed in [11–14]. The TN can be easily generalized
to more than two states and even a continuum of states, as
in the so-called Kubo-Anderson process, and in the limit of
rapid jumps can mimic a Gaussian process [9]. Paper I is a
critique of the TN as to whether the latter is a good model
for the environment of a mesoscopic system. We address
this criticism anew and in detail, given the widespread use
of the TN (see also [15–20]) In contrast to I, however, the
quantum reservoirs and baths are taken to be bosonic systems
(and not fermionic). The choice of a bosonic bath has the
advantage that with a proper tuning of the underlying spectral
density it can represent either a phonon reservoir or an elec-
tron reservoir (comprising electron-hole excitations near the
Fermi surface), hence covering a whole range of systems of
experimental interest. The junction is thus couched within the
much-studied nonequilibrium spin-boson (NESB) model. The
latter is a two-state system, endowed with a diagonal energy
term and an off-diagonal term, that is coupled with a bath
which is characterized by bosonic excitations [21]. The NESB
model is therefore an apt depiction of dissipative tunneling
in a two-state quantum system that can describe a Josephson
junction or macroscopic quantum tunneling in a squid [22],
a point defect such as hydrogen tunneling between two in-
equivalent sites in a metal [23,24], and myriad other systems
in chemical physics [25]. The NESB contraption along with
the familiar Ohmic dissipation model has earlier been adapted
to mesoscopic physics in the context of energy transfer—with
dissipative coupling of arbitrary strength [26], hereafter cited
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as paper II. While we focus on the same model here, we incor-
porate the additional presence of the environment as described
by a TN and analyze in detail the interplay of the latter with
quantum dissipation triggered by the bosonic baths. In doing
this, we find it much more straightforward to employ the
well-known resolvent operator method of chemical physics
[27]. The latter, with an additional polaron transformation
[28] of the interaction term (with the bosonic baths), and a
concomitant dressed tunneling energy that is assumed to be
effectively small can deal with a wide range of dissipative
coupling from weak to strong and is known to yield results
for the resolvent [29,30] that are equivalent to the Green’s
function technique of Keldysh, adopted in II.

The TN is incorporated within a stochastic model of the
total Hamiltonian that contains fluctuating terms arising from
a bath whose temperature is assumed at the outset to be much
larger than those of the bosonic leads. The resultant theory,
like in I, rests on a generalization of the Blume model for
the theory of spectral line shapes that assumes the underlying
stochastic process to be stationary and Markovian, of which
TN is just a special case [31]. The principal concern raised in
I about the limitation of the TN for describing the mesoscopic
environment pertains to the persistence of energy transfer
from the fluctuator to the quantum baths even when the fluc-
tuator’s effective temperature is equal to (or smaller than) the
temperatures of the quantum baths. We state here that the
classical stochastic heat bath is by design at a temperature
much higher than the temperature for the quantum reservoirs
for which Bose (or Fermi) statistics is relevant. Thus, one
should not push the TN beyond the realm of its validity to
temperatures lower than the reservoir temperature. We recog-
nize therefore that we are dealing here with a nonequilibrium
process in which there is a one-way heat transfer from the fluc-
tuator to the molecular junction, and we pursue the efficacy of
the TN in modulating the quantum dissipation by tuning the
mean rate of jumps of the TN from slow to the rapid regime,
for which results are presented.

In order to delve into the origin of the TN, we imag-
ine that our fully quantum system plus the bosonic baths
(i.e., the leads) are embedded in yet another (much larger)
phononic reservoir, henceforth referred to as a heat bath in
order to distinguish it from the quantum baths of HB. The
larger bath is envisaged to be at an elevated temperature T
(� TL, TR), and therefore the underlying bosonic (phononic)
character is expected to give way to a classical heat bath just as
Bose-Einstein (or for that matter, Fermi-Dirac) statistics
reduces to Boltzmann statistics at appropriately high temper-
atures [32]. The aforesaid limit of how a TN emerges from
this microscopic Hamiltonian can be achieved in the so-called
stationary Markov approximation in which phenomena on
timescales ∼h̄/kBT can be ignored as well as all frequency
dependence of dissipation and rate coefficients in an underly-
ing rate theory description of the master equation of a reduced
density operator [30].

Given this motivation, the paper is organized as follows.
The full stochastic Hamiltonian of the system and the justifi-
cation for taking the stochastic route are provided in Sec. II,
in terms of a microscopic approach, following [19], which
facilitates the computation of the energy transfer and energy
conductance, which boils down to the calculation of the imag-

inary part of the spin susceptibility for the underlying NESB
model. In Sec. III we perform the polaron transformation and
rewrite the susceptibility in terms of the Laplace transform
of an underlying correlation function in which the original
coupling terms (with the two quantum baths) occur in ex-
ponentiated forms such that coupling to arbitrary orders can
be accounted for. The price one pays, however, is that the
tunneling term is effectively treated perturbatively. The resol-
vent technique for the evaluation of the correlation function is
spelled out in Sec. IV, with algebraic details relegated to the
Appendix. Section V is devoted to the analysis of the derived
results that dovetail the effect of the noisy environment to the
influence of the bosonic baths on the molecular junction. In
particular, we reestablish the observation in I that the spin
susceptibility exhibits two peaks located at the two possible
frequencies that the TN fluctuates between, which eventually
merge into a single peak centered around zero frequency as
the relaxation rate of the TN is enhanced. Many of our ana-
lytical results including the graphical illustrations are worked
out for the symmetric (on the average) case (ε = 0) under
the so-called dilute bounce gas approximation that assumes
the effective part of the tunneling Hamiltonian to be small
(see chapters 8.2–8.4 in [30]). It is fair to mention here that
the problem of energy transfer in a mesoscopic junction in
contact with leads has been earlier studied in depth, using
the Green’s function method and numerical techniques, by
several investigators, such as in [33–36], to cite a few. What
is unique here is to investigate the further influence of a noisy
environment and employ as an example a TN to additionally
manipulate the process. Finally, Sec. VI contains summary
remarks and the main conclusions of the paper.

II. BASIC FORMALISM

A. Model Hamiltonian and the underlying basis of stochasticity

The Hamiltonian is given by

H = Hs(t ) + HI + HB, (2.1)

Hs(t ) = 1
2 [ε + δ f (t )]σz + 1

2�σx, (2.2)

where f (t ) jumps randomly between two values +1 and −1
and � is the tunneling between the two levels split by the
energy [ε ± δ]. The system Hamiltonian Hs may be taken
to describe a two-site quantum dot (a qubit) with the static
energy ε specifying the difference between the site energies,
which are further modulated by a fluctuating term δ f (t ), while
� is the hopping energy between the sites [13]. Thus, even if
the stochastic process f (t ) averages out to zero, the bias ε

remains, the importance of which on energy conductance on
a nanoscale was emphasized in II. The dot is regarded as a
tunnel junction juxtaposed between two bosonic baths, left (L)
and right (R), at temperatures TL and TR, respectively, jointly
described by a bath Hamiltonian HB, while HI subsumes the
two interaction terms:

HB = �ν=L,RH ν
B = � j,ν=L,Rω j,νb†

j,νb j,ν , (2.3)

HI = σz� j,ν=L,Rg j,ν (b†
j,ν + b j,ν ), (2.4)
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FIG. 1. Schematic of the two-state junction coupled with left (L)
and right (R) bosonic reservoirs characterized by coupling constants
αL and αR and temperatures TL and TB, which are eventually taken
equal for energy conductance calculation. The stochastic modulation
arising from a heat bath-driven TN is also indicated, in which the
bath temperature T is stipulated to be much larger than TL and TR.

with b†
j,ν (b j,ν) the creation (annihilation) operator of the

jth mode in the νth bosonic bath and g j,ν the system-bath
coupling strength. (At the outset we set h̄ = 1 and kB =
1.) If the TN is absent, f (t ) = 0, and the Hamiltonian is
time-independent: it reduces to the one studied in II. Further,
if tunneling � = 0, the leads are decoupled from the junc-
tion and the problem reduces to one of a pure jump process
governed by a TN. In order to schematically appreciate the
meaning of the Hamiltonian H we put forward in Fig. 1 a
sketch of the junction, in contact with two bosonic leads and
further modulated by a TN induced by a stochastic heat bath.

The underlying stochastic process—assumed stationary
and Markovian—is characterized by W , the transition prob-
ability matrix which, for a TN, can be written as [37]

W = γ (T − I ), (2.5a)

where the element of the T matrix between the stochastic
variables a and b that run over the values +1 and −1 is
given by

(a|T |b) = Pb, (2.5b)

γ being the rate of jump from one stochastic state to the other
and Pb the a priori probability of the occupation of the state
|b). (Note that we denote here the stochastic state |a), |b), etc.,
with round brackets in contrast to angular bra-ket for quantum
states, as described in [31]).

In order to see how the above stochastic picture emerges
from a more microscopic consideration, we follow [19] and
modify the system part of the Hamiltonian in Eq. (2.2) as

Hs = δ[τz− < τz >]σz + �σx + (Eo/2)τz

+ τx�kGk (B†
k + Bk ) + �k
kB†

kBk . (2.6)

Here the τ operators refer to yet another two-state pseudospin
that is envisaged to encode the dichotomic TN. Note that all

the attributes of this heat bath are written in capital letters
to unambiguously distinguish them from the corresponding
quantities of the quantum baths described by HB. This en-
larged system Hamiltonian has to be combined with HI and
HB to constitute a full Hamiltonian, which, it must be noted, is
now explicitly time-independent, as in the Schrödinger picture
of quantum mechanics.

We now clarify how the model in Eq. (2.6) can lead to
a TN. The Hamiltonian in Eq. (2.6) describes the environ-
ment of a quantum junction. The last three terms can, for
instance, account for phonon-assisted jumps of a point defect
in an asymmetric (parametrized by the asymmetry energy
Eo) double well, for which the two minima are mapped
into the eigenstates τz = 1 and τz = −1 of the pseudospin
Pauli operator τz [29,30]. The jumps of strength governed by
the coupling constant G are triggered by the pseudospin τx,
which is off-diagonal in the τzrepresentation, facilitated by
the phonon operators Bk and B+

k , which are further modulated
by the free boson (last) term. The underlying physics is as
follows: τx flips τz between +1 and −1, thereby shifting the
defect from one well to the other. It is such incoherent jumps
that are represented in our model [see Eq. (2.2)] by a TN.
The passage to a TN is aided by several approximations: the
neglect of the system parameters δ and � and the energy Eo

in the time evolution, a Markov assumption via the neglect
of the frequency dependence in the self-energy, and above
all, perception of the heat bath as classical. Operationally,
this implies that the fluctuations in the heat bath variables
live on much shorter timescales than the timescale set by
E−1

o . The energy Eo, however, enters into reckoning in the
detailed balance of transitions between the levels split by Eo

via appropriate Boltzmann factors:

P+(T ) = exp( Eo
2kBT )

2 cosh(Eo/2kBT )
,

P−(T ) = 1 − P+(T ). (2.7)

We will assume at the outset, and in consonance with the
remarks concerning the nature of the stochastic bath, that
kBT � Eo so that

P−(T ) = P+(T ) = 1/2. (2.8)

B. Spectral function and the energy current and conductance in
terms of spin correlation

The influence of the quantum baths is contained in the
spectral density function

Iν (ω) = 2π� jενg2
j,νδ(ω − ω j,ν ). (2.9)

Assuming Ohmic dissipation with an exponential cutoff ωc for
each bath the spectral function is

Iν (ω) = πανω exp

(
− ω

ωc

)
. (2.10)

We shall employ the following definition of the energy cur-
rent from the νth bosonic bath to the system, consistent with
quantum thermodynamics [38]:

Jν = − ∂

∂t

〈
H ν

B

〉
, (2.11)
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where the time derivative has to be computed from the
Heisenberg equation of motion involving the total Hamilto-
nian. The calculation of Jν is facilitated by the fact that the
time derivative of the averaged total Hamiltonian is zero, from
conservation of energy.

Within the time-independent scenario of Eq. (2.6) (before
transiting to the stochastic picture) we can express the energy
current (from the left bath to the junction) in a Landauer type
of formula as shown in [26]:

JL = αξ

4

∫ ∞

0
dωω2 exp(−ω/ωc)[nL(ω) − nR(ω)]χ ′′

z (ω),

(2.12)
where

α = αL + αR, ξ = 4αLαR

α2
(2.13)

and nν (ω) is the Bose-Einstein factor. The corresponding term
for the right bath is simply obtained from the energy conser-
vation: JL + JR = 0. As expected, the energy transfer is related
to the power absorbed, which, in response theory is given by
the imaginary part of the susceptibility χ ′′

zz(ω), that in turn is
given in the NESB model by C̃(s). Very similar expressions for
the energy transfer, as in Eq. (2.12), are arrived at in I though,
as is obvious, the Bose-Einstein factors are replaced there by
the Fermi-Dirac distributions [33]. As shown in II the energy
conductance K can also be calculated from Eq. (2.12), in the
linear response limit:

K = (αξ/4)
∫ ∞

0
dω[(ω/2TB)/ sinh(ω/2TB)]2ω

× exp(−ω/ωc)χ ′′
Z (ω)|TL=TR=TB . (2.14)

Thus, both the energy current and the energy conductance are
given by the imaginary part of the susceptibility, which is turn
is determined by the spin-spin correlation function (see the
Appendix). The latter will be the focus of our attention in the
next section.

III. POLARON TRANSFORMATION ON THE
CORRELATION FUNCTION

At this stage we point out a major departure in the method-
ology of our treatment from that in II (and I), as is indicated
in the Introduction. In II the susceptibility is calculated us-
ing the nonequilibrium Green’s function (NEGF) technique
(Keldysh) along with a Majorana fermion representation of
the underlying Dyson series. We, on the other hand, employ a
standard resolvent operator method, well known in chemical
physics (see [30], for instance) using a polaron transformation
on the coupling with the baths (see below), which is referred
to in II as the PT-NEGF, and derive equivalent results. In
addition, of course, our main objective, as stressed earlier, is
to examine the influence of a TN as an additional energy input,
not considered in II.

As shown in Appendix A 1, the susceptibility, in linear
response theory, is given in terms of the Laplace transform
of the time-dependent correlation function of the operator σz,
the central quantity of our present interest [9]:

C̃(s) =
∫ ∞

0
dte−stC(t ), (3.1)

where C(t ) is defined by

C(t ) =< σz(0)σz(t ) >, (3.2)

and the Laplace transform variable s is complex, which fol-
lows the usual convention that its imaginary part is −ω and its
real part is taken to be zero at the end of computing the integral
in Eq. (3.1) in order to ensure its convergence. The angular
brackets indicate statistical average over an equilibrium en-
semble governed by the time-independent total Hamiltonian,
as explained in the discussion following Eq. (2.6).

As stated earlier our aim is to employ a polaron transfor-
mation which yields results valid over a range of system-bath
coupling strengths, especially in the so-called nonadiabatic
limit �

ωc
� 1 (cf. II). This is achieved with the aid of the

unitary transformation

S = exp(iσz
/2), (3.3a)

where


 = 2i� j,νg j,ν (b†
j,ν − b j,ν )/ω j,ν , (3.3b)

under which the total Hamiltonian transforms into

HT = S†HS = H̃0 + H̃I , H̃0 = H̃s + H̃B, (3.4)

H̃s = δ(τz− < τz >)σz +
(

Eo

2

)
τz

+ τx�kGk (B†
k + Bk ) + �kωkB†

kBk, (3.5)

H̃B = � j,ν=L,Rω j,νb†
j,νb j,ν , (3.6)

and

H̃I = �[σ+ exp(−i
) + σ− exp(i
)]/4

= �(σ+A−
L A−

R + H.c.)/4,

A−
ν = exp[2� jg j,ν (b†

j,ν − b j,ν )/ω j,ν]. (3.7)

Clearly, the new interaction Hamiltonian contains the old
coupling constants g j to all orders. Further, the correlation
function C(t ) transforms to

C(t ) =< σz(0)[exp(iHT t )σz(0) exp(−iHT t )] >, (3.8)

where HT is given by Eq. (3.4). The latter lives in the product
Hilbert space: (σ ⊗ τ ) of the σ and τ Hilbert spaces. The
σ space, on the other hand, embraces the Hilbert spaces of
the two baths (the leads) while the τ space encompasses the
Hilbert space of the larger heat bath. The expectation value
< · > in Eq. (3.8) specifies the statistical mechanical average
of the entire product space.

Of specific interest, however, is the dynamical variable σz

in computing the susceptibility all other degrees of freedom
would have to be averaged over. In carrying out this procedure
in a systematic order, we do the usual thing, namely, first
eliminate the system that is most strongly coupled. That in
the pecking order, in terms of the scenario we have laid out,
is clearly the large heat bath that is linked with the τ spins.
As elaborated upon in Sec. 1.7 of [30], we may perform this
task via a master equation for a reduced density operator in
which the degrees of freedom of the larger heat bath are traced
out. The validity and limitation of this approach have been
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discussed in detail in [30]: how a classical Markovian descrip-
tion of the heat bath ensues when phenomena on timescales
∼h̄/kB T are ignored as well as all frequency dependences in
the dissipation and rate coefficients in an underlying rate the-
ory treatment of the reduced density operator, as was already
emphasized in the introductory section of this paper and at the
end of the discussion before Eq. (2.7).

The outcome is a reappraisal of the heat bath as a stochastic
bath and the quantum operator τz as a classical stochas-
tic process f (t ) which, for a two-state spin variable like
τz, is a Markovian TN. We are thus led to the explicitly
time-dependent Hamiltonian of Eq. (2.1). The earlier product
Hilbert space of σ and τ is now abstracted into a product
space of σ and the two-state TN. From this point onwards
we can appropriate the Blume model into our description of
decoherence inflicted by the environment of a mesoscopic
system, and that was precisely the approach adopted in I.

IV. RESOLVENT METHOD FOR CORRELATION
FUNCTION

In the light of the stratagem outlined above the Laplace
transform of the spin-correlation function C(t ) in Eq. (2.8)
can be rewritten as

C̃(s) = �μνμν(μμ|{� [Ũ (s)]av �}|νν), (4.1)

where the double angular brackets << · � have been em-
ployed here to distinguish from the single angular brackets
in Eq. (3.2). Recall that earlier in Eq. (3.2) we needed to
perform an average over an ensemble governed by a time-
independent Hamiltonian. But now the latter has a piece that
is stochastic and hence the full average factors into a quantum
statistical average over the variables of the leads only denoted
by << · �, while the rest of the heat bath is subsumed into
a stochastic average denoted by (·)av . Note once again that
“states” of Liouville (super) operators are denoted by round
brackets with two entries in contrast to the angular brackets
with one entry, used for ordinary operators. The quantity U (t ),
in an extension of the Blume analysis, is a super-operator
given by

U (t ) = expT [i
∫ t

0
dt

1

2
[ε + δ f (t ′)]σ×

z + it (H̃×
I + H̃×

B )],

(4.2)

where the suffix T underneath “exp” implies a suitable time
ordering, the superscript × denotes a Liouville operator as-
sociated with the corresponding Hamiltonian (for a review of
the properties of Liouville operators, see [9]), and H̃I and HB

are given, respectively, by Eq. (3.7) and Eq. (3.6).
We may indeed view the time-evolution operator U (t )

as the starting point of the central theme behind our de-
tailed calculation of the spin-correlation function, as presented
below. In the Blume model the Laplace transform of the time-
evolution super-operator can be expressed as [31]

Ũ (s) = [s − i(ε/2)σ×
z − W − i(δ/2)Fσ×

z

− i(H×
I + H×

B )]−1, (4.3)

where

(a|F |b) = aδab. (4.4)

It is pertinent to mention here that the stationary Markov
description of the larger bath, yielding a time-independent
rate matrix W at the outset, has led to a simplified (compared
to I) treatment of the Laplace transform and the averaging
procedure over TN, as a whole.

Our task now in the pecking order, outlined in Sec. III, is to
perform the stochastic average. The special nature of the TN
then gives rise to the following random phase approximation-
like structure of many-body theory for the average [37]:

˜[U (s)]av = [Uo(s + γ )]av/{1 − γ [Uo(s + γ )]av}, (4.5)

where

2[Uo(s + γ )]av =
[

s + γ − i

2
(ε + δ)σ×

z − iH̃×
I − iH×

B

]−1

+
[

s+γ − i

2
(ε − δ)σ×

z − iH̃×
I − iH×

B

]−1

.

(4.6)

Expression (IV.5) clearly matches Eq. (4.3) in the static limit
(γ = 0). On the other hand, when δ = 0 (no TN),

˜[U (s)]av = Ũ (s) =
[

s − i
ε

2
σ×

z − iH̃×
I − iH×

B

]−1

, (4.7)

the starting point of the propagator (in the Laplace-
transformed space) in [29,30] and indeed also in II.

V. RESULTS AND ANALYSIS

While the detailed treatment of Eq. (4.5) and further aver-
aging over the quantum baths are dealt with in the Appendix,
we quote here the final result from Eqs. (A8) and (A9):

� ˜[U (s)]av � = {s+ � H̃×
I [s − iH×

B

+ (δσ×
z )2/(s + γ − iH×

B )]−1H×
I �}−1.

(5.1)

In arriving at Eq. (5.1) we have ignored ε from further
consideration—without loss of generality—in order to sim-
plify the algebra. Because the super-operators occurring in
the resolvent in Eq. (5.1), within the square brackets [·], all
commute with each other, they can be treated as C numbers.
Hence, we may suggestively regroup the equation as

� ˜[U (s)]av � = [s + �+(s) + �−(s)]−1,

�±(s) =� H×
I (Q±H×

I �, (5.2)

being the so-called self-energy, where

Q+(s) = {1/2 + (γ /2)/[γ 2 − (2δσ×
z )2]1/2}

{(s + γ /2 − iH×
B ) − (1/2)[γ 2 − (2δσ×

z )2]1/2} ,

(5.3)

Q−(s) = {1/2 − (γ /2)/[γ 2 − (2δσ×
z )2]1/2}

{(s + γ /2 − iH×
B ) + (1/2)[γ 2 − (2δσ×

z )2]1/2} .

(5.4)
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This stratagem helps evaluate the Laplace-transformed quan-
tities in Eq. (5.1) back in the time domain, as detailed below.

Evidently, for γ = 0 (no relaxation)

Q±(s) = (1/2)/(s − iH×
B ∓ iδσ×

z ), (5.5)

which suggests a superposition of contributions due to two
static frequencies +δ and −δ, weighted by the factor one-half.
On the other hand, in the case of rapid relaxation(γ � δ),

Q−(s) is vanishingly small, whereas

Q+(s) ≈ 1/[s − iH×
B + (δσ×

z )2/4γ ], (5.6)

the motionally averaged result that indicates a single pole at
s = 0. This transition from a two-pole to a single-pole struc-
ture as the relaxation rate γ is increased has been discussed in
detail, pictorially as well in I.

We now turn our attention to the final calculation of the
self-energy in Eq. (5.2) (the intermediate steps for which are
assigned to Appendix A 3), the relevant matrix elements of
which are quoted from Eq. (A25):

(+ + |�+(s)| + +) = (− − |�+(s)| − −)

= −(− − |�+(s)| + +) = −(+ + |�+(s)| − −) ≡ Z+(s)

= 1/4�2(1 + γ /η)
∫ ∞

0
dte−st exp[−t (γ − η)/2][φ(t ) + φ′(t )]. (5.7)

The corresponding matrix elements of �−(s) are derived
from Eq. (5.7) by replacing η by −η, which, when added to
the matrix elements of �+(s), yield the matrix elements of the
total self-energy �(s). Here φ′(t ) is obtained by replacing t in
the argument by −t . Further, η is quoted once again defined
in Eq. (A3):

η ≡ (γ 2 − 16δ2)1/2. (5.8)

The (product) correlation function is given by Eq. (8.27) of
[30] [also compare with Eq. (39) of [26]],

φ(t ) = exp[iαπsgn(t )]{πTB/[ωc sinh(πTB|t |)]}2α, (5.9)

where α is defined in Eq. (2.13). In writing Eq. (5.9) we
have assumed that the two quantum baths are at the same
temperature TB (i.e., TL = TR = TB), which is taken to be much
smaller than the cutoff frequency ωc (in appropriate units). As
expected, in the limit of zero relaxation (γ = 0, i.e., no TN),
Eq. (5.7) matches the self-energy in Eq. (8.50) of [30]. The
Laplace transform of φ(t ) [cf. Eq. (8.53) of [30]] is

φ̃(s) = 1

ωc
exp(iαπ )(2πTB/ωc)2α−1

× �(1 − 2α)�(α + s/2πTB)

�(1 − α + s/2πTB)
, (5.10)

�(·) being the Gamma function. Equations (5.9) and (5.10)
are in complete agreement with Eqs. (39) and (44) of II,
respectively, though in the latter a very different method, viz.,
the nonequilibrium Green’s function treatment of Keldysh, is
employed.

Recall from Eq. (4.1) that the correlation function is
given by

C̃(s) = [(+ + | � [Ũ (s)]av � | + +)

+ (− − | � ˜[U (s)]av � | − −)]

− [(+ + | � [ ˜(U (s)]av � | − −)

+ (− − | � ˜[U (s)]av � | + +)], (5.11)

where the computation of � ˜[U (s)]av � requires the inver-
sion of a 2 × 2 matrix in accordance with Eq. (5.2). The latter
can be written as

� ˜[U (s)]av � =
(

s + Z+(s) −Z+(s)
−Z−(s) s + Z−(s)

)−1

= [s(s + 2Z (s)]−1.

(
s + Z−(s) Z+(s)

Z−(s) s + Z+(s)

)
,

(5.12)

where [cf. Eq. (5.7)]

Z (s) = Z+(s) + Z−(s), (5.13)

Z+(s) being given by Eq. (5.7) and Z−(s) is obtained by
replacing η by −η.

From Eq. (5.11),

C̃(s) = 2/[s + 2Z (s)], (5.14)

which, from Eq. (5.11), takes the particularly simple
structure

C̃(s) = 2/{s + �2[(1 + γ /η)F (s + γ /2 − η/2)

+ (1 − γ /η)F (s + γ /2 + η/2)]}. (5.15)

Here

˜F (s) = (1/ωc)(2πTB/ωc)1/2 cos(πα)

�(1 − 2α)�(α + s/2πTB)

�(1 − α + s/2πTB)
. (5.16)

This surprisingly-simple looking expression in (5.15) has rich
physics content. When the TN is a very slow process,

˜C(s) ≈ 2/{s + �2[F (s + 2iδ) + F (s − 2iδ)]}, (5.17)

implying the occurrence of a two-peak structure at 2δ and
−2δ, discussed in depth in I. On the other hand, when the
TN is extremely rapid,

˜C(s) ≈ 2/[s + �2F (s + 4δ2/γ )], (5.18)
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FIG. 2. (a) The energy conductance plotted against the reservoir-induced coupling constant α for δ/� = 0 and for three different values of
the jump rate γ /� (= 0.1, 1.0, and 10.0) of the TN. Evidently when the site energy is zero the TN has no effect and all three jump rates yield
the same curve, leading to the case considered in II. There is a discernible kink at the special value of α = 0.5, called the Toulouse limit of the
spin-boson model [21] at which cos(πα) and the argument of the gamma function �(1 − 2α) change sign. (b) The same as in (a) but now for
δ/� = 0.5. Interestingly, when γ /� = 10.0, rapid relaxation makes the presence of δ nonnoticeable (the so-called motionally averaged limit
of the TN) and the graph merges with (a). (c) The same as in (a) and (b) but now for δ/� = 1. 0. The phenomenon of motional averaging is
visible here as well.

signifying a pole at s = 0 and a line shape that has a width,
approximately given by �2F (4δ2/γ ). In between there is
a smooth transition from the result of II to a motionally
averaged result, fully displaying the interplay of incoherent
quantum tunneling across the mesoscopic junction but further
decohered by the TN. Finally, if δ = 0 (no telegraph noise), γ

= η, and we recover from Eq. (5.14) the zero-bias case of II:

C̃(s) ≈ 2/[s + �2F (s)]. (5.19)

Final expression for the energy conductance and
graphical results

We now collate all the derived steps, in both the text and the
Appendix, and collect them together in one place, in arriving
at the final result for the energy conductance K , which is more
straightforward to compute than the energy current, yet is
illustrative of the competition between the reservoir-induced
quantum noise and the classical TN arising from the larger
heat bath. For computational and graphical purposes, it is con-
venient to rescale the conductance K and all other parameters
(of dimension of frequency or energy) on the right-hand side
of Eq. (5.15) by dividing by the tunneling energy �. Denoting
all the rescaled quantities by a prime on the corresponding
symbols we can easily show from Eq. (2.14) that

K ′ = (α/4π )
∫ ∞

0
dω′[(ω′/2T ′

B)cosech(ω′/2T ′
B)]2

ω′ exp(−ω′/ω′
c)ReC′(−iω′),

K ′ = K/�2, ω′ = ω/�, T ′
B = TB/�, ω′

c = ωc/�.

(5.20)

The rescaling of the physical quantities as in the above
allows us to discuss the results in terms of dimensionless
quantities. Thus, a value 30 for ω′

c implies that the cutoff
frequency for bath excitations is taken to be as large as 30
times the bare tunneling frequency, ensuring the nonadiabatic
limit (see II).

The Laplace transform of the correlation function, on the
other hand, is given by Eq. (5.15),

C′(−iω′) = 2/[−iω′ + (1 + γ ′/η′)F ′(−iω′ + γ ′/2 − η′/2)

+ (1 − γ ′/η′)F ′(−iω′ + γ ′/2 + η′/2)], (5.21)

where [cf. Eq. (5.8)]

η′ ≡ (γ ′2 − 16δ′2)1/2, γ ′ = γ /�, δ′ = δ/�, (5.22)

and F ′(s) [cf. Eq. (5.16)]:

F ′(−iω′) = (1/ω′
c)(2πT ′

B/ω′
c)2α−1 cos(πα)�(1 − 2α)

�(α − iω′/2πT ′
B)/�(1 − α − iω′/2πT ′

B). (5.23)

As mentioned earlier we have assumed here that αL = αR =
α/2 and TL = TR = TB.

In presenting the plots for the energy conductance K ′ as in
Eq. (5.20) we use 2K/π�2 as the y axis with the x axis being
given by the (dimensionless) parameter α which arises out of
the coupling with the quantum leads and hence is a measure of
decoherence. On top of that we have γ /� that characterizes
dissipation induced by the TN of the heat bath, and hence each
panel of Fig. 2 is plotted for three different values of γ /� =
0.1, 1.0, and 10.0. Each figure has three graphs, one each for
the fluctuating on-site energy δ/� = 0, 0.5, and 1. The other
quantum bath parameters: the common temperature TB/� has
been taken as 1/2π and the cutoff frequency ωc/� has been
set equal to 30.0. When δ/� = 0 [Fig. 2(a)], the TN is absent,
and hence naturally, all the graphs for different values of γ /�

merge into one and we recover the case studied in II. It is
also interesting to note that for γ /� = 10.0 the graph tends
to coincide with Fig. 2(a) even for finite values of δ/� [cf.
Figs. 2(b) and 2(c)] as we reach the “motionally averaged”
limit of the TN. Figure 2(a) (for δ/� = 0) and Fig. 2(b) for
the jump rate γ /� = 10.0 can be directly compared with
Fig. 6 in II.

While the presence of quantum noise as characterized by
the parameter α is essential for energy conductance (and for
energy current for that matter), the graphs show that for small
values of α (the weakly decoherent regime) the conductance
increases, reaches a maximum, and then decreases, implying
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incoherence. The turnover point depends of course on the
strength of the classical damping parameter γ : the smaller
γ is, the flatter and broader is the energy conductance as
the telegraph process tends to give equal weight to the site
energies +δ and −δ.

VI. SUMMARY REMARKS

The popularly employed spin-boson model in the domain
of dissipative quantum mechanics is appropriated here in the
context of energy transfer in a molecular junction in contact
with leads that juxtapose with two bosonic reservoirs kept
at a common temperature. A polaron transformation within
a resolvent operator treatment of the underlying propagator
enables us to elucidate on a wide range of coupling to the
reservoirs—from weak to strong damping. The additionally
important feature is to ascertain how this mesoscopic phe-
nomenon can be manipulated by tuneable—in terms of the
relaxation rate—telegraphic noise (TN). When TN is absent,
we recover the previous results of Liu et al. (II), while in the
absence of the leads we make contact with the two-state jump
model, widely used in the theory of spectral line shapes. The
present theoretical results can construe a useful supplement
to the literature on nonequilibrium statistical mechanics in the
regime of nanoscale physics.

The physical significance of our theoretical results is sum-
marized in Fig. 2 in which the energy conductance K is plotted
versus the leads-induced decoherence parameter α for three
distinct values of the fluctuating (because of the TN) site en-
ergy δ, all suitably rescaled as described in the figure caption.
There are three different sketches in each figure corresponding
to different values of the dissipation parameter γ induced by
the TN. This figure then encapsulates the competitive pres-
ence of both decoherence (due to the bosonic reservoirs) and
incoherence (because of the TN arising from the stochastic
bath). The two dissipative parameters α and γ make their
presence felt in two distinct manners. The parameter α charac-
terizes the decoherence induced by the quantum baths. When
α = 0, the coupling with the baths is absent, tunneling is
quantum-coherent, and the conductance K vanishes (Fig. 2).
Since conductance (inverse of resistance) requires the pres-
ence of dissipative effects, some amount of α is essential
for nonzero K . However, as α exceeds a certain value tun-
neling gets suppressed and K starts decreasing (see Fig. 2
and also Fig. 6 of II). On the other hand, the introduction
of γ , parametrizing the jump rate of an external telegraph
noise, brings a qualitatively different effect on the conduc-
tance. When γ is small or the jumps between the asymmetry
parameter +δ and −δ and vice versa are infrequent, the two-
level system exists in an ensemble of asymmetric double wells
in which the energy difference between the left well and the
right well can be both positive and negative. This implies two
poles (i.e., resonance) in the underlying correlation function,
analyzed in detail in I. Consequently, this is indicated here
by the parameter η′ of Eq. (5.8), which becomes imaginary.
In such a situation tunneling remains weakly decoherent for
small values of α. The same scenario recurs as the jump rate
γ becomes large, η′ in Eq. (5.8) becomes real, and eventually
we reach the motional narrowed limit (viz., the graphs for γ =
10.0 in Fig. 2). Tunneling is once again weakly decoherent for

small values of α. This is why the green (γ ′ = 10.0) and red
(γ ′ = 0.1) graphs coincide for small values of the quantum
coupling parameter: α < 0.1. However, for an intermediate
value of γ ′= 1.0 (blue graph) and especially for the chosen
value of δ′ as in Fig. 2(b), η′ remains imaginary while γ ′ is
sizable leading to a broad distribution (intermediate between
a two-pole structure and a single motional-narrowed peak)
as is familiar in the theory of spectral line shapes [9]. This
is also evident in the context of the correlation function in
Eq. (5.17) and (5.18). Understandably, the aforesaid effect is
less pronounced for a larger value of δ′ = 1.0 as in Fig. 2(c)
because the resonance effect is more dominant now than for
δ′ = 0.5 of Fig. 2(b). The presented results clearly demon-
strate the influence of an external noisy environment on the
energy transfer characteristics of a nanojunction in contact
with leads.
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APPENDIX

1. Energy conductance in terms of spin correlation function

Using the golden rule of perturbation theory, the absorptive
part of the susceptibility is given by [cf. Eq. (I.65) and (I.72)
of [15]]

χ ′′
z (ω) = �i f ρi < f |σz|i >< i|σz| f > δ(ω f i − ω), (A1)

where ρi is the density operator in equilibrium for the ith
many-body quantum state |i > and the δ function takes into
account energy (or frequency) conservation in the absorption
process in which the frequency ω from an external source
is absorbed between the final state frequency ω f and the
initial state frequency ωi. The δ function has the further
representation

δ(ω f i − ω) = 1/π lim�→0�/[�2 + (ω f i − ω)2]

= 1/π lim�→0Re
∫ ∞

0
dt exp[−t (� + iω + iω f i )].

(A2)

Substituting in Eq. (A1),

χ ′′
z (ω) = 1/π lim�→0Re

∫ ∞

0
dt exp[−t (� + iω)]�i f ρi

× < f |σz|i >< i| exp(iωI t )σz exp(−iω f t )| f >

= 1/π lim�→0Re
∫ ∞

0
dt exp[−t (� + iω)]

× < σz(0)σz(t ) >, (A3)

where we have employed the Heisenberg time evolution in
writing σz(t ) (recalling that the Planck constant h̄ is unity)
and rewritten the summations over i and f with the weight ρi

as a statistical mechanical expectation value denoted by the
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angular brackets < · >. Finally, we can write

χ ′′
z (ω) = 1/π lim�→0ReC̃(s), (A4)

where the Laplace transform of the correlation function has
been introduced in the main text [cf. Eq. (3.1)].

2. Averaged time-development operator

We may define

G±(s + γ ) = [s + γ − i/2(ε ± δ)σ×
z − H̃×

I − iH×
B ]−1,

(A5)

so that

[Uo(s + γ )]av = [G+(s + γ ) + G−(s + γ )]/2. (A6)

Having carried out the stochastic average our stated aim is to
now perform a statistical average over the quantum states of
the bath (leads) Hamiltonian. To this end we would like to
treat the effective tunneling contained in H̃×

I perturbatively,
up to second order as in [29,30]. Thus,

[Uo(s + γ )]−1
av = R−1(s + γ ) + 1

2 R−1(s + γ )
{ − i[P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I P−(s + γ )]

+ P+(s + γ )H×
I P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I P−(s + γ )H×

I P−(s + γ )

− 1
2 [P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I P−(s + γ )]R−1(s + γ )

× [P+(s + γ )H×
I P+(s + γ ) + P−(s + γ )H×

I P−(s + γ )]
}
R−1(s + γ ).

where

P±(s + γ ) = [s + γ − i/2(ε ± δ)σ×
z − iH×

B ]−1,

R(s + γ ) = [P+(s + γ ) + P−(s + γ )]/2. (A7)

Recognizing that [cf. Eq. (4.5)],

[U (s)]av = {[Uo(s + γ )]−1
av − γ }−1, (A8)

we subtract γ , and rewrite

[Uo(s + γ )]−1 − γ = Q−1(s)(1 + 1
2 Q(s)R−1(s + γ ){−i[P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I + P−(s + γ )]

+ P+(s + γ )H×
I P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I P−(s + γ )H×

I P−(s + γ )

− 1
2 [P+(s + γ )H×

I P+(s + γ ) + P−(s + γ )H×
I P−(s + γ )]R−1(s + γ )

× [P+(s + γ )H×
I P+(s + γ ) + P−(s + γ )H×

I P−(s + γ )]}R−1(s + γ )),

where

Q−1(s) = R−1(s + γ ) − γ = s − iε/2σ×
z − iH×

B

+ (δ/2σ×
z )2/(s + γ − iε/2σ×

z − H×
B ). (A9)

Note that P(s), Q(s), and R(s) only involve commuting super-operators σ×
z and H×

B , and hence, do not require any specific
ordering in writing them out.

Taking a further inverse and ignoring terms linear in H×
I because they would eventually average out to zero (over the quantum

baths),

[U (s)]av = {[Uo(s + γ )]−1
av − γ }−1 = Q(s) − 1

2
Q(s)R−1(s + γ )[P+(s + γ )H×

I P+(s + γ )H×
I P+(s + γ )

+ P−(s + γ )H×
I P−(s + γ )H×

I P−(s + γ )]R−1(s + γ )Q(s) + 1

4
Q(s)R−1(s + γ )P+(s + γ )H×

I P+(s + γ )

× R−1(s + γ )P+(s + γ )H×
I P+(s + γ )R−1(s + γ )R−1(s + γ )Q(s) + 1

4
Q(s)R−1(s + γ )H×

I P−(s + γ )

× R−1(s + γ )P−(s + γ )H×
I P−(s + γ )R−1(s + γ )Q(s) + 1

4
Q(s)R−1(s + γ )P+(s + γ )H×

I P+(s + γ )

× R−1(s + γ )P−(s + γ )H×
I P−(s + γ )R−1(s + γ )Q(s) + 1

4
Q(s)R−1(s + γ )P−(s + γ )H×

I P−(s + γ )

× R−1(s + γ )P+(s + γ )H×
I P+(s + γ )R−1(s + γ )Q(s) − 1

4
Q(s)R−1(s + γ )P+(s + γ )H×

I P+(s + γ )R−1(s + γ )Q(s)
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× R−1(s + γ )P+(s + γ )H×
I P+(s + γ )P+(s + γ )R−1(s + γ )Q(s) − 1

4
Q(s)R−1(s + γ )P−(s + γ )H×

I P−(s + γ )

× R−1(s + γ )Q(s)R−1(s + γ )P−(s + γ )H×
I P−(s + γ )R−1(s + γ )Q(s) − 1

4
Q(s)R−1(s + γ )P+(s + γ )H×

I P+(s + γ )

× R−1(s + γ )Q(s)R−1(s + γ )P−(s + γ )H×
I P−(s + γ )R−1(s + γ )Q(s) − 1

4
Q(s)R−1(s + γ )P−(s + γ )H×

I P−(s + γ )

× R−1(s + γ )Q(s)R−1(s + γ )P+(s + γ )H×
I P+(s + γ )R−1(s + γ )Q(s). (A10)

In order to establish the veracity of the rather long algebraic
expression in (A10) we may carry out the customary check on
two special cases.

(1) The first is somewhat trivial, namely, the limit of zero
tunneling when H×

I vanishes, consequently making H×
B in-

effective. In that case, barring the first term on the right of
Eq. (A6), all other terms go to zero, and we are left with [cf.
Eqs. (A8) and (A9)]

[U (s)]av = Q(s) = {s − iε/2σ×
z + (δ/2σ×

z )2/

[s + γ − iε/2σ×
z ]}−1, (A11)

a standard result that finds a place in the line shape expressions
under the TN [see, for instance, Eq. (VIII. 30) or Eq. (VIII. 51)
of [9]].

(2) The second limiting case of no TN (δ = 0) is a bit more
involved. Now [cf. Eq. (A7) and Eq. (A9)],

P±(s + γ ) = (s + γ − iε/2σ×
z − iH×

B )−1 = R(s + γ ),

Q(s) = (s − iε/2σ×
z − iH×

B )−1. (A12)

The second through sixth terms on the right of Eq. (A10) to-
gether cancel out, whereas the last four terms are all identical,
thus yielding

[Ũ (s)]av = Q(s)[1 − H×
I Q(s)H×

I Q(s)]. (A13)

We note from Eq. (4.1) that the problem at hand involves a
further averaging in Eq. (A3) over the diagonal states of the
quantum baths, indicated there by double angular brackets.
Now, the super-operator Q(s) on its own on either side of
H×

I , when averaged as such, would be left devoid of H×
B (see

Appendix A 1 of [30]), hence

� [Ũ (s)]av � = Qo(s)[1− << H×
I Q(s)H×

I � Qo(s)],

Qo(s) = (s − iε/2σ×
z )−1, (A14)

which can be further rearranged to yield

� [Ũ (s)]av � = [Q−1
o (s)+ << H×

I Q(s)H×
I �]−1

= [s − iε/2σ×
z + �(s)]−1, (A15)

where �(s) is the so-called self-energy defined by

�(s) =� H×
I Q(s)H×

I � . (A16)

The Laplace transform of the time-development operator, as
given in Eq. (A5) is identical to that for dissipative tunnel-
ing in an asymmetric double well under the so-called dilute
bounce gas approximation or NIBA [see Eq. (8.49) of [30]].
As it turns out, this result is also completely equivalent to the

corresponding PT-NEGF expression, derived for the imagi-
nary part of the pseudospin susceptibility in II for what that
paper calls the0 biased case, as is further discussed in the text.

Having confirmed that the algebraic expression in
Eq. (A10) does reduce to the expected results in the sepa-
rate instances of TN and dissipative tunneling in a two-state
system we now turn our attention to the core issue at hand,
namely, to assess the interplay of a mesoscopic tunnel junction
leaking energy and particle currents to two leads modeled as
bosonic baths. Because the TN, at least in the slow-relaxation
limit (γ � δ ), does create two distinct “biases” +δ and −δ

we may ignore ε in further considerations, in order to simplify
the algebra.

Recall that the central quantity of interest � [Ũ (s)]av �
is just a 4 × 4 matrix in the Liouville operator space of σ×

z
and that the special nature of the spin-correlation function is
such that only the left, upper block of the matrix labeled by
| + +), | − −), | + −), and | − +), respectively, is relevant, as
is made clear in Eq. (4.1). Within that subspace the operators
like σ×

z and (σ×
z )2, taken separately, make no contribution.

Therefore, ignoring also H×
B in terms on either side of the

right-hand side of Eq. (A10) (as argued earlier) the matrix of
� [U (s)]av � within the upper left block can be simplified as

� [Ũ (s)]av � = 1

s
− 1

2
(1/s)2 � H×

I [P+(s + γ )

+ P−(s + γ )]H×
I � +1

4
(1/s)2

� H×
I R−1(s + γ )

[P+(s + γ ) + P−(s + γ )]2H×
I � +1

4
(1/s)2

� H×
I Q(s)R−2(s + γ )[P+(s + γ )

+ P−(s + γ )]2H×
I �, (A17)

This expression is drastically reduced by noting that [cf.
Eq. (A7)] the P’s sum to 2R, and therefore, the second line
on the right of Eq. (A7) vanishes, leaving

� [Ũ (s)]av � = 1/s − (1/s)2 � H×
I Q(s)

H×
I �≈ [s+ � H×

I Q(s)H×
I �]−1, (A18)

where Q(s) is now given by Eq. (A1). The self-energy [cf.
Eq. (A16)] then is

�(s) =� H×
I {s − iH×

B + (δ/2σ×
z )2/

[(s + γ ) − iH×
B ]}−1H×

I � . (A19)

This is one of the principal results of our paper signifying the
combined effects of TN and dissipative tunneling.
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3. Computation of self-energy

Our first focus is on the positive branch of the self-energy
�+(s). Given that we are interested in only the left upper
block of the 4 × 4 matrix elements of �+(s), we may write

(μμ|�+(s)|νν) = �μ′ν ′�iB,iB′ � jB, jB′ < iB|ρB|iB >

× (μiBμiB|H×
I |μ′ jBν ′ jB′ )

× [μ′ jBν ′ jB′ |Q+(s)|μ′ jBν ′ jB′ ]

(μ′ jBν ′ jB′ |H×
I |νiB′νiB′ ), (A20)

where ρB is the density operator for the quantum bath com-
prising the two leads, which, in the present instance, is
governed by the Bose-Einstein statistics.

The next steps involve expanding Eq. (A20) by writing out
the matrix elements of the Liouvillian H×

I and following the
lines of argument as in the Appendix of chapter VII of [30].
We find

(μμ|�+(s)|νν)

= �iB < iB|ρB|iB > (δμν�μ′, jB

× {< μiB|HI |μ′ jB >< μ′ jB|HI |μiB >

× (μ′ jBμiB|Q+(s)|μ′ jBμiB)+ < μiB|HI |μ′ jB >

× < μ′ jB|HI |μiB > (μiBμ′ jB|Q+(s)|μiBμ′ jB)}
− �iB′ < μiB|HI |νiB′ >< νiB′ |HI |μiB >

× {(μiBνiB′ |Q+(s)|μiBνiB′ ) + (νiB′μiB|Q+(s)|νiB′μiB)}).
(A21)

From this we directly go to the four relevant matrix elements,
upon employing the expression for Q+(s) in Eq. (5.5):

(+ + |�+(s)| + +)

= −(+ + |�+(s)| − −) = 1/4�2

× (1 + γ /η)
∫ ∞

0
dte−st exp[−t (γ − η/2)]

× [<< A−
L (0)A−

R (0)A+
L (t )A+

R (t ) �
+ << A−

L (t )A−
R (t )A+

L (0)A+
R (0) �],

(− − |�+(s)| − −)

= −(− − |�+(s)| + +) = 1/4�2

× (1 + γ /η)
∫ ∞

0
dte−st exp[−t (γ − η/2)]

× [<< A+
L (0)A+

R (0)A−
L (t )A−

R (t ) �
+ << A+

L (t )A+
R (t )A−

L (0)A−
R (0) �], (A22)

where we have used the Heisenberg time evolution of the
operators A±

L,R occurring in the interaction Hamiltonian HI in

Eq. (3.7) and have defined

η ≡ (1 − γ 2/4δ2)1/2. (A23)

The corresponding matrix elements of �−(s) are simply ob-
tained by replacing the η by −η.

Because the L and R baths are statistically independent, the
correlation functions, indicated by double angular brackets in
Eq. (A5) factor, thus

� A−
L (0)A−

R (0)A+
L (t )A+

R (t ) �
=� A−

L (0)A+
L (t ) �� A−

R (0)A+
R (t ) �≡ φ(t ).

In addition,

� A+
L (0)A+

R (0)A−
L (t )A−

R (t ) �
=� A+

L (0)A−
L (t ) �=� A+

R (0)A−
R (t ) �≡ φ(t ).

Furthermore,

� A−
L (t )A−

R (t )A+
L (0)A+

R (0) �
=� A−

L (t )A+
L (0) �� A−

R (t )A+
R (0) �= φ(−t ). (A24)

Substituting in Eq. (A2),

(+ + |�+(s)| + +)

= (− − |�+(s)| − −)

= −(− − |�+(s)| + +) = −(+ + |�+(s)| − −) = 1

4
�2

× (1 + γ /η)
∫ ∞

0
dte−st exp[−t (γ − η)/2][φ(t ) + φ(−t )].

(A25)

The (product) correlation function is given by Eq. (8.27) of
[30] [also compare with Eq. (39) of II],

φ(t ) = exp[iαπsgn(t )]{πTB/[ωc sinh(πTB|t |]}2α, (A26)

where α is defined in Eq. (II.13). In writing Eq. (A9) we
have assumed that the two quantum baths are at the same
temperature TB (i.e., TL = TR = TB ), which is taken to be much
smaller than the cutoff frequency ωc (in appropriate units). As
expected, in the limit of zero relaxation (γ = 0, i.e., no TN),
Eq. (A5) matches the self-energy in Eq. (8.50) of [30]. The
Laplace transform of φ(t ) [cf. Eq. (8.53) of [30]] is

φ̃(s) = 1

ωc
exp(iαπ )(2πTB/ωc)2α−1[�(1 − 2α)

× �(α + s/(2πTB)]/[�(1 − α + s/(2πTB)], (A27)

�(·) being the Gamma function. Equations (A6) and (A7) are
in complete agreement with Eqs. (39) and (44) of II, respec-
tively, though in the latter a very different method, viz., the
nonequilibrium Green’s function treatment of Keldysh, was
employed.
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