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We derive a thermodynamic uncertainty relation for first passage processes in quantum Markov chains. We
consider first passage processes that stop after a fixed number of jump events, which contrasts with typical
quantum Markov chains which end at a fixed time. We obtain bounds for the observables of the first passage
processes in quantum Markov chains by the Loschmidt echo, which quantifies the extent of irreversibility in
quantum many-body systems. Considering a particular case, we show that the lower bound corresponds to
the quantum Fisher information, which plays a fundamental role in uncertainty relations in quantum systems.
Moreover, considering classical dynamics, our bound reduces to a thermodynamic uncertainty relation for

classical first passage processes.
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I. INTRODUCTION

The thermodynamic uncertainty relation (TUR) provides a
fundamental limit of thermodynamic machines. It states that
the precision of a machine, which is quantified by fluctuations
of thermodynamic currents, is bounded from below by the
thermodynamic cost, such as entropy production and dynam-
ical activity. TURs have been derived for classical systems
[1-17] and quantum systems [18-28]. Recently, TURs have
become a central topic in nonequilibrium thermodynamics.
Besides their theoretical significance, TURs have practical
advantages and are used in estimating the entropy production
of thermodynamic machines solely from their stochastic tra-
jectories [29-32].

The first passage process is a stochastic process and
has been extensively studied in various fields ranging from
physics to finance [33,34]. Recently, it has been attracting
much attention in quantum dynamics as well [35,36]. Conven-
tionally, we consider the dynamics of stochastic processes that
starts at 0 and ends at a fixed time 7 (t > 0). However, in first
passage processes, the dynamics stops when the system satis-
fies some predefined conditions, and therefore the end time of
the dynamics, known as the first passage time, is considered
a random variable. The predefined conditions could be the
system reaching some practically meaningful states, e.g., ab-
sorbing states such as extinction, or the number of jump events
surpassing a threshold. Recently, first passage processes have
become increasingly important in stochastic thermodynamics
[37-39]. For instance, it is possible to extract work by a
gambling demon, which monitors its state and determines
when to stop the dynamics [40]. For TURs in first passage
processes, relations for classical stochastic thermodynamics
were derived in Refs. [6,41,42]. These relations show that the
fluctuations of the first passage time are bounded from below
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by dynamical activity or entropy production. TURs for first
passage processes are particularly important in biochemical
clocks [1,43]. The precision of such clocks is ideally evalu-
ated through the first passage time for them to accomplish a
single chemical reaction cycle. Although various studies of
the first passage problem have been conducted in classical
stochastic thermodynamics, studies of quantum variants are
in a very early stage. It was recently proposed that quantum
clocks can be implemented by quantum heat engines [18,44],
which strongly demands a TUR for the quantum first passage
processes.

In this manuscript, we consider a TUR for quantum
Markov chains that stop after a fixed number of jump events,
which is a particular case of first passage processes. Using the
techniques developed in Ref. [45], we obtain a TUR for the
first passage time in quantum Markov chains, whose lower
bound comprises the Loschmidt echo. The obtained bound
concerns two dynamics: the original and perturbed dynamics.
When the perturbed dynamics is identical to the original dy-
namics, except that the timescale of the perturbed dynamics is
slightly faster or slower than that of the original dynamics, the
Loschmidt echo reduces to the quantum Fisher information.
This information plays a fundamental role in several uncer-
tainty relations in quantum systems. Considering the classical
limit of the derived TUR, we show that our relation reduces
to a classical TUR for the classical first passage processes de-
rived so far. Considering a two-level atom driven by a classical
laser field as an application, we show that the fluctuations of
the first passage time for a quantum Markov chain become
smaller than its classical counterpart.

II. METHODS

The Loschmidt echo is an indicator of quantum chaos in
many-body systems. Let H be a Hamiltonian and let H, be a
perturbed Hamiltonian. When the system is closed, given the
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FIG. 1. Loschmidt echo for (a) closed and (b) open dynam-
ics. S represents the system and E represents the environment.
(a) Loschmidt echo defined by the fidelity between e~*#* |¥(0)) and
e "7 |\W(0)) att = T, where H and H, are the original and perturbed
Hamiltonians, respectively. (b) Loschmidt echo defined by the fi-
delity between ), V., |¥s) ® le,,) and D, Vi [Ys) ® e}, where
V. and V,,, are the Kraus operators of the original and perturbed
dynamics, respectively.

initial state |W(0)), the Loschmidt echo 7 is defined by
= [(W(0)]e™ e T W(0))I%. )

The Loschmidt echo n defined in Eq. (1) can be regarded as
the fidelity between e="#* |W(0)) and e~'"+7 |W(0)), which are
time-evolved states at T induced by H and H,, respectively,
as shown in Fig. 1(a). If the system is sensitive to the per-
turbation, the fidelity decays quickly to 0, indicating that the
Loschmidt echo is conceptually similar to the Lyapunov ex-
ponent. Because the highly susceptible fidelity under a small
perturbation is related to the irreversibility of the dynamics,
the Loschmidt echo can be used to quantify the irreversibility.
The Loschmidt echo in Eq. (1) is for closed quantum sys-
tems. However, we can define the Loschmidt echo for open
quantum systems. Let us consider a Kraus representation,

ps = 3 VupsV,, @)

where ps is a density operator and V,, is a Kraus operator
satisfying a completeness relation Y., VIV, =I5, with Ig
being the identity operator in S. This time evolution induced
by the Kraus representation can be expressed by a unitary
time evolution in a larger space comprising the system S and
environment E,

Us [s) ® leo) = Zv ¥s) ® lem) , 3)

where |e,,) constitutes an orthonormal basis of E, |ys) and
leg) are initial states of S and E, respectively, and Usg is a

unitary operator acting on S + E. Tracing out E in Eq. (3), we
recover the original Kraus representation of Eq. (2). Suppose
that a Kraus operator for the perturbed dynamics is V, ,,. Then
the fidelity can be calculated between ), V,, [¥s) ® |e,,) and
> Vo [¥s) ® len), as shown in Fig. 1(b). Throughout this
manuscript, we use % in subscripts to express the perturbed
dynamics.

We can derive an uncertainty relation from the Loschmidt
echo. Using the lower bound for the Hellinger distance [46],
we obtain the bounds for observables and the Loschmidt echo
[45]. Let |¥) and |W,) be two pure states and let F be a
Hermitian observable that is applied to |W) or |V, ). We define
the mean and standard deviation of F by (F) = (V|F|¥) and
[F] = V(F2) — (F)?, respectively. (F), and [F], should be
evaluated for |\, ) instead of |W). Then the following relation
holds [45]:

<m+mf>_L_

(Fy—(F),) “ =1 @

where n = | (¥,|W) |?. Equation (4) is a tighter version of
the inequality derived in Ref. [47]. We obtained a quantum
TUR for quantum Markov chains that end at a fixed time
using Eq. (4), where the observable is a counting observable
and the lower bound is defined by the Loschmidt echo. The
results obtained in Ref. [45] can be regarded as a quantum
analog of TUR because the entropy production in stochastic
thermodynamics also characterizes the extent of irreversibility
due to the time-reversal operation.

Now, we derive a TUR for first passage processes in quan-
tum Markov chains using Eq. (4). In particular, we consider
quantum Markov chains that stop after K jump events, where
K €{1,2,3,...}. Let ps(t) be a density operator of the prin-
cipal system § at time . We assume that the dynamics of pg(t)
is governed by the Lindblad equation,

M
ps = Lps = —ilHs, ps1+ ) _ D(ps, Ln), )

m=1

where L is the Lindblad superoperator, Hy is a system Hamil-
tonian, L,, represents jump operators, M is the number of jump
operators, and D is the dissipator defined by
¥
Lps L — M ©6)
2

Here, {-,-} denotes the anticommutator. The solution of
Eq. (5) corresponds to the dynamics when we do not measure
the environment E. However, when we measure the environ-
ment E, the system exhibits stochastic dynamics depending
on the measurement record. Such stochastic dynamics condi-
tioned on the measurement record is referred to as a quantum
trajectory. Figures 2(a) and 2(b) show trajectories of classical
and quantum Markov chains, respectively. For the classical
trajectory, the state only varies via stochastic jumps, whereas
the system undergoes smooth continuous evolution and sud-
den discontinuous jumps for the quantum trajectory. We can
represent Eq. (5) by the following alternative expression:

D(ps, L) =

ps = —i(Hetrps — psH) + ZmeSL @)

m=1
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FIG. 2. Comparison of trajectories in (a) classical and (b) quan-
tum Markov chains. In a quantum Markov chain, between the ith and
(i + 1)th jump events, the state can change via e~ et (=) where f;
is the time stamp of the ith jump event. On the other hand, the state
remains unchanged between consecutive jump events for a classical
Markov chain.

where Hg is an effective Hamiltonian,
;M
Heff = HS - 5 ZL;LLm (8)
m=1

Equation (7) shows that the dynamics of pg is governed by two
contributions: the effective Hamiltonian term —i(Hegps —
pSHgff), which induces a continuous smooth state change,
and the jump operator term ZZ=1 LypsL), which causes a
discontinuous jump. Suppose that the state of S right after
a jump event is |s). Continuous evolution in the quantum
trajectory is given by e’ |1), which is not normalized,
and the next jump is induced by the mth jump operator L,
after a waiting time w. Therefore, from the state after the first
jump event to the state after the second jump event, the state
is transformed as
Y(w, m)|¥s)

¥s) — , )
S sV (w, mY (w, m)ls)

L~ Y (w, m) satisfies a complete-
1f0 dw Y (w, m)Y (w, m) = I, which

where Y (w, m) =
ness relation M
can be shown by

Z / dw eszHLT —szeﬂ

— _‘/0 dw %[ lUJHL“-e—leeff]

— ]IS _ eszme—theff

(10)

w—00"

Therefore, the Kraus representation describing the evolution
from the first to the second jump events is given by

M o0
Z(e) = Z/O dwY w,m)e Y (w, m). (11)
m=1
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FIG. 3. Quantum Markov chain that stops after a fixed number
of jump events (K = 4). (a),(b) Different realizations of the process,
both stopping when they undergo K = 4 jump events. m;, t;, and w;
denote the ith output, time stamp of the ith output, and waiting time
between the (i — 1)th and ith jump events, respectively.

We employ the input-output formalism for the first passage
process with a fixed number of jump events as in Ref. [48].
The input-output formalism is also known as the continuous
matrix product state. If we replace V,, in Eq. (2) by Y (w, m),
the Kraus representation of Eq. (11) can be represented as an
interaction between the principal system S and the environ-
ment E as follows:

M o0
=Z/O dwY (w,m)|¥s) @ |w, m), (12)

where |w,m) constitutes an orthonormal basis in E as
(W', m'|w, m) = §(w — w)Spm.

We consider a quantum Markov chain that stops after K
jump events. Let |Wk) be a composite state in S + E after K
jump events. Let m; be the output of the ith jump event, £;
be the time stamp of the ith jump event (y, = 0), and w; be
the waiting time between the (i — 1)th and ith jump events
(i.e., w; =t; — t;—1). Figures 3(a) and 3(b) are examples of
the process, where the trajectories stop when they undergo
K =4 jump events. We observe that the first passage time
is a random variable, and it is different for these two cases.
Repeating Eq. (12) K times, |Wg) is expressed by

|[Wk) = Z/ dwY (wg, mg)---Y(wy, m) |¥s)

.....

® [(wk, mg), ..., (wy, my)), (13)

where [;“dw is an abbreviation for [J°dw; [;° dw>

o fooo dwg. We used Eq. (5) in Ref. [45] for expressing the
input-output state for constant-time quantum Markov chains.
Equation (13) shows a constant jump case of Eq. (5) in
Ref. [45].

When we perform a continuous measurement, we obtain
records of jump events m = [my, my, ..., mg] and their time
stamp t = [t1, 1, ..., tx], as shown in Fig. 3. Knowing w =
[wy, wa, ..., wk] is equivalent to the time stamp ¢, m and
t can be obtained by applying the projector |w, m) (w, m]|,
where |w, m) = [(wg, mg)) ® -+ Q [(wy,my)), to [Wg) in
Eq. (13). We consider the following Hermitian observable
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onE:
OEZ/OOdwh(w,m)lw,m) (w, m]|, (14)
. Jo

where h(w, m) is an arbitrary real function of w and m.

The Loschmidt echo considers the fidelity between the
original |Wg) and the perturbed | W, x) composite states in S +
E, as shown in Fig. 1(b). Let H, 5 and L, ,, be the perturbed
Hamiltonian and jump operators, respectively. The per-
turbed state |\, k) is expressed by Eq. (13), where Y (w, m)
should be replaced by the perturbed operator Y,(w,m) =
L*Yme_iH"emU with H, ot = H, 5 — % Zgzl L:mL*,m' Then the
Loschmidt echo 1 becomes

n = |Tr[ZX (ps(O)]]7, (15)

where pg(0) is the initial state in S and Z, is a mapping
defined by

Z,(o) = Z/OOOdwY(w,m).Yj(w,m). (16)

Here, AKX denotes exponentiation of a mapping A, i.e.,

A = Ao Ao---0 A, o))
K

where o denotes a composition. Note that the mapping Z, is
not a Kraus representation because Tr[Z,(ps)] # 1, in gen-
eral. Z, is the fixed jump number analog of a two-sided
Lindblad operator [49,50], which is used to calculate the
Loschmidt echo in the fixed end time system. Composition of
the mapping can be reduced to a matrix multiplication when
we convert Z, from the Hilbert space to the Liouville space
(Appendix A), thereby making it easy to calculate 7.

Substituting F = Iy ® O in Eq. (14) and 5 in Eq. (15) into
Eq. (4), we obtain

([[O}]+[[O]]*>2> 1
(O)—(0), ) 7 [Tr[ZK (ps(O)]] > — 1

which is the main result in this manuscript. Equation (18) is
a TUR for first passage processes in quantum Markov chains.
The above calculations assume an initially pure state pg(0) =
[Vs) (¥s], but it is straightforward to generalize to an initially
mixed state through purification as was done in Ref. [45]. It
is important to note that the Loschmidt echo can be computed
using information of the principal system only, i.e., Hg, H, s,
L,, and L, ,. Moreover, by using an ancilla qubit, we can
show that the Loschmidt echo of Eq. (15) becomes a mea-
surable quantity of a physical process (Appendix B).

Equation (18) holds for arbitrary perturbed dynamics spec-
ified by H, s and L, ,,. Next, we consider a specific perturbed
dynamics where Eq. (18) reduces to a more intuitive form. Let
us consider the following perturbed operators:

; (18)

Lew =1+ ¢L,, (19)
H.s = (1+¢)Hs, (20)

where ¢ is a real value parameter. We take the ¢ — 0O limit.
Because the Lindblad equation for the perturbed dynamics
specified by Egs. (19) and (20) is given by p = (1 + &)L(ps),
the perturbed dynamics is the same as the original dynamics,

except for the timescale. We may define a first passage time
observable Oy, which is a subset of O, where the subscript
f denotes the capital of the first passage time. The timescale
of the perturbed dynamics is (1 4 ¢) times faster than that of
the original dynamics. We assume that the first passage time
observable Oy scales as

1

(Of), = 172 (Or), (21)
1

O] = m[[ofﬂ- (22)

For instance, when h(w, m) = ZIK:, w; = tx in Eq. (14), the
observable corresponds to the first passage time to reach
K jump events. Apparently, this first passage time satisfies
Egs. (21) and (22). With this scaling relation, the left-hand
side of Eq. (18) becomes

10/] + [0 _&et2 [0/]
(Of) = (Oy), e (Op)

Next, we evaluate the right-hand side of Eq. (18). When
we employ the perturbed Hamiltonian and jump operators
in Egs. (20) and (19), respectively, the ¢ dependence of the
composite state of the perturbed dynamics can be expressed
as

(23)

W, k) = [Wk(e)) . (24)

When ¢ =0, Eq. (24) reduces to the unperturbed state,
Wk (e = 0)) = |Wg). Let us consider the quantum Fisher
information [51,52], which is obtained by the following cal-
culation:

Tk () = 4 (0o Wk ()]0 Wk (@)
+ 4] (3, Wk ()| Wk () I, (25)

where |0, Vk(a)) = (d/da) |k («)). It is known that the fi-
delity and quantum Fisher information are related via [53]

8
Tk (o) = 2l - (Wi (o + &)Wk ()], (26)

where we consider the ¢ — 0 limit. Substituting Egs. (23) and
(26) into Eq. (18), we obtain

[O4]? 1
>
(00?7 Tk(0)

Equation (27) provides a TUR for the first passage time
in quantum Markov chains. As will be shown later, when
we only consider classical stochastic processes, we ob-
tain Jx(0) — K. The quantum Fisher information gives
the fundamental limit of the quantum parameter estimation
[51,52,54,55]. Moreover, it plays a central role in the quantum
speed limit [56-58] and a quantum TUR [24]. If we measure
quantum systems and obtain a measurement output, the ob-
tained output can be treated classically, and we observe that
the quantum nature does not come into play. Therefore, we
let Zx (o; Mgg) be the classical Fisher information, which
is obtained by applying a positive operator-valued measure
(POVM) Mg to |Wk(a)). Because a record of continuous
measurement can be obtained by measuring |Wk(«)) by the

27)
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projector |w, m) (w, m|, Zg" (o) is represented as
I8 a) = Ik (s Is ® {lw, m) (w, m|}). (28)

Because the quantum Fisher information is larger than the
classical counterpart, we have

g™ () < Tk (o). (29)

We have derived Eq. (27) using the lower bound of the
Hellinger distance and considering a particular perturbed
dynamics specified by Eqgs. (19) and (20). As shown in Ap-
pendix D, Eq. (27) can also be derived through the classical
Cramér-Rao inequality, which was employed to derive classi-
cal TURs [10,59].

Next, we obtain the classical limit of Eq. (27). We consider
a classical Markov chain with Ny states, By, By, ..., By,, and
take y;; to be a time-independent transition rate from B; to B;.
Equation (27) then reduces to the following simple relation:

o _ 1

(Of)z = Ka
as shown in Appendix C. Equation (30) corresponds to a
specific case of the result reported in Ref. [42]. Equation (30)
shows that for first passage processes that stop after K jump

events, the lower bound does not depend on the details of the
dynamics or the initial distribution.

(30)

III. EXAMPLE

We apply the main result, given by Eq. (18), to a two-level
atom driven by a classical laser field. Let |e.) and |eg) be the
excited and ground states, respectively. The Hamiltonian Hs
and a jump operator L are given by

Q
Hy = Alee) (€| + Fll€e) (€l + I€g) (el €2y

L= \/E |6g> <ee| ’ (32)

where A is the detuning between the laser field and the
atomic-transition frequencies, 2 is the Rabi-oscillation fre-
quency, and « is the decay rate. L induces a jump from |[€,)
to |eg). We first calculate the parameter dependence of the
quantum Fisher information Jx(0) in Eq. (27) on the decay
rate «. Figure 4(a) shows Jk(0) as a function of x, with
the parameters given in the caption. The dashed line denotes
Jk (0) and the solid line shows K, which is the classical limit
of the lower bound, as shown in Eq. (30). We see that Jk(0)
reduces to K as k — oo. Because jumps in the Lindblad dy-
namics become dominant compared to the dynamics induced
by e el for k — oo, the dynamics becomes closed to a
classical Markov chain. Moreover, we observe that Jx(0) is
always larger than K, which indicates that the lower bound of
the TUR is smaller for this quantum Markov chain.

To confirm that the fluctuation of the first passage observ-
able Oy is smaller for the quantum Markov chain, we perform
a computer simulation. We randomly generate A, €2, and
« and calculate [O]?/ (Oy)?. Specifically, we consider Oy
with h(w, m) = Zlel w; = tg, which gives the first passage
time needed to undergo K jump events. We plot [Of]?/ (O;)?
as a function of the quantum Fisher information Jk(0) with
triangles, where the dashed line denotes the lower bound,

(a) 10—

FIG. 4. (a) Quantum Fisher information Jx (0) as a function of «.
The dashed line denotes Jx(0) and the solid line denotes K, which
is the classical limit of Jx(0). The parameters are A = Q = 1.0
and K = 1. (b) Precision [O]?/ (Of)2 as a function of the quan-
tum Fisher information Jx(0) (triangles) and the jump number K
(circles) for random realizations. The dashed line corresponds to
1/Jk(0) for the triangles and 1/K for the circles. The parame-
ters are randomly selected from A € [0.1, 3.0], € [0.1, 3.0], and
k €[1.0,3.0].

as shown in Fig. 4(b). We confirm that all realizations are
above the dashed line, which numerically verifies Eq. (27).
We have shown that Eq. (27) reduces to Eq. (30) in a classical
case, where the lower bound is given by 1/K. Therefore,
we also check whether [O/]?/ (Oy)* can be bounded from
below by 1/K. We plot [Of]*/ (Of)* as a function of K
with circles, where the dashed line now describes 1/K, as
shown in Fig. 4(b). We observe that some circles are be-
low the dashed line, which indicates that the observable Oy
cannot be bounded from below by 1/K. As explained in
Fig. 4(a), this enhancement of precision can be ascribed to
the fact that Jx(0) is larger than K for smaller «, where
the state change in the dynamics is mostly induced by Hc.
Therefore, the precision enhancement in the quantum Markov
chain is due to the state change via the effective Hamiltonian.
Quantum-induced precision enhancement has been reported
for quantum Markov chains with a fixed end time [20,24].
Recently, it was reported that quantum coherence can improve
the precision of a quantum heat engine [28].

IV. CONCLUSION

In this manuscript, we derived a TUR for a first passage
time in quantum Markov chains. Furthermore, we used a
derivation technique developed in Ref. [45], where the fluctu-
ation of observables is bounded from below by the Loschmidt
echo. Our approach is quite general, and it can be applied
to many quantum systems, which could not be handled with
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the previous derivations. A possible application of our ap-
proach is an extension to non-Markovian systems such as
time-delayed systems [60]. Moreover, recently, the notion of
quantum thermodynamics has been generalized to quantum
field theory [61,62]. Because the input-output formalism itself
is a quantum field, we expect that uncertainty relations for
quantum field theory can be derived using our technique.
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APPENDIX A: LIOUVILLE SPACE REPRESENTATION

The mapping Z, in the Hilbert space is shown in Eq. (16).
Because the calculation of ZX is a computationally expensive
task, we can use the Liouville space representation of Z,.
The Liouville space representation is advantageous because
the mapping can be realized via matrix multiplication. In the
Hilbert space, the density operator is

p =Y oili (il
ij

where |i) is an orthonormal basis. It can be represented in the
Liouville space as follows [63]:

vec(p) = ZQU /) ®i).
ij

(AL)

(A2)

Let A, B, and C be arbitrary matrices in the Hilbert space.
Then the following relation holds:

vec(ABC) = (CT ® A)vec(B), (A3)

where T denotes the transpose. When the dimensions of the
operators in the Hilbert space are d x d, their correspond-
ing Liouville space representations have the dimensions of
d?* x d*>. Using Eq. (A3), we obtain Z, [Eq. (16)] in the
Liouville space as follows:

M 00
3, = Z/O dwY w,m)®Y(w,m),  (Ad)

m=1

where the superscript * denotes complex conjugate. Then,
exponentiation of a mapping, ZX(ps), is simply realized by
a matrix power 3% vec(ps).

APPENDIX B: MEASUREMENT OF LOSCHMIDT ECHO

Here we show a method for obtaining the Loschmidt echo
given by Eq. (15) through measurement of a physical process.

We first review the well-known approach for calculating
the Loschmidt echo for closed quantum dynamics. We can
measure the Loschmidt echo for closed quantum dynamics
by introducing an ancilla qubit. Let H and H, be Hamilto-
nian operators of the original and the perturbed dynamics,
respectively, with which we want to calculate the Loschmidt
echo, and let o) and |1) be the two states of the ancilla qubit.
The Loschmidt echo for closed quantum dynamics is given by
Eq. (1). We define the Hamiltonian in the composite system

comprising the ancilla and system as follows:

0 H. B

~ H 0

Hs|o><o|®H+|l><l|®H,,=[ }
The initial state of the composite system is |[¥(0)) =
\%ﬂo) + |1)) ® |W(0)), where |W(0)) is the initial state of
the original system. The state of the ancilla after the time
evolution is given by

Trsle™ ™ [0(0)) (F(0)] 7]

(W (D)W (7))

i
=E[<W(r>|w*<r>> I } ®2)

where Trg is the trace operation with respect to the
principal system S, |¥(t)) = e 7 |W(0)), and |W¥,(1)) =
e~ 7 |\W(0)). From Eq. (B2), we see that the Loschmidt echo
| (V,(t)|W(7)) | can be obtained by measuring the |0) (1| (or
|1) (o]) element of the ancilla.

The Loschmidt echo for a Lindblad equation can be cal-
culated in a similar way. For a system that ends at a constant
time, the Loschmidt echo can be calculated by the procedure
shown in Ref. [50]. Here we show how we can measure the
Loschmidt echo for a constant jump case. Similar to Eq. (B1),
we prepare an ancilla qubit and define the Hamiltonian and
jump operators in the ancilla and system as follows:

5 H 0
A = 10) (0] ® Hs + 1) (1] & Hy.s = [ o n J, (B3)

- L, 0
Lm = |o) (O| ®Ll7l + |l> <l| ®L*,ITL = [ () L ]’ (B4)

We define the density operator in the ancilla and system as
follows:

v 1 poo(®)
pu)= z[mo(t)

where the initial state is set to be 000(0) = p01(0) = p10(0) =
p11(0) = ps(0). Similar to the closed quantum case, let p(t)
evolve through Hg [Eq. (B3)] and L,, [Eq. (B4)]. Specifi-
cally, suppose that p(¢) is governed by the following Lindblad
equation:

Pm(f)} (BS)

p11(t)

M
p=~ilHs. pl+ ) _ DD, Ln). (B6)

m=1
Let us consider a continuous measurement in Eq. (B6). From

Eq. (11), the Kraus representation describing the evolution
from the first to the second jump events is

M 0
Z(.)EZ/ dw ¥ (w, m) e ¥ (w, m), (B7)
0

m=1

where  ¥(w, m) = Lye B with  Hye = Hy — % fnl:l
Li L,,. Using Egs. (B3) and (B4), Y (w, m) becomes

~ | Y(w,m) 0

Y(w,m) = |: 0 Y. (w, m):|' (B8)
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Substituting Eqgs. (B5) and (BS8) into Eq. (B7) yields

5~ Y(wv m)pOOYT(wv m)
2() Z/ [Y*(w7m),001YT(UJ,m)

Y (w, m)porY, (w, m)
Y, (w, m)py1Y, (w, m)i|' (B9)

Taking the trace with respect to the principal system in Eq. (B9), we obtain the ancilla state after a single jump event,

. Ao
Trs[Z2(p)] = Zfo dw ) |:Tr[Y*(w, m)
m=1

Notably, the |o) (1| element of the state of the ancilla is
identical to Z,(e) given in Eq. (16) (when multiplied by 2).
Therefore, the Loschmidt echo for K = 1 can be obtained by
simply measuring the |0) (1| (or |1) (o]) element of the ancilla
after a single jump event. Although the procedure explained
above is for a single jump event, i.e., K = 1, it is straight-
forward to generalize to K > 1 cases. Therefore, we can
measure the Loschmidt echo n [Eq. (15)] by first considering
the ancilla qubit and performing a continuous measurement
on the composite system comprising the ancilla and system.
After K jump events, we measure the |0) (1| (or |1) (0]) ele-
ment of the ancilla. By repeating this procedure many times
and calculating the average of the measurements, we obtain
%Tr[Zf (ps(0))] which directly gives the Loschmidt echo.

We numerically verify this approach of calculating the
Loschmidt echo. We use a two-level atom driven by a classical
laser field, i.e., the same model as in Sec. III. Figure 5 shows
the Loschmidt echo 1 as a function of K obtained by the
analytic and ancilla approaches, which are shown by circles
and crosses, respectively. The settings for the calculation are
shown in the caption of Fig. 5. For the ancilla approach, 7
is calculated by the |o) (1] element of the ancilla state after
K jump events. We can see that the ancilla approach yields
very close values for K < 7, which numerically confirm the
validity of the ancilla approach. The disagreements for K > 8
are due to undersampling and hence can be improved by
increasing the number of samples.

10° L I R

10-141_ = i
1024 " y i
n. 3 2

107 Analytic " ]
10 « Ancilla 2 3

-5 ) ) ) )
107 =g Ké g€ 10

FIG. 5. Loschmidt echo 7 as a function of the number of jump
events, K, calculated by the analytic approach (circles) based on
Eq. (15) and the ancilla approach (crosses) introduced in Ap-
pendix B. The initial state is ps(0) = |€,) (€,|. The parameters are
A =1.0,Q2 = 1.0, and ¥ = 2.0 for the original process and A = 0.4,
Q =1.2, and k = 0.5 for the perturbed process. For the ancilla
approach, the number of trials used to calculate each 7 is 10 000.

porY T (w, m)] 1

Tr[Y (w, m)po Y, (w, m)]i|_ (B10)

APPENDIX C: CLASSICAL BOUND

We derive the classical limit of Eq. (27). We can represent
Ny states, By, By, ..., By, in a classical Markov chain by an
orthonormal basis {|b1), |b2), ..., |by,)}. To emulate classi-
cal Markov chains with quantum Markov chains, we consider
the following Hamiltonian and jump operators in the Lindblad
equation:

Hs =0, (ChH

Lji = /vjilbj) (bil (i # J). (C2)

Let & be a small perturbation parameter as defined in Egs. (19)
and (20). The Hamiltonian and the jump operators for the
perturbed dynamics become

H,s=0, (C3)

Leji=~1+eyjilbj) (bil (i # j). (C4)

We also consider the following initial density operator which
emulates the classical probability distribution:

ps() =Y pi(®) |bi) (bil, (C5)

where p;(¢) is the classical probability distribution of being
|b;) at time f. Let Y(w, i, j) = Lje ™ [with Y,(w, i, j)
being defined in the same way]. Substituting Egs. (C1)—(C5)
into Eq. (16), Z, in Eq. (16) becomes

200 =% [ awr i sy, )
i#]

_2/ dwVT+ey;

i#]

X exp |:—%(2 +¢) Z Vki:|pi |b;) (bl

k(i)

2J1+¢  yji
DI I

Dilbj) (b}l
T i CHE) L Vi
21 +¢
Z “ae BB )], (C6)
where p = [p1, p2, .- -, pN]T and B is a matrix defined by
0, i=j
Bij = Vi o (C7)
St 7
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Therefore, we obtain

21 K
Tr[ 2K (p5)] = Z (T—ZS) [BKP]J'~ (C8)
J

From Eq. (C7), B is a stochastic matrix ), B;; = 1, yielding

E)’i

2+¢ ©)

Tr[ZX (ps)] = (

Oy in the classical systems also satisfies the scaling condition
of Eq. (23). From Egs. (23) and (C9), Eq. (18) becomes

o/ 1 =0 |
> — - —, (C10)
O (I T K

where we used 1I’Hopital’s rule for calculating the limit.
Equation (C10) is a classical case of the main result
[Eq. 30)].

APPENDIX D: DERIVATION BASED ON CLASSICAL
CRAMER-RAO INEQUALITY

Equation (27), which is a particular case of the main result
[Eq. (18)], can also be derived through the classical Cramér-
Rao inequality. The classical Cramér-Rao inequality states

[OR 1

s> , (D1)
(32 (O))” ~ Ig" (@)

where (O is defined in Eq. (14), and (O), =

(Wk(@)|O|Wk (@) and  [O], =,/(0%), — (O);. When

we only consider the first passage time observable Oy, the
left-hand side of Eq. (D1) becomes

(04 _ _werlO0
@ (O1))  (Burs (Of))
Using Egs. (29) and (D2), we obtain Eq. (27).

O 2
2=(1+oz)2%. (D2)
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