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Non-Markovian random walks characterize network robustness to nonlocal cascades
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Localized perturbations in a real-world network have the potential to trigger cascade failures at the whole
system level, hindering its operations and functions. Standard approaches analytically tackling this problem
are mostly based either on static descriptions, such as percolation, or on models where the failure evolves
through first-neighbor connections, crucially failing to capture the nonlocal behavior typical of real cascades.
We introduce a dynamical model that maps the failure propagation across the network to a self-avoiding random
walk that, at each step, has a probability to perform nonlocal jumps toward operational systems’ units. Despite the
inherent non-Markovian nature of the process, we are able to characterize the critical behavior of the system out
of equilibrium, as well as the stopping time distribution of the cascades. Our numerical experiments on synthetic
and empirical biological and transportation networks are in excellent agreement with theoretical expectation,
demonstrating the ability of our framework to quantify the vulnerability to nonlocal cascade failures of complex
systems with interconnected structure.
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I. INTRODUCTION

A wide variety of complex systems is structured in terms
of nodes, representing systems’ units, and links, encoding the
different types of interactions among them. Yet any trustwor-
thy model aiming at reproducing observations and making
principled predictions needs to incorporate some dynamical
behavior on the network [1,2]. In fact, understanding the
interplay between structure and dynamics is still one of the
major challenges in network science [3–7]. A central question
concerns the robustness of a system against perturbations [8],
since it can advance the development of powerful analytical
techniques to explain and unravel rich phenomenology [9],
as well as it can provide a solid ground for informed inter-
ventions, e.g., disease containment based on contract tracing
[10] and immunization [11], hate speech countermeasures in
online environments [12], or the characterization of vulner-
abilities in infrastructural networks against natural disasters
[13].

A main assumption behind the analysis of robustness is
that for a system to be functional, it needs to be connected.
Hence, a first. quantitative proxy to assess the robustness to
failures is s, the normalized size of the largest connected
component; thereby concepts and techniques from percolation
theory become useful [14]. In percolation, a given fraction
φ ∈ [0, 1] of nodes (or links), either selected uniformly at
random or based on topological or nontopological descriptors
[15–17], is removed from the network. Other quantities are
computed along with s as a function of φ, showing interesting
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phenomenology such as multiple [18,19] or abrupt phase tran-
sitions [20], and a robust-yet-fragile effect for networks with a
broad enough degree distribution [21]. Percolation quantities
are also employed to assess the robustness under cascading
failure problems, such as the value of s when the cascade stops
spreading. These models are dynamical, in the sense that a
small perturbation placed in the network evolves according to
some rules [22–26], which depend on the phenomenon one
is trying to model. For the sake of mathematical tractability,
cascades are assumed to spread via direct contacts.

Be it because the physical mechanisms behind the fail-
ure propagation permit far-off malfunctions, be it because
the knowledge on the observed network topology is incom-
plete and the failure propagates through hidden or unobserved
edges, real-world cascades display nonlocal features. To name
but a few examples of empirical nonlocal cascades, where
node or links failures did not always occur in the neigh-
borhood of previous ones, we have the 1996 disturbance of
the Western Systems Coordinating Council system [27], the
2003 blackout in the northeastern region of the U.S. [28], or
the air-traffic disruption due to the eruption of the Icelandic
volcano Eyjafjallajökul [29,30]. From a modeling standpoint,
some mechanisms like flow redistribution can lead to nonlocal
spreading of failures [31–33]—with the possibility of abrupt
transitions, see e.g., Refs. [33–35]—but the mathematical
treatment has been hitherto under-researched due to its sophis-
tication and there is no direct way to control the underlying
properties of the nonlocal events, seriously undermining our
understanding of the phenomenon.

In this article we overcome these longstanding limitations
by introducing an analytically solvable model based on a class
of self-avoiding random walks (SARW) [36], which are used
to model failures that propagate across the network while
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FIG. 1. Evolution of a network N0 under a self-avoiding tele-
porting random walk– (SATRW) based dismantling process. Nt is
the residual network after t steps of SATRW and “step t” denotes the
choice on Nt−1 of the t th node to visit (in orange).

combining, probabilistically, local transitions and nonlocal
jumps. We first describe the model and then show how to
compute the time-dependent degree distribution in the surviv-
ing network. We obtain important time-dependent percolation
quantities and first-stop properties of the cascades which char-
acterize the critical behavior of the process, therefore offering
an estimate of the robustness of the system as a function of
time, whose validity is tested in several scenarios. Finally, we
validate our theory against synthetic and empirical networks.

II. MAPPING CASCADE FAILURE TO SELF-AVOIDING
TELEPORTING RANDOM WALKS

In the following, we assume that the cascade unfolds in
a timescale much faster than the recovery of nodes, and that
a disrupted unit cannot be visited more than once by the
failure. This fact causes the failure to be no longer Markovian
and, for modeling purposes, a natural choice is to consider
a SARW-like dynamics on the network. To cope with the
nonlocality, we introduce a teleporting probability: At each
step t the failure proceeds as in a SARW—uniformly choosing
an operational neighbor and transitioning there—with proba-
bility 1 − α ∈ [0, 1]; otherwise, with probability α it teleports
to any operative node according to a teleporting rule Tt (k), in
principle time and degree dependent; see in Fig. 1. If the fail-
ure arrives at a degree-0 node, then it automatically teleports
to an operative node. We name this stochastic process the self-
avoiding teleporting random walk (SATRW). Notice that our
model interpolates between percolation, which can be seen as
a purely nonlocal phenomenon if α = 1 and φ = 1 − t/N0,
where N0 � 1 is the initial network size, and the purely local
process of a growing SARW when α = 0 [37–39].

The evolution of the SATRW can be viewed as if every
visited node is removed from the network, along with all
the edges connected to it. This suggests to associate a time-
dependent sequence of residual networks {Nt }t�0 to each
possible SATRW on a fixed graph N0 and study its average
evolution. Narrowing up to configuration model networks, the
natural way to characterize such a sequence is via the temporal
degree distributions {pt }t�0. Similarly, we can define the time-
dependent excess distribution {qt }t�0 [40] and a new quantity
{dt }t�1, convenient for the mathematical treatment, standing
for the time-dependent probability distribution governing the
degree of the node visited at step t , namely the transition from
Nt−1 to Nt . For example, dt (0) denotes the probability that
the walker arrives at a degree-0 node in Nt−1, whose deletion
leads to Nt . Two teleportation rules are considered. If the
probability to teleport to a degree-r node on Ns is denoted
as Ts(r), then the uniform teleportation is

Tt (r) = pt (r), (1)

where a node is chosen uniformly at random in the residual
network, and the biased teleportation is

Tt (r) = r pt (r)∑
s s pt (s)

= r pt (r)

〈k〉t

= qt (r − 1), (2)

where a node is chosen with probability proportional to its
degree in the residual network, see the Appendix for details.
By definition, qs(−1) := 0.

III. DEGREE DISTRIBUTIONS AND GIANT
COMPONENTS

It is possible to recursively express pt and dt in terms of
variables in times t − 1 and t − 2, resulting in an effective
quasi-Markovianity despite the infinite memory of the self-
avoiding behavior. We obtain (see the Appendix for details)

pt (k) ≈ 1

Nt
{pt−1(k)Nt−1 − dt (k)

+ 〈r〉t [qt−1(k) − qt−1(k − 1)]}, (3)

valid for degrees k = 0, 1, . . . , Nt − 1, where Ns := N − s is
the number of nodes in Ns and 〈r〉t is the expected value of dt .
For r = 0, 1, . . . , Nt , we have

dt (r) = dt−1(0) Tt−1(r)

+ [1 − dt−1(0)] [αTt−1(r) + (1 − α)qt−2(r)]. (4)

Solving the above system of coupled equations, we gain infor-
mation about the degree distribution of the residual network
and the degree-dependent probability to find the walker in a
functional node. In Figs. SM1– SM4 [41] we compare the an-
alytical approximation against simulations, finding a perfect
agreement.

With pt at hand, we can compute the fractional size of the
giant component st of Nt through the system [1]{

st = 1 − gt (ut )
ut = ht (ut )

, (5)

where gt and ht are the time-dependent probability generating
functions respectively of the degree and the excess degree

044126-2



NON-MARKOVIAN RANDOM WALKS CHARACTERIZE … PHYSICAL REVIEW E 105, 044126 (2022)

FIG. 2. Evolution of the size of the giant component as a func-
tion of the fractional time t/N0. Network and teleportation rule are
indicated on top (see Fig. SM5 [41] for other combinations). Each
panel corresponds to a different value of teleportation parameter α.
Solid lines are theoretical predictions; circles are simulations. Initial
size is N0 = 103 and averages are computed over 25 realizations. For
SF nets, we take kmin = 3.

distribution,

gt (z) :=
Nt −1∑
k=0

pt (k)zk, ht (z) :=
Nt −2∑
k=0

qt (k)zk. (6)

IV. APPLICATION TO SYNTHETIC NETWORKS

We next illustrate the validity of our theory against simu-
lations of the SATRW nonlocal process on synthetic networks
with homogeneous and heterogeneous connectivity distribu-
tion, namely, Erdős-Rényi (ER) and scale-free (SF) networks,
respectively defined by

p(ER)(k) ≈ e−〈k〉 〈k〉k

k!
k = 0, 1, . . . , N0 − 1; (7)

p(SF)(k) ∝ k−γ k = kmin, . . . , kmax, (8)

where 〈k〉 denotes the average degree and γ > 0. We add
constraints to these parameters in order to generate con-
nected networks without topological correlations, namely
〈k〉 � log N0 for ER [42] and kmin � 2 and kmax ≈ √

N0 for
SF [43].

We present in Fig. 2 the time evolution of the size of the
giant component for the different topologies and teleporting
rules. A general trend that appears in all cases is that the
network properties (〈k〉 for ER, γ for the SF; note, though,
that a change in γ induces a variation in the mean degree) and
the teleportation rule do not affect the decay rate of st at the
beginning of the cascade spreading. However, there is a strong
impact when approaching the dismantling point: For a fixed
teleportation parameter α, reducing the mean connectivity in
ER graphs leads a faster disintegration as it could be expected.
Moreover, when α grows, so nonlocality is enhanced, the final
fragmentation occurs faster. This behavior no longer holds
in SF nets. In fact, we observe that the critical point might
increase or decrease when the teleportation parameter α is
varied, evincing the nontrivial interplay that topology and
nonlocality have in the robustness of interconnected systems.

V. NONLOCAL CASCADES

So far we have assumed that when the walker steps into
a degree-0 node, it is forced to teleport according to Tt so
it keeps exploring the network until all nodes are removed.
However, real cascading processes normally do not dismantle
the entire network but cease at a certain point leaving a part
of the structure unaffected. This motivates us to incorporate a
stopping criterion to the SATRW: When the walker reaches a
degree-0 node, either it teleports with probability α or it stops
with probability 1 − α. We call this a nonlocal cascade.

To assess the robustness to nonlocal cascades, we are in-
terested in the size of the giant component when the cascade
stops, S(STOP). This is a stochastic variable, and we can com-
pute its moments. To do so, first we need the stopping time
distribution e(t ) for t = 1, . . . , N0, that reads (see Appendix
for details)

e(t ) = (1 − α) dt (0)
t−1∏
i=1

[1 − (1 − α)di(0)]. (9)

We note that an increase of the teleportation parameter is
always associated with a larger stopping time, but the influ-
ence of specific network parameters strictly depends on the
general topology. On one hand, in ER networks, e(t ) tends to
concentrate on higher times as 〈k〉 increases [see Figs. SM6(a)
and SM6(b) [41]]. On the other hand, in SF networks, e(t )
is quite insensitive to γ , and thus to the mean degree [see
Figs. SM6(c) and SM6(d) [41]]. The physical intuition behind
this phenomenon is that, for fixed α, an increase of the mean
degree in ER graphs yields a uniform increase of the number
of links per node, hence we expect longer stopping times as
〈k〉 grows since at each time step the probability to find a
functional neighbor of a previously failed node is high. For
SF this is not the case, though: additional links are likely con-
centrated around hubs which, when disrupted, do not allow to
easily find still-operational nodes in a neighborhood, leading
to similar stopping times regardless the value of γ .

It is instructive to inspect the average size of the giant
component at the cascade stop, given by

E[S (STOP)] =
N0∑

t=1

st e(t ), (10)

a quantity that brings together the time-dependent percolation
theory developed for the SATRW, Eqs. (5), with its first-stop
properties, Eq. (9). We report its behavior in Fig. 3. Several
trends are noticeable, present in both ER and SF networks
and for the two types of teleportation. First, the higher it is
the nonlocality of the cascade process, the more destructive it
becomes, since the probability of stopping is smaller. Second,
the biased teleportation dismantles the network in a more
efficient way than uniform teleportation, specially for values
of the teleportation parameter α > 0.5. Third, the topology
matters if α is not close to 1: The hierarchical structure typical
of SF networks helps to stop nonlocal cascades early, regard-
less of topological details governed by γ , while ER networks
have a compact and homogeneous structure and the higher the
average degree, the easier it is for nonlocal cascades to spread.

These last results seem to contradict what we reported in
Fig. 2: ER networks with high 〈k〉 were considered robust
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FIG. 3. Expected size of the giant component at the end of a
nonlocal cascade for ER (left) and SF (right) networks. Solid lines
come from theory, markers from simulations, averaged over 900 re-
alizations. Network size is N0 = 103, and for SF nets we set kmin = 3.
See Fig. SM7 [41] for curves with other values of 〈k〉 and γ .

(large critical point) under the SATRW-based dynamics, while
they are found to be more fragile [low value of S (STOP)] to
nonlocal cascades as 〈k〉 increases. We interpret this as a
dynamical version of the robust-yet-fragile phenomenon: An
avalanche of nonlocal failures can quickly destroy the giant
component if it is able to spread, but if there is a chance for
it to stop, then the topology of the network might effectively
hinder such diffusion. This also holds true for SF networks, as
their topology is very good at stopping cascades quite early in
their evolution, but if failures are allowed to keep progressing
then the network is dismantled in a similar timescale to those
of ER networks, which is a topology that is not good at
blocking cascades. This evinces, once more, the nontrivial
relation between dynamics and topology, and sheds light on
the importance of the metrics one looks at when assessing
robustness.

VI. APPLICATION TO EMPIRICAL NETWORKS

The analytical results have been derived assuming that the
degree of two adjacent nodes is not correlated and that the
network is treelike. This prompts us to ask how our theory
performs when applied in empirical systems, that frequently
display a wealth of different topological correlations and for
which these approximations may fail.

In the following, we show that we can capture well the
evolution of the nonlocal cascade by focusing on two real
topologies with a moderate value of degree assortativity [1].
The first one is a network of air traffic routes from the Federal
Aviation Administration of the National Flight Data Center,
USA [44]. In this context, a node malfunction could be seen
as an airport being shut down, e.g., due to meteorological
events. The second network is the Caenorhabditis elegans
protein-protein interactome [45], where the perturbation could
be understood as an initial inhibition of a certain protein, e.g.,
via a protein synthesis inhibitor, which is responsible for the
activation or inhibition of other proteins in the PPI [46].

We show in Fig. 4 the results for these empirical systems.
The agreement between theory and simulations is good, for
both the expected value of the giant component at the cascade
stop (main panel) and the SATRW dynamics without stopping

FIG. 4. Expected value of size of the giant component at the
cascade stop as a function of the teleportation parameter α for the
air traffic network (top) and for the C. elegans interactome (bottom).
In the insets, evolution of st as a function of the fractional time t/N0,
for different values of α. Solid lines come from theory, markers from
simulations. Averages are over 30 realizations. Note that multiple
edges and self-loops have been discarded, directionality of links
disregarded, and the resulting giant component was considered as
the starting network N0.

criterion (insets). These results agree with the trends reported
in the uncorrelated SF networks: When a significant teleport-
ing effect is present (α far from zero), the targeted (biased)
evolution of a failure disconnects the networks quicker than
the random counterpart, but if it proceeds in cascade, the
networks topology manages to stop it promptly.

VII. CONCLUSIONS

Localized network disruptions in empirical settings might
trigger nonlocal effects in terms of cascade failures whose
propagation is usually more complex than first-neighbor
search widely adopted in the literature. To better reconcile the-
ory and observation, we have introduced a dynamical model
of nonlocal failure spreading that combines local and nonlocal
effects. We have characterized the rich critical behavior of
our model by providing analytical expressions for several
quantities employed to assess the system’s robustness, such as
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the time-dependent degree distribution, the size of the giant
component in the residual network as the process evolves,
and the cascade stopping time distribution, among others.
These descriptors display an excellent agreement with sim-
ulations in synthetic systems characterized by different types
of complexity in terms of the heterogeneity of their structural
connectivity. We find remarkable differences between homo-
geneous and heterogeneous systems, e.g., their dependence,
or lack thereof, on the particular network parameters. How-
ever, we also report some hidden similarities between them,
such as a dynamical version of the popular robust-yet-fragile
feature to static attacks. It is worth noticing that, despite our
framework is expected to work for locally treelike networks
lacking topological correlations, such as degree-degree ones,
it still works in empirical settings as we have shown for the
case of a biomolecular system, namely the interactome of the
nematode C. elegans, and an infrastructural system, namely a
national air traffic network.

We envision a plethora of future generalizations for our
model. One is to modify the failure dynamics itself, e.g., by
including a branching mechanism of the self-avoiding walkers
or by exploring more complicated stopping criteria. Similarly
for the teleportation rule: it remains an open question what
properties of the jumps would induce an abrupt or discon-
tinuous percolation transition. Another direction regards the
architecture on which the spreading takes place, e.g., by re-
laxing the assumption of uncorrelated networks and including,
explicitly, topological correlations in a controlled way to un-
derstand their effect. Moreover, many networks, such as the
infrastructural ones, usually show a multilayer, interdependent
structure [47–50], which could be included in an adequate
extension of our model. Anyway, our findings provide a solid
ground for the analytical study of network robustness, in par-
ticular, and for nonlocal non-Markovian processes, in general.

APPENDIX

The effect of a SATRW on a network N0 is described by
the time-dependent sequence of residual networks {Nt }t�0.
We are interested in studying the average evolution of such a
sequence through that of two time-dependent distributions: pt ,
which is the degree distribution of Nt , and dt , standing for the
degree distribution of the node visited at step t (transition from
Nt−1 to Nt ). In this Appendix we show how to compute both
distributions, as well as the stopping time distribution when a
stopping criterion is added to the evolution of the SATRW.

1. Computation of pt

Rather than trying to directly derive an expression for pt

we focus, for convenience, on the average number of degree-k
nodes in Nt , namely

Nt (k) := pt (k)Nt . (A1)

Here Nt is the total number of nodes of Nt . How does Nt (k)
change in one step, from Nt−1(k) to Nt (k)? Analyzing the
degree of the node visited at step t , hereinafter appealed as
“deleted”, along with the degrees of its neighbors, we distin-
guish three different contributions to this quantity, see Fig. 5:

(a)

(b)

(c)

FIG. 5. The three types of nodes that cause a change from
Nt−1(k) to Nt (k) are graphically represented. The picture depicts
Nt−1 and assumes that the orange node is visited at step t . The three
colored nodes illustrate the cases (a), (b), and (c) discussed in the
Appendix, while the big white circles represent any subgraphs that
complete the network.

(a) The deleted node could have k adjacent nodes, and
this happens with probability dt (k). Thus, on average, dt (k)
degree-k nodes are deleted.

(b) The degree-(k + 1) neighbors of the deleted node will
lose an edge, then becoming degree-k nodes in the next
residual network Nt . If the deleted node has degree s, de-
note the number of these neighbors in Nt−1 with Nt−1(k +
1|s). Summing over all the possibilities, the number of such
nodes is

Nt∑
s=0

dt (s)Nt−1(k + 1|s). (A2)

Since configuration model networks exhibit no degree cor-
relation, Nt−1(k + 1|s) is approximately equal to s times the
probability that a neighbor of a randomly chosen node has
degree k + 1 (or equivalently, excess degree k), leading to

Nt−1(k + 1|s) ≈ s qt−1(k). (A3)

The summation in Eq. (A2) then becomes

Nt∑
s=0

dt (s)Nt−1(k + 1|s) ≈
Nt∑

s=0

dt (s)s qt−1(k)

= 〈r〉t qt−1(k), (A4)

having denoted with 〈r〉t the expected value of dt .
(c) The degree-k neighbors of the deleted node will lose

an edge too, so they will not have degree k in Nt . As be-
fore, if the deleted node has degree s, the number of these
neighbors is

Nt−1(k|s) ≈ s qt−1(k − 1). (A5)

Summing over all the possibilities, the number of such
nodes is

Nt∑
s=0

dt (s)Nt−1(k|s) ≈ 〈r〉t qt−1(k − 1). (A6)

Putting the pieces together, for k = 0, 1, . . . , Nt − 1

Nt (k) − Nt−1(k)

≈ −dt (k) + 〈r〉t [qt−1(k) − qt−1(k − 1)], (A7)
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where qt−1(−1) := 0. We now come back to probabilities
using Eq. (A1), thus obtaining

pt (k) ≈ 1

Nt
{pt−1(k)Nt−1 − dt (k)

+ 〈r〉t [qt−1(k) − qt−1(k − 1)]}. (A8)

Some approximations have been made to derive this ex-
pression, so the probability is not properly normalized. The
normalization constant for pt , t � 1, is

Ct = 1

Nt

Nt −1∑
k=0

{pt−1(k)Nt−1 − dt (k)

+ 〈r〉t [qt−1(k) − qt−1(k − 1)]}

= 1 + dt (Nt )

Nt
− pt−1(Nt )

[
1 + 1

Nt
− 〈r〉t

〈k〉t−1

]
. (A9)

When dealing with degree distributions that assign very low
probabilities to the tail, it is safe to assume ps(N (s) − 1) ≈ 0
for any time s � 0. Moreover, dt (Nt )/Nt is a small number too
for t small and/or N large, being dt a distribution. All things
considered, the normalization constant deviates from 1 by a
negligible quantity, at least when t is not too large.

2. Computation of dt

In principle, there are two ways to step on a node during
the walk: the walker either reaches it by following an edge
(probability 1 − α) or teleports to it (probability α). dt is then
a weighted average of two distributions with weights 1 − α

and α.
(1) In the teleporting case, the walker steps on a random

node in Nt−1 according to the specific teleportation rule. The
probability to teleport to a degree-r node on Nt−1 is denoted
as Tt−1(r).

(2) In the nonteleporting case, the walker reaches a
degree-r node in Nt−1 coming from a node present in Nt−2.
The reached node has degree r + 1 in Nt−2, therefore excess
degree r there. Since configuration model networks exhibit
no degree correlation, as we have already pointed out in the
previous computations [see Eq. (A4)], qt−2(r) is a good ap-
proximation for this event to happen, no matter the degree of
the node the walker comes from.

In practice, the degree of the previously deleted node
should be considered as well because, in case this is equal to 0,
the walker must proceed via teleportation with probability 1.
This suggests to introduce the conditional probabilities dt (r|0)
and dt (r|0c), i.e. the probability to reach a degree-r node at
step t knowing that the walker comes from either a degree-0
node or not, events happening with probabilities dt−1(0) and
[1 − dt−1(0)]. In the first case we simply choose the next node
via teleportation, while in the second case we weigh the two
possibilities described above. For r = 0, 1, . . . , Nt :

dt (r) = dt−1(0) dt (r|0) + [1 − dt−1(0)] dt (r|0c), (A10)

where the conditional probabilities are computable as

dt (r|0) = Tt−1(r); (A11)

dt (r|0c) = αTt−1(r) + (1 − α)qt−2(r). (A12)

Since the first step is always a teleportation,

d1(r) = T0(r). (A13)

Some comparisons between the theoretical degree distri-
bution and the one from the simulated process are shown in
Figs. SM1– SM4 [41], depicting two particular ER and SF
networks (the fractional steps for which pt reduces to a Dirac
delta concentrated at 0 are not graphically considered). We
stress that theoretical predictions (solid lines) and empirical
simulations (dashed lines) match so well that they are almost
indistinguishable.

3. Stopping time distribution

For a nonlocal cascade, the stopping time t is the time
corresponding to the last step. Let Et denote the event “The
nonlocal cascade stops at time t” (equivalently, step t is the
last one). We denote with ē(t ) the conditional probability to
stop at time t knowing that step t has been reached. This
event happens when the walker visits a degree-0 node at step t
[probability dt (0)] but it is unable to proceed via teleportation
(probability 1 − α):

ē(t ) := P
[
Et |EC

1 , . . . , EC
t−1

] = (1 − α)dt (0). (A14)

The probability e(t ) := P [Et ] is computable in terms of ē(t ).
Indeed, e(1) = ē(1) and for t � 2:

e(t ) = P [Et ] = P

[
Et

∣∣∣∣
t−1⋂
i=1

EC
i

]
P

[
t−1⋂
i=1

EC
i

]

+ P

⎡
⎣Et

∣∣∣∣
(

t−1⋂
i=1

EC
i

)C
⎤
⎦P

⎡
⎣

(
t−1⋂
i=1

EC
i

)C
⎤
⎦

= ē(t )P
[
EC

1 , . . . , EC
t−1

] + P

[
Et

∣∣∣∣
t−1⋃
i=1

Ei

]
P

[
t−1⋃
i=1

Ei

]

= ē(t )P
[
EC

1 , . . . , EC
t−1

]
, (A15)

where P [Et |E1 ∪ . . . ∪ Et−1] = 0 since the walk cannot stop
at time t if it already stopped at some step i ∈ {1, . . . , t − 1}.
The term P [EC

1 , . . . , EC
t−1] represents the probability to stop

after step t − 1, and it is computable by means of a recursive
reasoning: denoting with ec(s) := P [EC

1 , . . . , EC
s ], we have

ec(s) = P
[
EC

s |EC
1 , . . . , EC

s−1

]
P

[
EC

1 , . . . , EC
s−1

]
= [1 − ē(s)] ec(s − 1)

= [1 − ē(s)][1 − ē(s − 1)] ec(s − 2)

...

=
s∏

i=2

[1 − ē(i)] ec(1) =
s∏

i=1

[1 − ē(i)], (A16)

the last equality coming from

ec(1) = P
[
EC

1

] = 1 − P [E1] = 1 − e(1) = 1 − ē(1).
(A17)

This is coeherent with the intuition that the walk stops after
a certain step if it did not stop in any of the previous ones.
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Putting Eqs. (A14), (A15), and (A16) together,

e(t ) = ē(t ) ec(t − 1)

= (1 − α) dt (0)
t−1∏
i=1

[1 − (1 − α)di(0)]. (A18)

In order to have a distribution with support included in the
unitary interval [0,1], we define the fractional stopping time
distribution ẽ(s), defined as

ẽ(s) = e(t ) if s = t

N
, t ∈ {1, . . . , N}. (A19)

The theoretical fractional stopping time distributions ẽ(s)
for ER and SF networks are compared with the empirical ones
in Fig. SM6 [41]. Since the duration of the cascade strictly
depends on α, we see that ẽ(s) peaks at higher and higher
values as α increases. A first big difference emerging between
the homogeneous and the heterogeneous case is the overall
impact of the average degree on the fractional stopping time

distribution, regardless of α and the teleportation rule. On the
one hand, ẽ(s) shifts its mass more and more toward high
times as the average degree increases in ER networks; on the
other hand, ẽ(s) in SF networks seems not to be influenced
by a change in the average degree caused by a variation of
γ . This precludes the possibility of increasing the number of
functioning (unvisited) nodes at the end of a nonlocal cascade
by tuning the parameter γ if the graph has power-law degree
distribution.

Another worth mentioning aspect is the effect of telepor-
tation. When most of the nodes of the starting network N0

have already been visited, many degree-0 nodes will appear.
The degree-biased teleportation rule will avoid the walker
to teleport to such nodes, reducing the number of times the
walk has the chance to stop. On the contrary, the uniform
teleportation rule ignores the degrees of the residual nodes,
and it is therefore more likely to hop to isolated nodes, leading
to smaller stopping times. However, this difference is evident
only if α is big enough, otherwise the walk is expected to stop
after a few times the walker has found itself in degree-0 nodes.
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