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Aggregation of self-propelled particles with sensitivity to local order
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We study a system of self-propelled particles (SPPs) in which individual particles are allowed to switch
between a fast aligning and a slow nonaligning state depending upon the degree of the alignment in the
neighborhood. The switching is modeled using a threshold for the local order parameter. This additional attribute
gives rise to a mixed phase, in contrast to the ordered phases found in clean SPP systems. As the threshold is
increased from zero, we find the sudden appearance of clusters of nonaligners. Clusters of nonaligners coexist
with moving clusters of aligners with continual coalescence and fragmentation. The behavior of the system with
respect to the clustering of nonaligners appears to be very different for values of low and high global densities.
In the low density regime, for an optimal value of the threshold, the largest cluster of nonaligners grows in size
up to a maximum that varies logarithmically with the total number of particles. However, on further increasing
the threshold the size decreases. In contrast, for the high density regime, an initial abrupt rise is followed by the
appearance of a giant cluster of nonaligners. The latter growth can be characterized as a continuous percolation
transition. In addition, we find that the speed differences between aligners and nonaligners is necessary for the
segregation of aligners and nonaligners.
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I. INTRODUCTION

Collective motion observed in diverse natural and artifi-
cial systems has been the subject of numerous experimental
and theoretical investigations. Systems that have been studied
include fish schools [1], birds flocks [2], bacterial colonies
[3], human crowds [4], as well as, synthetic microswimmer
assemblies [5] and robotic swarms [6]. Local interactions in
such systems are understood to lead to the emergence of
global order or flocking states. This has been demonstrated
in self-propelled particle (SPP) models in which particles are
attributed the tendency to align their direction of motion with
their immediate spatial neighbors in the presence of noise
[7]. Recent studies have also focused on the possible effects
of environmental and individual-level inhomogeneity on the
flocking dynamics [8–10]. For example, disorder is introduced
in SPP models in the form of spatially distributed obstacles
[8,11], or a finite fraction of the particles is made nonaligners
[9,10]. The dynamics in these systems shows the develop-
ment of phases with complex features like quasi-long-range
order [8] and self-sorting [9]. In natural flocks, the latter type
of inhomogeneity could result from differences in signaling
and receptive behavior or conflict in intentions. In an other-
wise homogeneous flock, behavioral shifts at individual levels
could imply a certain fraction of flock members spontaneously
modifying their nature of motion.

*Corresponding author: chakraborty.abhijit.7y@kyoto-u.ac.jp

Flocks of living organisms are known to arrange them-
selves into cohesive and sometimes segregated units while
performing activities like foraging and migration [12–14].
This is achieved through consensus decision-making by flock
members while performing the activities that, in turn, are a
consequence of mechanisms at the level of individuals. Such
behavioral transitions between different states have been doc-
umented in various species [15–18]. Suitable modifications to
simple SPP models have proven to be useful in reproducing
the spatiotemporal features of flocks with behavioral shifts.
Models have considered additional attributes to SPPs, like
adaptive speed [15,19,20], random fields [21], and transition
rates [18].

Experiments on fish schooling [22,23] and bacterial sus-
pensions [24] have shown that individual speeds can vary
depending on the local order parameter (polarization). A
model motivated by these experiments considered SPPs with
alignment interactions and a power-law dependence of the
speed on the local polarization [25,26]. This showed the nu-
cleation of static clusters and an inverse correlation between
the speed and the local density. Notably, for SPP systems
without alignment such a speed-density relationship leads to a
motility-induced phase separation (MIPS) [27] whereby two
phases with distinct densities coexist in the system. This is
known to arise from the feedback between the slowing down
and crowding of the particles. In general, the variability in the
speed both in the absence [28–30] and in the presence [20,31–
34] of alignment has been shown to result in novel complex
phenomena in models and experiments.
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In this paper we study an SPP model in which particles can
switch between a fast aligning state and a slow nonaligning
state depending on the local orientational order parameter. An
aligner becomes a nonaligner once the local polarization falls
below a threshold φth, and conversely, a nonaligner becomes
an aligner if the local polarization rises above φth. Using the
model, we illustrate a mechanism in which processing of local
information allows an SPP system to simultaneously organize
into polarized moving clusters as well as aggregations. The
collisions between clusters play a crucial role in such phase
separation, as we explain later. With our numerical analyses
we primarily focus on characterizing the clustering behavior.

In the absence of a threshold, or, equivalently, with
φth → 0, the model expectedly shows an order to disorder
transition with the increase in noise [7,35]. We find that the
introduction of a finite threshold has a complex interplay with
this transition. In the steady state, the model with φth > 0 per-
mits clusters of aligners to coexist with those of nonaligners.
The dynamics are found to crucially depend on the level of the
noise, the value of φth, and the overall density. At low noise,
the aggregation behavior of nonaligners can be broadly cate-
gorized into two different regimes. For low enough densities,
an optimal value of φth is found to limit the growth of the
largest cluster of nonaligners; at higher densities the latter is
able to grow macroscopically large when φth is increased.

Recent studies have considered SPP models relevant to
the understanding of epidemic and information spreading in
populations of motile agents [36,37]. The particles could
either irreversibly or reversibly switch between motile and
nonmotile states and collectively exhibited fractal aggregation
and MIPS. These models considered switching rules based on
logic gates involving the states of colliding particles. In con-
trast, the particles in our model change their states depending
upon the orientations of their neighbors.

The outline of the paper is as follows. We explain the
details of the model in Sec. II. In Sec. III we discuss the results
of our numerical investigation, and in Sec. IV we conclude
with a summary and final observations.

II. THE MODEL

We consider N self-propelled particles moving on a two-
dimensional square area of linear size L under periodic
boundary conditions. The global density of the system is given
by ρ = N/L2. At discrete times t , the state of the ith particle
is given by its position rt

i , angle of the direction of motion
θ t

i , and st
i , which denotes an aligner (st

i = 1) or nonaligner
(st

i = 0). The variables are updated in the following way. First,
the set of neighbors Ni of the ith particle is enumerated, which
comprises of all the particles that are within a distance of r0

from i. Then the local order parameter φi, which is the average
normalized velocity within the neighborhood, is calculated as

φt
i = 1

1 + ki

∣∣∣∣nt
i +

∑
j∈Ni

nt
j

∣∣∣∣. (1)

Here, nt
i = (cos θ t

i , sin θ t
i ) is a unit vector pointing in the di-

rection of motion of i, and ki is the number of neighbors of
i. Whether the particle i would have the tendency to align its
direction of motion with its neighbors is decided depending

on φt
i :

st+1
i =

{
0 if φt

i � φth,

1 if φt
i > φth,

(2)

where φth is a parameter in the model. Last, the angle of
heading and the position are updated according to

θ t+1
i = arg

⎡
⎣nt

i + st+1
i

∑
j∈Ni

nt
j + α

∑
j∈Ni

f t
i j r̂

t
i j

⎤
⎦ + ηξ t

i , (3)

rt+1
i = rt

i + v
(
st+1

i

)
nt+1

i , (4)

where v(st+1
i ) is the magnitude of the velocity depending on

whether the particle i is an aligner or a nonaligner, f t
i j is the

interaction force between i and its neighbor j, r̂t
i j is a unit

vector from i towards j, α is the strength of the interaction,
ξ t

i ∈ [−π, π ] is a delta-correlated angular noise, and η is the
amplitude of the noise. For an aligner, the dynamics repre-
sented in Eqs. (3) and (4) is similar to the Vicsek model [7]
with an additional short-range interaction between particles
[35,38,39]. For a nonaligner the second term inside the brack-
ets in Eq. (3) is absent.

The force fi j depends on the distance of separation ri j =
|ri − r j | and comprises finite repulsive and attractive terms:

fi j =

⎧⎪⎨
⎪⎩

− fr
re−ri j

re
if ri j < re,

ri j−re

ra−re
if re < ri j < ra,

r0−ri j

r0−ra
if ra < ri j < r0,

(5)

where re is the equilibrium distance, ra is the distance at which
attraction is maximum, and fr is the relative magnitude of the
repulsive force when ri j = 0. The two-body interaction helps
to maintain a finite packing density of particles similar to
some of the systems [31,34] in which MIPS-like phenomena
are evidenced.

In the simulations, we fix the following values for the
parameters: r0 = 1, ra = 0.625, re = 0.25, fr = 1000, and
α = 0.1. For the nonaligners, we will consider only the re-
pulsive interaction to be present. Most of the results, unless
otherwise specified, are obtained with aligner speed v1 =
0.05, nonaligner speed v0 = 0.005, and noise η = 0.20. Note
that in Eq. (1), ki = 0 implies φi ≡ 1, and hence, a nonaligner
can switch to the aligning state if it becomes isolated. To
ensure that switching arises only as a consequence of inter-
actions in the neighborhood, we prevent isolated nonaligners
from switching states. However, for the parameter ranges that
we investigate, this additional rule does not influence the
macroscopic behavior of the system.

III. RESULTS

At low noise and in the absence of a threshold (φth = 0) the
system is in a globally ordered state with a single macroscop-
ically large cluster of aligners (si = 1). With the introduction
of the switching behavior (φth > 0), the state of the particles
become sensitive to fluctuations occurring locally, and as a
result the nonaligners (si = 0) start appearing in the system
and are eventually separated from aligners due to the differ-
ence in speeds. In the steady state, we find the system to be
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FIG. 1. Snapshots of the dynamics are shown. The top row corresponds to different parameter sets. The first three (from the left) snapshots
illustrate the effect of increasing the density ρ, such that, in the third we find an emerging giant cluster of nonaligners. The aligners are denoted
in blue (dark gray), and the nonaligners are in orange (light gray). The direction of a vector points to the instantaneous direction of motion.
Particles belonging to the largest cluster of nonaligners are marked in magenta (medium gray). In the fourth snapshot, the effect of increasing
the noise η is shown. In the bottom row, snapshots A1 and A2 illustrate the mechanism of the emergence of cluster of nonaligners from the
collision of two moving clusters of aligners. Snapshots B1 and B2 show the growth of a cluster of nonaligners when a moving cluster of aligners
gets impacted. For both pairs (A1, A2 and B1, B2), the separation in time is 50 steps, which is equivalent to 2.5 units measured in the timescale
r0/v1. The number of particles in all the snapshots is N = 1024. For the bottom row, ρ = 1.2, η = 0.15, and φth = 0.6. Movies corresponding
to the first three snapshots are provided in the Supplemental Material [40].

phase separated into moving clusters of aligners and diffusing
clusters of nonaligners. If we observe the system in the very
dilute limit, ρ < 0.1, and with φth = 0, we observe a phase
with very small sized clusters of aligners due to the short-
range two-body force [39]. This is different from the gaseous
phase predicted for the original Vicsek model [41,42]. This
also implies that for higher densities and for finite φth the large
clusters of aligners have a higher chance to coexist alongside
clusters of nonaligners.

Our definition of a cluster is based on connecting neighbor-
ing particles that are in similar states (ri j < r0 and si = s j).
In Fig. 1 (top row) we show snapshots of steady state con-
figurations resulting from different parameter values. Large
fluctuations in φt

i primarily occur as a result of collisions
between clusters. Clusters of nonaligners form and grow when
moving clusters of aligners collide among themselves or with
clusters of nonaligners. This process is illustrated in the bot-
tom row of Fig. 1. Similarly, when a moving cluster of aligners
grazes a cluster of nonaligners, particles at the boundary of
the latter switch their states in a short time span to become
aligners. Switching of particles at the boundary of a cluster
of nonaligners also happens as random events. To describe
the generic properties of the system we measure the sizes of
the largest clusters of aligners and nonaligners as functions of
overall density and speed of the particles.

A. Low density regime: Dependence on threshold and noise

In Fig. 2 we show the behavior of system at a density
ρ = 0.5. The aggregation of nonaligners is possible only
when the corresponding clean SPP system is in the ordered
phase. A small, but finite, η ensures the presence of clusters
of aligners moving in different directions which can collide
and allow clusters of nonaligners to nucleate. The latter cannot
happen when η is large and the system is in a gas-like phase in
which large clusters of aligners are absent. This is evidenced
in Fig. 2(a), where we show the dependence of the size of
the largest cluster of nonaligners M0 on η and φth. The plot
also shows that M0 attains its maximum around φth = 0.6 and
η = 0.2.

For the individual particles in a cluster of aligners φt
i is high

in the ordered phase. However, during the collisions φt
i for

particles at the border of the colliding peripheries decreases
momentarily. If the drop in φt

i is less than φth, then aligners
switch and become nonaligners. Therefore, an increase of
φth leads to an increase of switching events. For aligners
we measure the rate of switching as the number of switches
to nonaligning states per unit time per aligner. Similarly,
we measure the switching rate for nonaligners. As Fig. 2(b)
shows, this rate for aligners increases with φth and decreases
for nonaligners. Initially, at low φth the rate is much higher
for nonaligners, implying nonaligners do not persist and
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FIG. 2. Sizes of the largest clusters of nonaligners (M0) and aligners (M1) are characterized at density ρ = 0.5. (a) The dependence of
M0 on noise amplitude η and threshold φth is shown as a heat map for N = 210. The dashed line represents the equation φth = φ∗(η), where
φ∗(η) is given by Eq. (6). (b) The rate of switching per unit time per particle is plotted against φth for N = 210 at η = 0.2. Here, the aligners
are switching to nonaligners, and vice versa. The inset shows the variation of M0 with φth for three noise amplitudes. The maximum of M0

for η = 0.2 occurs at φth ∼ 0.6, which corresponds to the crossing of the switching rates. (c) The dependence of M0 on N is shown, where
M0 is measured at φth = 0.6 and η = 0.2. In addition to the nonaligner speed v0 = 0.005, the dependence is also shown for v0 = 0.0. The
dashed lines represent ordinary least squares fits having the form M0 = c0 + c1 log N . For v0 = 0.005, c0 = −225(24), and c1 = 60(3); for
v0 = 0.0, c0 = −333(22), and c1 = 70(3). (d) The dependence of the size of the largest cluster of aligners M1 on φth at η = 0.2. The different
symbols correspond to different values of N , as indicated in the legend. Data collapse is obtained by scaling M1 by the corresponding N ζ1 with
ζ1 = 0.78.

proliferate and, when formed, almost instantly switch back to
being aligners. But at higher values of φth the switching rate
for aligners overtakes that for nonaligners. This aspect is also
reflected when M0 versus φth is examined in detail. As shown
in the inset in Fig. 2(b), for different η’s, M0 has a sharp rise at
φth and then reaches a maximum. For η = 0.2 the maximum
occurs at around φth = 0.6 and coincides with the point where
the rates cross each other. The sharp rise in M0 is also found
to be noise dependent. Note that the switching rate for the
nonaligners becomes relatively a constant when φth is large.
This is because inside the bulk of a cluster the average sep-
aration is re, which also implies the number of neighbors for
a particle is k ∼ r2

0/(re/2)2. With k randomly oriented neigh-
bors inside a cluster of nonaligners the local order parameter
takes the typical value of φ ∼ 1/

√
k ∼ re/(2r0) in the steady

state [43].

An approximation of the value of the φth for which M0

sharply rises can be found in the following way. We consider
a nonaligner on a colliding boundary as illustrated in Fig. 1
(bottom row). We assume that, on average, half of the neigh-
bors are nonaligners and the rest are aligners. Therefore, the
value of the local order parameter can be approximated as

φ∗(η) = 1

2

sin ηπ

ηπ
, (6)

where the expression to the right is half the polar order in
an SPP system at low noise and at sufficiently high densities
[44,45]. The equation φth = φ∗(η) is shown as a dashed line
in Fig. 2(a).

In Fig. 2(c) we find that the maximum values of M0 in-
crease as log N . In the same plot we show the case with
v0 = 0, in which the nonaligners can rotate but not move. The
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FIG. 3. (a) The dependence of the size of the largest cluster of nonaligners M0 on the threshold φth at noise η = 0.2 and density ρ = 1.6.
The different symbols correspond to different system sizes N , as indicated in the legend. The curves reveal a system size dependent crossover
occurring at N ∼ 210. For larger systems M0 has an initial steep rise and then a gradual increase. (b) A susceptibility function χ corresponding
to M0 is shown, where χ = N

√〈(M0/N )2〉 − 〈(M0/N )〉2. From around the crossover system size a second peak in χ starts becoming the
dominant maximum. The first peak corresponds to φth = φ∗, and the second peak corresponds to the second increase of M0 at φth = φth,c.
(c) Curves from (a) with system sizes from N ∼ 210 and above are rescaled. By plotting (M0/N )Nβ/ν versus (φth − φth,c )N1/ν the validity of
Eq. (7) is illustrated. Here, φth,c = 0.74. The inset shows (M0/N )N0.5 versus φth. The collapse shows that the initial rise of M0 at φth = φ∗

occurs according to M0 ∼ N0.5. (d) The collapse of the second peak of susceptibility [from (b)] is obtained following a procedure similar to
that in (c). This demonstrates the scaling ansatz in Eq. (8).

dependence on N is qualitatively similar in both cases. While
for v0 = 0 the ejection of aligners from a cluster of nonalign-
ers occurs due to random switching events, for v0 > 0 there is
an additional diffusion of the nonaligner particles before the
switchings happen. In Sec. III D we show the dependence of
M0 on v0.

The abrupt increase in M0 as φth increases in the low noise
regime coincides with a decrease in the size of the largest
cluster of aligners M1. This is visible in Fig. 2(d), where M1

is plotted as a function of φth for different N at η = 0.2. By
tuning the exponent in the relation M1 ∼ Nζ1 we obtain the
best collapse for different N with ζ1 = 0.78.

B. High density regime

In the high density and low noise regime, we observe the
largest cluster of nonaligners grows with φth, whose size is

of the order of N when φth is unity. An incipient cluster in
this regime is shown in Fig. 1 (top row, third from the left).
In addition, we find the behavior of the system to be strongly
dependent on N . In Fig. 3(a) we plot the fraction M0/N for
different system sizes. From the different curves we observe
that the generic dependence of M0/N on φth is different for
smaller and larger values of N , with a crossover occurring
at N ∼ 210. For the smaller systems the growth in the largest
cluster primarily occurs when φth is between 0.6 and 0.7. For
the larger systems there is an initial rapid increase in M0 that
is similar to that observed at low densities that is followed by
gradual further growth.

Considering the growth of the larger cluster of nonaligners
to be a percolation phenomenon that occurs with respect to the
tuning of φth, we calculate the susceptibility corresponding
to the order parameter M0/N , given by χ = Nσ , with σ 2 =
〈(M0/N )2〉 − 〈(M0/N )〉2 [46], where the angular brackets
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denote averaging in the steady state. The plot of χ as a
function of φth in Fig. 3(b) demonstrates a crossover in the
finite-size effect. For N < 210 there is only a single maximum
that shifts to the left of the φth axis on increasing N . With N �
210 we find the emergence of a second peak in χ which is the
dominant maximum as N increases further. Ideally, for a given
N , the position of the (second) maximum of χ is expected to
provide the critical thresholds (pseudocritical point) φth,c(N ).
Observing that accurately locating the second maximum can
be difficult for the smaller system sizes, we circumvent the
problem in the following way. For the finite-size effects in
percolation we assume the relations

M0/N = N−β/νF
[
(φth − φth,c)N1/ν

]
, (7)

χ = Nγ /νG
[
(φth − φth,c)N1/ν

]
, (8)

where φth,c is the critical threshold in the infinite-size limit
(N → ∞) and ν, β, and γ are the critical exponents charac-
terizing a second order percolation transition. Using the above
relations and the fact that χ = Nσ , we get a hyperscaling
relation,

γ /ν = 1 − β/ν. (9)

At different values of φth we fit power laws to the data
corresponding to M0/N versus N . This gives us a set of trial
values for the exponent β/ν. Similarly, we obtain a set of
trial values of γ /ν from χ versus N at different φth. Then we
obtain the critical point φth,c by locating the φth at which β/ν

and γ /ν satisfy Eq. (9). This method yields β/ν = 0.035(9),
γ /ν = 0.965(4), and φth,c = 0.740(5). The error estimates in
the exponents correspond to power-law fits at ±0.005 from
φth,c. (In the Appendix we provide expressions for M0 and
φth,c from a reaction-limited description.)

To determine ν, we first scale the y axis of Fig. 3(a) by
multiplying by Nβ/ν . Then upon fixing a value of (M0/N )Nβ/ν

around 1.0 we obtain the corresponding values of φth for
different N . We estimate the value of 1/ν from the slope of
the line fitted with log |φth(N ) − φth,c| versus log N . Repeat-
ing the process for different values of (M0/N )Nβ/ν , we get
ν = 2.16(3). Using the above values for the scaling exponents
and φth,c, we obtain data collapses for M0/N and χ , as shown
in Figs. 3(c) and 3(d), respectively. The collapse of the curves
for different N when φth is close to φth,c shows that the scaling
forms in Eqs. (7) and (8) hold true.

Similar to the case of low density, there is an initial rapid
increase in M0 at φth = φ∗. This is characterized by solely
scaling the M0/N axis and collapsing the curves for different
N , as shown in the inset of Fig. 3(c). The scaling shows that
as φth crosses φ∗, M0 abruptly increases from O(1) to O(

√
N ).

The latter increase in M0 also coincides with a fall in M1

(not shown). For φth < φ∗ we find M1 ∼ Nζ2 with ζ2 = 0.80,
which is quite close to ζ1.

Additionally, we also studied the cluster size distribution
of the nonaligners. We obtained the statistics by observing the
systems at φth = φth,c. The normalized distributions n(m0) for
the cluster sizes m0 of nonaligners are plotted in Fig. 4(a)
for different N . We assume power-law distributed cluster
sizes and finite-size effects are present, such that n(m0) ∼
m−τ

0 f (m0/M0), where τ is the Fisher exponent. With the
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FIG. 4. (a) Normalized distributions of cluster sizes of non-
aligners for different system sizes, indicated in the legend. The
distributions have been obtained at η = 0.2, ρ = 1.6, and φth =
0.74 = φth,c. (b) A collapse of the distributions from (a), obtained
by plotting n(m0 )N ε2 versus m0/N ε1 and tuning ε1 and ε2. In (b)
ε1 = 0.96(2) and ε2 = 1.98(1). The collapse indicates a power law
n(m0) ∼ m0

−τ in the large N limit with τ = ε2/ε1 = 2.06(3).

system being at φth,c we expect M0 ∼ Nε1 , with ε1 = 1 − β/ν,
and therefore, the above power law can be recast into the
following form:

n(m0) = N−ε2 D(m0/Nε1 ), (10)

where the scaling function D(x) ∼ x−τ for x → 0 and D(x)
decreases faster than a power law for x � 1. This implies
τ = ε2/ε1. In Fig. 4(b) we plotted n(m0)Nε2 versus m0/Nε1

and tuned the values of ε1 and ε2 to get a collapse of the distri-
bution for different N . The latter allows us to validate Eq. (10).
We get the best collapse for ε1 = 0.96(2) and ε2 = 1.98(1),
which implies τ = 2.06(3).

C. Generic dependence on density

After observing that switching of particle states in ordered
flocks produces two distinct type of mixed phases, nonper-
colating and percolating, depending on the density ρ, we
investigate how the relevant quantities continuously vary as a
function of ρ. In Fig. 5 we show the variation of M0 and M1 at
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FIG. 5. The following quantities of interest are plotted as a
function of density ρ at noise η = 0.2 and threshold φth = 0.6:
M0/M0,max, the size of the largest cluster of nonaligners normalized
by its maximum value within the range of investigation; M1/M1,max,
the normalized size of the largest cluster of aligners; and �/�max,
the normalized polarization of the system. The dashed vertical line
indicates the density that corresponds to the critical filling factor for
continuum percolation, ρCP = 1.42.

low noise (η = 0.2) and a substantial presence of switching
activity (φth = 0.6). In addition to the sizes of the largest
clusters we also show the polarization � [2,9], which is a
measure of the degree of global order in the system and is
defined as � = 〈|(1/N )

∑
i=1,N nt

i |〉.
We compare M0, M1, and � scaled by their respective

maximum values with ρ being in the range 0.01 to 10.0. It is
known that in a pure SPP system for a fixed η, long-range or-
der vanishes when density is lowered [47]. This phenomenon
partially underlies the dynamics observed in our case where
switching is allowed. The relatively low degree of order as
reflected in the values of M1/M1,max and �/�max at very low
densities is the result of a lack of order in the pure system.
The maximum in the values of M1 and � occurs at around
ρ � 0.1. In this regime, the absence of switching implies that
the system has a high degree of order and a macroscopically
large cluster of aligners always exists in the steady state. When
switching is present, we observe the nonpercolating mixed
phase where M0 ∼ log N . A further increase in the density
would result in the enhancement of order and aligner cluster
size in the pure system. However, for the mixed phase the
aligner cluster size and order decrease with a further increase
in density. The cluster size for nonaligners increases mono-
tonically. The possibility of the formation of a giant cluster of
nonaligners may be considered to be similar to the situation
of continuum percolation (CP) of overlapping disks with radii
R = r0/2. Noting that the filling fraction is defined as πR2ρ

and that the estimate for the critical value is around 1.12 [48],
the corresponding critical density is ρCP = 1.42. This density,
therefore, would signify the border between nonpercolating
and percolating mixed phases. The latter is evident in the case
of ρ = 1.6 > ρCP.
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FIG. 6. (a) Dependence of the size of the largest cluster of align-
ers M1 on nonaligner speed v0 for three different thresholds φth.
The aligner speed v1 = 0.05, noise η = 0.2, number of particles
N = 1024, and density ρ = 0.5. (b) Dependence of the size of the
largest cluster of nonaligners M0.

D. Dependence on speed differences

Last, we study how the difference between the speeds of
the aligners and nonaligners governs the evolution of the sys-
tem. We fix the aligner speeds to v1 = 0.05 and vary the speed
of the nonaligners, v0. We plot M1 and M0 as functions of v0

for three different values of φth in Fig. 6. It is apparent that the
mixed phase (φth = 0.6) where macroscopically large aligner
and nonaligner clusters coexist is delicately dependent on the
value of v0. As v0 approaches v1, M0 is found to decrease, and
M1 is found to increase. The diffusion of nonaligners occurs
with a diffusion constant that is proportional to v2

0 [44,49].
Therefore, the rate of ejection of aligners from the boundary of
a cluster of nonaligners also increases as the nonaligner speed
is increased. In addition, as the relative difference in speeds
vanishes, the nonaligners formed after a collision effectively
fail to segregate and, eventually, to proliferate. As a result
of the above, the effect of a finite φth diminishes, and large
clusters of nonaligners are rarely observed. These results show
that the formation of mixed phases that is controlled by φth is
also dependent on the difference in speeds. We have shown
the dependence on v0 in the nonpercolating regime, but the
indications are similar for the percolating case as well.
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IV. CONCLUSIONS

We studied a system in which self-propelled particles
were allowed to switch states between fast aligners and
slow nonaligners based on the degree of alignment in their
neighborhood. In the steady state, the system segregated into
separate clusters of aligners and nonaligners. In the mixed
phase, the largest cluster of aligners was found to vary al-
gebraically with the system size. However, depending on the
density of the system, the aggregation of the nonaligners
appeared to be very different. For low densities, the largest
cluster of nonaligners reached a maximum size for an opti-
mal noise and an optimal threshold. For high densities, after
an initial abrupt increase, a giant percolating cluster could
emerge with the increase in the threshold. Also, the behavior
for small system sizes appeared to be very different. The
boundary between the density regimes roughly coincided with
the density corresponding to the critical filling factor for a
continuum percolation transition. Irrespective of the density,
the separation of speeds seemed to be a necessary condition
for the model to display the segregation of nonaligners. When
the speeds become comparable, large clusters of nonaligners
are predominantly absent. Although the appearance of the gi-
ant cluster conforms to a set of finite-size scaling hypotheses,
the transition could be nonuniversal [50] with dependence on
the noise amplitude and density, through the functions F and
G in Eqs. (7) and (8).

The percolation of clusters was recently studied [51] in
the classical Vicsek model. Unlike our model, the SPPs in
the Vicsek model always remain aligners (without switching),
and attraction-repulsion forces are absent. The authors inves-
tigated the global connectivity of clusters with an increase in
the global density ρ along both the longitudinal and transverse
directions with respect to the direction of global order. They
estimated a critical density ρc = 1.96 (> ρCP). Similar to the
current model, if we denote the size of the largest cluster (of
aligners) in the Vicsek model as M1, then close to ρc, the
dependence on N may be characterized by using M1 ∼ Nζ .
Using the reported [51] values of the different critical expo-
nents, ζ is found be in the range 0.95–1.00. In our model,
for the density regimes investigated and when the clusters of
aligners are macroscopically large (φth < φ∗), we find ζ to be
in the range 0.78–0.80. Taken together, we believe that our
model was investigated at densities which are still lower than
the critical density that would be needed for the percolation of
clusters of aligners if switching is absent. Also note that in our
model, clusters of nonaligners are formed mainly due to the
collisions between clusters and the speed difference between
aligners and nonaligners.

Recent advances in living active matter have found that
modifications in individual behavior through the sensing of
local densities lead to the formation of regions of orientational
disorder and aggregations [52–55]. Similar observations have
been made in experiments with active colloidal systems em-
ploying different methods to program the particle motion,
like optical feedback loops and field modulations [55–57].
Therefore, the observed macroscopic behavior in our model
could be relevant, for example, to active colloids with setups
allowing the particles to sense and respond to the average
orientation of neighbors [58], to the design and control of

robot swarms [6,59], and, in general, to systems exhibiting
both polar order and MIPS-related behavior [34,60,61]. Also,
owing to the additional state variable in our model, the latter
can be contrasted with the study of clustering and percola-
tion in the classical Vicsek model [51], and similarities with
models for information spreading in motile collectives can be
further explored [36,37].

Also, there appears to be scope for additional complexity in
the current model. We have assumed that switching behavior
is symmetric in terms of having a single threshold for both
aligners and nonaligners. In a more general scheme, there can
be two different thresholds for particles of either type. Cur-
rently, the additive noise causes the moving clusters to collide,
which generates the nonaligners. It would be interesting to test
the model at zero noise [62] but with other forms of disorder
like boundaries, obstacles [8], and quenched nonaligners [10].
The phase separation between aligners and nonaligners could
also be studied in systems without self-propulsion, for exam-
ple, in Brownian walkers with a velocity alignment interaction
[63] and in the Vicsek model on the lattice [64].
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APPENDIX: MEAN FIELD DESCRIPTION

Here, we provide a reaction-limited description of the sys-
tem in the high density regime based on our simulations and
neglecting the spatial correlations. We consider the system to
consist of the following types of particles: particles that are
part of the giant cluster of nonaligners (M0), aligners (N1),
and nonaligners that are not part of the giant cluster (N ′

0), such
that

M0 + N ′
0 + N1 = N. (A1)

As seen with regard to Fig. 3, as φth crosses φ∗, M0

becomes O(
√

N ). On further increasing φth, when the latter
reaches φth,c, the incipient giant cluster is observed. We model
the growth of this cluster using the following equation:

dM0

dt
= (φth − φ∗)AM0N1 − (1 − φth )BM0. (A2)

The first term to the right accounts for the collision between
the aligner particles and the giant cluster of nonaligners by
which particles are added to the perimeter of the latter. Given
that a percolating cluster is growing and is far from being
circular in shape, the perimeter is assumed to vary as M0.
A typical snapshot of such a cluster is shown in Fig. 1 (top
row, third from the left). In general, for a percolating cluster
the relation between the perimeter (or hull) and the mass is
given by H0 ∼ M0

x, with x = dh/d f . Here, d f and dh are the
fractal and hull dimensions, respectively, and can be com-
puted using the relations d f = d − β/νL and dh = 1 + 1/νL

[65,66]. In the current context, the exponents from our nu-
merical calculations in Sec. III B would indicate x ≈ 1. The
exponent νL = ν/d , where the dimensionality of space d = 2.
For classical percolation in d = 2, d f = 91/48, and dh = 7/4,
which gives x � 0.92 [66]. On the other hand, clusters of
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aligners are mostly small in size in this regime; therefore, the
dependence is taken to be proportional to the total number
of aligners N1. The colliding aligners are expected to have
their local order parameter distributed around φ∗. Keeping
other factors unchanged, as φth approaches φ∗ from below and
eventually crosses φ∗, more and more aligners are expected to
switch their states. We approximate this dependence on φth as
φth − φ∗. The coefficient A contains factors in the collision
rate, including the speed of the group of aligners [44,49],
and is independent of φth. The second term accounts for the
loss of particles by which particles near the perimeter of the
giant cluster switch to aligning states and detach from the
latter. While within the bulk the local order parameter would
typically be around re/(2r0) [see discussion on Fig. 2(b)], for
the nonaligners at the boundary we expect larger fluctuations
and hence a flatter distribution extending up to unity. We
assume that the rate of switching is proportional to 1 − φth.
The coefficient B takes into account other factors independent
of φth.

We observe in our simulations that apart from the ones in
the giant cluster, the nonaligners are formed in the process of
collision between small clusters of nonaligners. The resulting
clusters of nonaligners are also small and are not stable. We
model this process using the following equation:

dN ′
0

dt
= (φth − φ∗)kAN1

2 − (1 − φth )BN ′
0. (A3)

The first term accounts for the formation of the small clusters
of nonaligners. We assume that the coefficient in the collision
rate accounting for factors independent of time and φth is
different by only a multiplicative constant from the coefficient
in Eq. (A2). The second term is similar to the loss term in
dM0/dt .

We are interested in the steady state dependence of M0

on φth. Therefore, we set the right hand side of Eq. (A2) to
zero. Assuming a nonzero finite solution for M0, we get the
following steady solution for N1:

Ns
1 = b f (φth ), (A4)

where f (φth ) = (1 − φth )/(φth − φ∗) and b = B/A. Similarly,
by equating the right hand side of Eq. (A3) to zero, we get
N ′s

0 = kNs
1 . Next, the steady state solution for M0 is found by

using Ns
1 and N ′s

0 in Eq. (A1):

Ms
0 = N − b(1 + k) f (φth ). (A5)

In Fig. 7 we compare the steady state solutions for N1, N ′
0,

and M0 with the numerical results. As mentioned above, the
derived expression appears to be valid for φth > φth,c when the
incipient giant cluster is already present. Below φth,c, clusters
of nonaligners keep continually forming and fragmenting,
clusters of aligners are relatively larger in size, and spatial
correlations cannot be neglected in the description of the
dynamics.

Considering that the collision coefficient A is inversely
proportional to the area L2 [44,49], we can also rewrite

FIG. 7. Results from the simulation in the high density regime
(ρ = 1.6, η = 0.2, and N = 213) are compared with the steady state
solutions from the model. The dashed line denotes the function
f (φth ) = (1 − φth )/(φth − φ∗). The circles show the dependence on
φth for the number of aligners N1 scaled by a constant b. Choosing
b/N ≈ 1/12 shows the validity of Eq. (A4). Similarly, the triangles
and squares show the ranges of validity for the relation N ′

0 = kN1

and Eq. (A5), respectively, where k = 1. The plot of N1/b in the low
density regime is shown using the crosses. Here, we take φ∗ = 0.5,
which provides the best fit instead of φ∗ = 0.47, which is obtained
from Eq. (6).

Eq. (A5) as

Ms
0 = N[1 − (c/ρ) f (φth )], (A6)

where c/ρ = b(1 + k)/N . The above expressions for Ms
0 im-

ply that when N increases at a fixed density or when ρ

increases, the transition to a global connectivity becomes
faster. This expression, however, is not valid in the limit
ρ → 0. For the latter limit in Eq. (A2), the second term would
be the dominant term for all values of φth, and M0 would
be zero in the steady state. Alternately, the dynamics at low
density cannot be described by Eqs. (A2) and (A3), and as a
result, Eq. (A4) does not hold. The deviation of Ns

1/b at low
density from the function f (φth ) is shown in Fig. 7.

We obtain an estimate of φth,c by assuming that once the
critical threshold is exceeded, the number of nonaligners in-
side the largest cluster becomes greater than the number of
nonaligners present outside: Ms

0 > N ′s
0 . Here, using the ex-

pressions Ms
0 and N ′s

0 , we get a lower bound on φth,

φth,c = φ∗ + 3c

3c + 2ρ
(1 − φ∗), (A7)

where we have set k = 1 as shown in Fig. 7. Therefore,
in this reaction dominated description, the limits N → ∞
at a fixed density or ρ → ∞ imply that φth,c → φ∗ from
above. Finally, given that the function f (φth ) is analytic in the
range φ∗ < φth � 1, we can express as a first order approx-
imation Ms

0(φth ) − Ms
0(φth,c) ∼ (φth − φth,c) for φth � φth,c,

giving β(mean field) = 1.
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