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Inertial particle under active fluctuations: Diffusion and work distributions

Koushik Goswami
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India

and Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany

(Received 2 December 2021; accepted 30 March 2022; published 15 April 2022)

We study the underdamped motion of a passive particle in an active environment. Using the phase space
path integral method we find the probability distribution function of position and velocity for a free and a
harmonically bound particle. The environment is characterized by an active noise which is described as the
Ornstein-Uhlenbeck process (OUP). Taking two similar, yet slightly different OUP models, it is shown how
inertia along with other relevant parameters affect the dynamics of the particle. Further we investigate the work
fluctuations of a harmonically trapped particle by considering the trap center being pulled at a constant speed.
Finally, the fluctuation theorem of work is validated with an effective temperature in the steady-state limit.
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I. INTRODUCTION

Over the past few decades, there has been a growing in-
terest in understanding active particles from their dynamical
and energetic perspective. An active particle is basically a
system that moves on its own harnessing the energy from
its environment. Recently, it has been widely studied due to
its applicability and ubiquitous presence in nature, e.g., from
swarming bacteria to flocking of birds—all these phenomena
can be perceived within the purview of active matters [1–5].
The models that have been extensively used to describe the
processes are active Brownian particles (ABP) [6–8], active
Ornstein-Uhlenbeck particles (AOUPs) [9–12], and run-and-
tumble particles (RTPs) [13–15]. Most of the studies with
these models deal with the overdamped dynamics of such
particles which neglects inertial contributions due to their
movement in a fluid at a low Reynolds number. However, for
a self-driven particle moving in a low-density environment
such as in a gaseous medium, or for a particle with a large
Stokes number, its motion is inertia-dominated and thus its
self-propulsion gets coupled with inertial effects displaying
distinctive, nonlinear behavior [16]. For instance, inertia of
squirmers such as marine plankton changes their swimming
speed depending on the location of thrust generation, and it
also induces hydrodynamic interaction between two squirm-
ers [17,18]. Some other natural realizations where inertia is
important include insect aerial flight, swimming of living
organisms in water, autorotating motion of helicopter fruits
in air, etc. [19–22]. With recent advances in constructing
artificial self-propelled objects, the field of active matters in
the underdamped regime (at intermediate and high Reynolds
numbers) has been further invigorated from the experimental
point of view. Examples of such objects are rotating robots,
vibrobots, artificial bugs, to name a few [23–25].

More recently, several groups have theoretically inves-
tigated the underdamped motion of self-propelled particles
[26–29]. In Ref. [26], it has been elucidated theoretically that

inertia of a self-propelled particle induces a delay between
orientation and its velocity, which has been experimentally
observed earlier [24]. Recently, Löwen et al. have studied
the self-organization of repulsively interacting active parti-
cles with inertia, famously known as “motility-induced phase
separation” (MIPS) where it has been found that there coex-
ists two phases, but with two different kinetic temperatures,
termed as “hot-cold coexistence,” which is missing in the
overdamped description [30]. In other studies, the effect of
inertia on several properties such as mean-square displace-
ment (MSD), mean-square speed, and swim pressure has been
investigated [27,28,31,32].

In recent years, studies on passive particles immersed in
an active environment have received a considerable atten-
tion [33–35]. However, its motion in the underdamped limit
remains almost unexplored. Like a single active particle, it
can also be modeled in a simplistic way by the Ornstein-
Uhlenbeck process (OUP) where the particle is subjected to
Gaussian driving with a finite correlation time [36,37]. Note
that the OUP model has been widely used as it turns out to be
successful in explaining some interesting collective behavior
of self-propelled particles such as accumulation near bound-
aries and MIPS [38,39]. In this paper, we study the dynamics
of a passive particle in the underdamped limit in a fluid as
it experiences active noise which are characterized here by
the OU process. We consider two OUP models with slight
variations in the strength of the noise. Though the treatments
for both models are the same, the results as well as interpre-
tations may differ. The dynamics along with OUP models are
discussed in Sec. II. With these models, the motion of a free
particle and a harmonically confined particle is investigated
theoretically. Employing the phase-space path integral (PSPI)
method, we find exact results for the probability distribution
function in position and velocity, and then we analyze the ef-
fects of relevant dynamical variables, as discussed in Sec. III.
It is worth mentioning here that though our discussions will
mostly be focused on dynamics of a passive particle in an
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active bath, the formalism presented here can be applicable
to an active inertial particle as well. For such cases, the active
noise corresponds to the swim (or self-propulsion) velocity
which has a fixed average value, e.g., see Ref. [27].

It is well established that the particle subjected to active
fluctuations is driven out of equilibrium. In other words, de-
tailed balance as well as fluctuation-dissipation relation break
down. Recently, it has been found experimentally as well as
theoretically that the fluctuation theorems (FT), in general, do
not hold for such systems, but a specific kind of relation do ex-
ist in the steady-state limit [33,40,41]. Work fluctuations and
related FTs in equilibrium baths have been studied previously
by few groups in the underdamped limit [42–44]. However, in
active baths and at intermediate and high Reynolds numbers,
similar studies are lacking. Along these lines, there have been
some recent studies which looked into the stochastic ener-
getics of inertial active systems [45,46]. As previous studies
suggest, the steady state of active systems can be mapped to an
effective equilibrium, and therefore, thermodynamic variables
may follow equivalent equilibrium properties with renormal-
ized parameters. In Sec. IV, we study work fluctuations for
a specific protocol, and compute the work distribution using
the PSPI technique. Then we verify the fluctuation theorem of
work in the underdamped limit. All results are summarized in
Sec. V. Other useful information in support of the main results
is presented in Appendices. The characteristic functional for
the OU process is derived in Appendix A. For the sake of
completeness, some preliminary idea on the path integration
method is discussed in Appendix B. The complete expres-
sions of distributions in position and velocity are shown in
Appendix C, and the detailed calculation of work distribution
is given in Appendix D.

II. DYNAMICS

Here we consider that a passive particle is diffusing under a
potential U (x) in a bath containing active particles at temper-
ature T . So in addition to the thermal fluctuations, an active
force is present in the environment, thereby referring to it as
an active bath. Without neglecting the inertial contribution to
the dynamics of the particle, the stochastic equation for its
motion in the underdamped limit can be expressed as

1

γ
ẍ(t ) + ẋ(t ) + U ′[x(t ), t]

mγ
= ηT (t ) + ηA(t ). (1)

Here the first term accounts for the inertial force, and m
is the mass of the particle. The drag force is given by
mγ ẋ, where γ is the viscosity coefficient which is re-
lated to the diffusion coefficient DT due to the presence
of thermal noise ηT (t ) only, through the Einstein relation
DT = kBT

mγ
, with kB being the Boltzmann constant. Naturally,

the (second) fluctuation-dissipation theorem (FDT) follows:
〈ηT (t )ηT (t ′)〉 = 2DT δ(t − t ′). Henceforth, the mass m is
taken to be unity. The active force is denoted here as ηA(t ),
which introduces nonequilibrium elements to the system. In
the following two models of ηA(t ) are discussed.

Here ηA(t ) is taken as a Gaussian colored noise whose
evolution can be described by the Ornstein-Uhlenbeck process

(OUP) [47,48], viz.,

η̇A(t ) = − 1

τA
ηA(t ) + 1

τA
ξ (t ), (2)

where ξ (t ) is the white Gaussian noise obeying 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = 2DA(t − t ′), with DA being the active diffusiv-
ity, that is, the diffusion coefficient when the particle diffuses
only in the presence of active noise ηA(t ). From Eq. (2) one

can see that 〈ηA(t )〉 = 0 and 〈ηA(t1)ηA(t2)〉 = DA
τA

e− |t1−t2 |
τA , τA

being the persistence time of the active noise. Notice that, for
a very small persistence time, i.e., for τA → 0, the noise ηA(t )
becomes δ-correlated, and so it behaves like a Gaussian white
noise.

The other way to realize ηA(t ) is by writing a dynamical
equation similar to OUP for the active force fA(t ), where
fA(t ) = γ ηA(t ), as follows [11,27]:

ḟA(t ) = − 1

τA
fA(t ) +

√
1

τA
ξA(t ), (3)

where 〈ξA(t )〉 = 0 and 〈ξA(t )ξA(t ′)〉 = 2 f 2
0 δ(t − t ′), which

implies that 〈 fA(t1) fA(t2)〉 = f 2
0 e− |t1−t2 |

τA . The average of active
force fA(t ) is denoted here as f0, and its value is considered
to be fixed in this model. It is relevant when a system in
motion (e.g., a self-propelled particle) maintains a constant
average speed throughout its journey. Now it is easy to see that
the autocorrelation of ηA(t ) is also an exponential function

of the form 〈ηA(t1)ηA(t2)〉 = f 2
0

γ 2 e− |t1−t2 |
τA . In the limit τA → 0,

the noise disappears, which clearly differs from the OUP
model [Eq. (2)] discussed earlier. To distinguish it from the
previous OUP model, one may term it [Eq. (3)] as the mod-
ified Ornstein-Uhlenbeck process, or in short, MOUP model.
Notice that one can map these two models by defining the
strengths of the autocorrelation functions in such as way that

DA = f 2
0

γ 2 τA. It is useful to note that the characteristic func-
tional of the noise ηA(t ) corresponding to any of these models
can be calculated using the relation [49]

〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA = e− 1
2

∫ t
0 dt1

∫ t
0 dt2 p(t1 )〈ηA(t1 )ηA(t2 )〉p(t2 ), (4)

where p(t ) is the conjugate variable to ηA, and the angular
bracket 〈· · · 〉 denotes the average over all histories of ηA(t ).
For the sake of clarity, an alternative derivation of Eq. (4)
considering an exponential correlation of ηA(t ) is provided in
Appendix A.

III. PROBABILITY DISTRIBUTION FUNCTION
OF DISPLACEMENT x AND VELOCITY v

Here we compute the probability distribution function
(PDF) of finding the particle at some position x at time t .
To do so, we employ the PSPI method [50,51] (see also
Appendix B), and write the probability density functional for
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the white noise ηT (t ) as

P [ηT ] =
∫

Dpe−DT
∫ t

0 dt1 p2(t1 )−i
∫ t

0 dt1 p(t1 )ηT (t1 ), (5a)

P [x] ∼
∫

Dpe−DT
∫ t

0 dt1 p2(t1 )−i
∫ t

0 dt1 p(t1 )

{
1

γ
ẍ(t1)+ẋ(t1) + U ′[x(t1), t1]

γ
−ηA(t1)

}
, (5b)

P [x] =
∫

Dpe−DT
∫ t

0 dt1 p2(t1 ) 〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA e−i
∫ t

0 dt1 x(t1 )[ 1
γ

p̈(t1 )−ṗ(t1 )]e− i
γ

∫ t
0 dt1 p(t1 )U ′[x(t1 ),t1]

× e− i
γ

[ẋ(t )p(t )−ẋ(0)p(0)]−ix(t )[p(t )− 1
γ

ṗ(t )]+ix(0)[p(0)− 1
γ

ṗ(0)]
. (5c)

In Eq. (5b), we have replaced ηT (t ) by using Eq. (1) and consequently, the functional has been expressed in terms of trajectories
of x(t ). In Eq. (5c), integration by parts has been performed. As ηA(t ) evolves independently of x(t ), one needs to do the
averaging over all trajectories of ηA(t ), and the average is denoted by the angular bracket in Eq. (5c). Therefore, the PDF (or the
propagator) can be obtained on doing the path integration over x(t ), and it reads

P(xt , vt , t ; x0, v0, 0) =
∫ x(t )=xt

x(0)=x0

Dx
∫

Dpe−DT
∫ t

0 dt1 p2(t1 )〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA e−i
∫ t

0 dt1 x(t )[ 1
γ

p̈(t1 )−ṗ(t1 )]

× e− i
γ

∫ t
0 dt1 p(t1 )U ′[x(t1 ),t1]e− i

γ
[vt p(t )−v0 p(0)]−ixt [p(t )− 1

γ
ṗ(t )]+ix0[p(0)− 1

γ
ṗ(0)]

, (6)

where vt = ẋ(t ), v0 = ẋ(0). With this formalism, we study
the dynamics of the particle in two different potentials.

A. Free particle, U (x) = 0

Taking U (x) = 0 and x0 = 0 in Eq. (6), the PDF can be
written as

P(xt , vt , t ; v0) =
∫ x(t )=xt

x(0)=0
Dx

∫
Dpe−DT

∫ t
0 dt1 p2(t1 )

× 〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA e−i
∫ t

0 dt1 x(t1 )[ 1
γ

p̈(t1 )−ṗ(t1 )]

× e− i
γ

[vt p(t )−v0 p(0)]−ixt [p(t )− 1
γ

ṗ(t )]
. (7)

The path integration over x produces a δ functional, δ[ p̈(t1) −
γ ṗ(t1)], which implies p(t1) = ( pt −p0eγ t

1−eγ t ) + ( p0−pt

1−eγ t )eγ t1 ,
p(0) = p0, p(t ) = pt . Therefore, the path integration over p
becomes a double integration with respect to p0 and pt , and
so Eq. (7) can be rewritten as

P(xt , vt , t ; x0, v0, 0)

=
∫

d pt

∫
d p0 e−DT

∫ t
0 dt1 p2(t1 )〈ei

∫ t
0 dt1 p(t1 )ηA(t1 )〉ηA

× e− i
γ

(vt pt −v0 p0 )−ixt (pt − 1
γ

ṗt ) (8)

Using Eq. (4) the ensemble average over ηA can be calculated.
With this, the probability distribution function of finding the
particle at position xt with velocity vt at time t provided
that the initial velocity v0 follows the Boltzmann distribution,

P (v0) =
√

1
2γπDT

e− 1
2γ DT

v2
0 and P(x0) = δ(x0), can be com-

puted as

P(xt , vt , t ) =
∫

dx0

∫
dv0P(xt , vt , t ; x0, v0, 0)P(v0)P(x0)

=
√

1

(2π )2|C f |e− 1
2X

T C−1
f X, (9)

with |C f | being the determinant of the matrix C f as given in
Appendix C 1. The PDF for velocity vt considering the final
position xt to be anywhere in the space can be obtained as

P(vt , t ) =
∫

dxt P(xt , vt , t ) =
√

1

2πσ 2
v (t )

e
− v2

t
2σ2

v (t ) , (10)

where σ 2
v (t ) is the variance of velocity vt , expressed as

σ 2
v (t ) = γ

e−t (2γ+ 1
τA

)(
γ 2τ 2

A − 1
) [(γ τA − 1)et (2γ+ 1

τA
)

× (γ DT τA + DT + DA) − 2DAγ τAeγ t

+ DA(γ τA + 1)et/τA ].

In the long time limit, i.e., for t � 1
γ

and t � τA, the variance
is given by

σ 2
v = lim

γ t�1; t/τA�1
σ 2

v (t ) = DT γ + DA

τA

γ τA

γ τA + 1
. (11)

So in the OUP bath, it has the stationary probability dis-
tribution function of velocity associated with an effective
temperature DT + DA

γ τA+1 . Notice that in the absence of active

noise ηA, σ 2
v (t ) ≈ DT γ = kBT, which means that the system

remains in equilibrium, thereby having the Boltzmann distri-
bution. For the case where the persistence time (τA) is very
small compared to the inertial time 1/γ , i.e., for γ τA 	 1,

the system can still be understood through the equilibrium
theory incorporating an effective temperature Teff = T + TA,

where TA = DAγ . Now one can compute the distribution of
displacement as

P(xt , t ) =
∫

dvt P(xt , vt , t ) =
√

1

2πσ 2
x (t )

e
− x2

t
2σ2

x (t ) , (12)
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(a) (b)

(c) (d)

FIG. 1. Plots of the probability distribution function (PDF) for the free particle in panels (a, b) the OUP bath, and in panels (c, d) the MOUP
bath. The PDFs of velocity vt [given in Eq. (10)] are plotted as a function of vt at time t = 10 for different values of τA in panels (a, c) for
the OUP and MOUP models, respectively. In panel (a) the values of fixed parameters are γ = 1.0, DT = 1.0 while varying the values of DA,

whereas in the panel (c) f0 is varied, keeping the other parameters constant at T = 1.0, γ = 1.0. Panels (b, d) show the PDFs of displacement
xt [given in Eq. (12)] at time t = 10 in the OUP and MOUP baths, respectively. In panel (b) the fixed parameters are DT = 1.0, DA = 5.0, and
in panel (d) we have taken T = 1.0, f0 = 5.

where

σ 2
x (t ) = γ e−t(2γ+ 1

τA
)(

γ 2τ 2
A − 1

) [−2γ 2DAτ 2
Aeγ t + 2γ 2DAτ 2

Ae2γ t (γ τA + 1) + DA(γ τA + 1)e
t

τA + 2(γ τA + 1)

× et ( 1
τA

+γ )[γ τA(DA + DT ) − 2DA − DT ] + (γ τA − 1)et ( 1
τA

+2γ )(DA{2γ [−τA(γ τA + 2) + γ tτA + t]

− 3} + 2DT (γ t − 1)(γ τA + 1))
]
.

In the long-time limit, the MSD can be expressed as

lim
γ t�1; t/τA�1

σ 2
x (t ) ≈ 2(DT + DA)t . (13)

This suggests a diffusive behavior with enhanced diffusivity.
For short times, i.e., for γ t 	 1, t/τA � 1, σ 2

x (t ) ≈ DT γ t2,

indicating a ballistic regime due to thermal fluctuations.
However, if one considers that initial velocity had a nonequi-
librium stationary distribution with the effective temperature
given in Eq. (11), then active fluctuations contribute to the
ballistic behavior, viz., σ 2

x (t ) ≈ (DT γ + DA
τA

γ τA

γ τA+1 )t2. This is
consistent with the recent result reported in Ref. [27] for a
self-propelled particle with inertia. The results for the MOUP
bath can also be obtained in a similar way as discussed
above. The only change one needs to do is to replace DA

by the term f 2
0

γ 2 τA. However, the role of dynamical parame-
ters differs in these two models. For example, in the limit

γ τA � 1, σ 2
v ∝ 1

τA
for the OUP model, whereas σ 2

v has no
dependence on τA for the MOUP model and is given by

σ 2
v ≈ T + f 2

0
γ 2 .

The marginal distributions of xt and vt for the free particle
are plotted in Fig. 1. In the OUP bath, the width of the
distribution of vt grows with DA for fixed persistence time τA,

as the presence of active noise results in an enhanced diffu-
sivity. However, the width becomes narrower as τA increases,
as shown in Figs. 1(a) and 1(b) for the distribution of xt . One
can also observe from Fig. 1(b) that the spatial distribution
has a wider spread for a large value of γ and fixed values
of diffusivities as the effective temperature is also increased.
Figure 1(c) shows the distribution of velocity in the MOUP
bath for different values of active force f0 and τA, keeping DT

and γ fixed. Evidently the particle travels a longer distance
on average as f0 takes a higher value. In contrast to the OUP
model, the widths—σ 2

x (t ) and σ 2
v (t ) decrease as the motion
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transits from the underdamped to an overdamped regime (with
the increment of γ ) as well as with the decrease of τA, as
can be viewed in Fig. 1(d). It suggests that τA and 1/γ play
a similar role in both models.

B. In a harmonic potential, U (x) = λ
2 x2

Here we consider the dynamics of a particle in a harmonic
potential of the form: U (x) = 	

2 x2, with stiffness 	. From
Eq. (6), the propagator can be expressed as

P(xt , vt , t ; x0, v0, 0) =
∫ x(t )=xt

x(0)=x0

Dx
∫

Dpe−DT
∫ t

0 dt1 p2(t1 )〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA e−i
∫ t

0 dt1 x(t1 )[ 1
γ

p̈(t1 )−ṗ(t1 )+λp(t1 )]

× e− i
γ

[vt p(t )−v0 p(0)]−ixt [p(t )− 1
γ

ṗ(t )]+ix0[p(0)− 1
γ

ṗ(0)]
, (14)

where λ = 	/γ . Doing the path integration over x, one gets
p(t1) = pt e− γ

2 (t−t1 ) sinh( �t1
2 )csch( �t

2 ) + p0 e
γ

2 t1 [cosh( �t1
2 ) −

sinh( �t1
2 ) cosh( �t

2 )csch( �t
2 )], where � = √

γ (γ − 4λ).
Therefore, the functional integration over p reduces to a
double integration with respect to p0 and pt , viz.,

P(xt , vt , t ; x0, v0, 0)

=
∫

d pt

∫
d p0 e−DT

∫ t
0 dt1 p2(t1 )〈ei

∫ t
0 dt1 p(t1 )ηA(t1 )〉ηA

× e− i
γ

[vt p(t )−v0 p(0)]−ixt [p(t )− 1
γ

ṗ(t )]+ix0[p(0)− 1
γ

ṗ(0)]
. (15)

Here we only consider the case where γ > 4λ. One may also
take the opposite case, viz. γ < 4λ, for which � is a complex
quantity and so some distinct properties such as oscillations
in the time correlations of x(t ) may be observed, but for
our present work, the analysis with the first case serves the
purpose. Now, Eq. (15) can be computed exactly, and using
the result, the PDFs in xt and vt can be found easily as shown
in Appendix C 2.

Now we analyze the stationary limit by taking t → ∞.

From Eq. (C3) the PDF of velocity at the steady state can be
written as

Pst(vt ) =
√

1

2πγ
(
DT + DA

1+γ τA+γ λτ 2
A

)
× exp

[
− v2

t

2γ
(
DT + DA

1+γ τA+γ λτ 2
A

)]
. (16)

Note that the system follows the above distribution whether it
is initially at equilibrium or it evolves from a nonequilibrium
stationary state. Notice that, in the absence of active noise ηA,

it again follows the Boltzmann distribution with the ambient
temperature, which is a quick test of the correctness of
our result. Let us now check a few other cases. For an
unconfined particle, λ → 0, and the distribu-
tion becomes λ− independent, viz., P(vt ) ≈√

1
2πγ (DT + DA

1+γ τA
)

exp[− v2
t

2γ (DT + DA
1+γ τA

)
], which is the same as

Eq. (10) involving the variance given in Eq. (11). However,
for λ → ∞, the variance is inversely related to λ, viz.,
σ 2

v ≈ DT γ + 1
τ 2

A

DA
λ

. The limiting cases just addressed above
are applicable for both OUP and MOUP models. However,
the results differ significantly for the variations in τA and
γ . In the OUP bath, the active noise becomes uncorrelated
in the limit τA → 0, as mentioned earlier, and therefore
the distribution is of Boltzmannian type with an enhanced

temperature (DT + DA)γ . On the contrary, it approaches the
equilibrium distribution in this limit for the MOUP model.
Now let us consider the limit γ τA � λτA � 1. In the OUP
bath, σ 2

v can be approximated as σ 2
v ≈ DT γ + 1

τ 2
A

DA
λ

, which
is similar to the liming case of λ → ∞. Substituting DA with
f 2
0

γ 2 τA for the MOUP bath leads to σ 2
v ≈ T + 1

λτA

f 2
0

γ 2 , dictating
1/τA dependence for a fixed value of f0. Clearly, the effect
of τA on velocity is different for the unconfined and confined
particle.

Now we turn to the marginal distribution of xt at the steady
state. Taking the limit t → ∞ in Eq. (C5), one gets the sta-
tionary PDF as

Pst(xt ) =
√

1

2πσ 2
x

e
− x2

t
2σ2

x , (17)

with σ 2
x = DT

λ
+ DA

λ

1+γ τA

1+γ τA+γ λτ 2
A
. For a free particle (λ → 0),

the system cannot reach a steady state, as one can expect. In
the large λ limit or for γ τA � λτA � 1, σ 2

x ≈ DT
λ

+ 1
τA

DA
λ2 ,

implying the inverse-dependence on λ. In particular, for the
case where the active noise is dominant, i.e., DA � DT , the
variance strongly depends on the stiffness, viz., σ 2

x ∝ 1/λ2.

In the OUP bath, σ 2
x is inversely proportional to τA, but it is

independent of τA in the case of MOUP bath, i.e., σ 2
x ≈ T +

f 2
0

λ2γ 2 . For a very small persistence time (τA → 0), σ 2
x ≈ DT +DA

λ

in the OUP bath, corresponding here to a purely Gaussian
white bath characterized by an enhanced diffusivity DT + DA.

However, the active contribution vanishes in this limit for
the MOUP model, and the system reaches near equilibrium.
In the overdamped limit, i.e., for γ τA � 1 and λτA � 1, one
can recover the known result for the effective temperature in
the OUP model as reported in Ref. [52], and it is given by

Teff = σ 2
x
λ

≈ DT + DA
1+λτA

.

Figure 2 shows the distributions of position and velocity at
a large time. It is evident that the confinement keeps the par-
ticle near the origin, thus resulting the narrower distribution.
Like the potential-free case, the effect of τA (or 1/γ ) is reverse
in the two models. However, τA influences the dynamics more
in the OUP model, while γ does the same in the MOUP
model.

IV. WORK FLUCTUATIONS

Here we analyze the effect of active noise on work fluctu-
ations of a passive particle in the underdamped limit. First,
we compute the probability distribution function of work,
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(a) (b)

(c) (d)

FIG. 2. Plots of the probability distribution functions (PDF) [Eqs. (C3) and (C5)] for a harmonically bound particle at time t = 10 for
different values of parameters. The distributions of vt and xt for the OUP model are shown in panels (a, b), respectively, for fixed values of
diffusivities DT = 1.0, DA = 25. Panels (c, d) show the PDFs of vt and xt in the MOUP bath considering T = 1, f0 = 25. The values of
parameter γ in panels (a, c) are γ = 25.0 and γ = 5.0, respectively.

considering a specific protocol for the performed work. Using
the results, we look into the fluctuation theorem.

A. Probability distribution function of work W

Here we assume that the passive particle is confined in
a harmonic potential with stiffness λ, and the center of the
potential is pulled at a constant speed u for a time period
t . Therefore, the particle experiences a time-dependent force
F (x, t ) = ∂U (x, t )/∂x, where the potential is given by

U [x(t1), t1] = λ

2
[x(t1) − ut1]2. (18)

Within an interval [0, t], the work performed on the particle
can be expressed as [53]

W [x(t )] =
∫ t

0

∂U [x(t1), t1]

∂t1
dt1 = λ

2
u2t2 − λu

∫ t

0
dt1 x(t1).

(19)
So one can define the probability distribution function

(PDF) of work as follows:

P(W ) = 〈δ{W − W [x(t )]}〉 = 1

2π

∫ +∞

−∞
dα eiαW 〈e−iαW [x(t )]〉.

(20)

Here the angular bracket 〈· · · 〉 denotes the ensemble average
over all possible trajectories of x(t ). After some mathemati-
cal steps, one can find the distribution P(W ), as detailed in
Appendix D. The result [Eq. (D5)] is graphically illustrated
over a range of parameters in Fig. 3. With time, the peak of

the distribution shifts towards the larger values of W, implying
that the performed work on average takes higher values if it is
done for longer times, as anticipated. In the OUP bath, the
distribution is more concentrated around the mean at shorter
times, or for that matter, at any timescale in the underdamped
regime compared to an overdamped case, considering that
the particle has the same diffusivities for both cases. Note
that a similar feature has been observed for the spatial dis-
tribution of a free particle in Fig. 1(b). On the contrary, the
distribution comparatively spreads more in the low-friction
(underdamped) limit for the MOUP model, as can be seen in
Fig. 3(c). Like other cases, τA has similar role as 1/γ , which
is displayed in Figs. 3(b) and 3(d).

Now we analyze the result for work distribution at the
stationary limit by taking γ t � 1, λt � 1, and t � τA. In
this limit, one can approximate the average (mean) work as
W̄ (t ) ≈ u2t, and the variance as

σ 2
W (t ) ≈ 2DT u2t + DAu2

[
1 − γ τA + λγ τ 2

A

]
γ 2λ2τ 4

A − γ 2τ 2
A + 2γ λτ 2

A + 1

× 1

γ λ
[2λ γ 2τA(λτAt + t ) + 2λ γ t]

≈ 2(DT + DA)u2t .

The results in the stationary limit hold true for both OUP and
MOUP models, and so we shall not specify the model further
in the following discussion.
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(a) (b)

(c) (d)

FIG. 3. The probability distribution function (PDF) of work [Eq. (D5)] is plotted as a function of work W performed on the particle trapped
in a harmonic potential with stiffness λ = 0.5, and the trap-center is set in motion with a constant speed u = 1. In panels (a, c) the PDFs at
different times are shown for the OUP and MOUP models, respectively taking the persistence time fixed at τA = 0.5. In the OUP bath, we keep
the values of diffusivities fixed at DT = 1.0, DA = 25, and the set {T = 1.0, f0 = 25.0} is taken for the MOUP model in panel (c). Panels (b,
d) depict the distributions of work at time t = 10 for different values of parameters in the OUP and MOUP baths, respectively. In panel (b) we
take DT = 1.0, and in panel (d) the ambient temperature is fixed at T = 1.0.

Using the above mean and variance, the work distribution
given in Eq. (D5) can be simplified to

P(W ) =
√

1

4π (DT + DA)u2t
e
− (W −u2t )2

4(DT +DA )u2t , (21)

which can also be obtained in the Gaussian white bath char-
acterized by an elevated diffusivity DT + DA. Note that, in
the stationary limit, the inertial effect dies out as t � 1/γ ,

and therefore, the distribution resembles the one in the over-
damped case [54].

B. Work fluctuation theorem

A number of macroscopic properties can be extracted from
the fluctuations of thermodynamic variables such as work at
a trajectory level, and it is quantified with the application of
fluctuation theorems (FTs). In the thermal bath, the distribu-
tions of positive and negative work are related via the work
fluctuation theorem, viz. [55,56],

P(−W )

P(W )
= e− W −�F

kBT . (22)

For the protocol that we have employed in this paper to
perform the work, there is no change of free energy F , i.e.,
�F = 0. Also note that the potential has been rescaled by

γ , and so alternatively, we can write DT in place of thermal
energy kBT . Here Eq. (22) represents the conventional FT.
Now, in a nonthermal bath, Eq. (22) is usually violated due to
the presence of an additional noise, e.g., see Refs. [54,57,58].
But the system satisfies an equivalent relation at the steady
state, viz.,

P(−W )

P(W )
= e− W

DT +DA , (23)

with DA being the diffusivity solely due to the additional
noise. The above equation is referred to as the extended
steady-state fluctuation theorem (ESSFT).

To validate the FT, we have plotted the ratio of PDFs of
positive and negative work in Fig. 4. Notice that Eq. (22)
is satisfied at a very shorter timescale. This is obvious as
we have assumed that the system was initially in thermal
equilibrium with the surroundings (before the introduction
of active noise). As time passes, active fluctuations push the
system out of equilibrium, and consequently, the system fails
to obey Eq. (22). However, it attains a nonequilibrium steady
state at long times, and at this condition, it obeys the ESSFT
given in Eq. (23), as graphically shown in Fig. 4. This can
be easily understood from the steady-state distribution given
in Eq. (21), involving an effective temperature DT + DA. Not
surprisingly, the FT is satisfied with the same temperature.
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FIG. 4. Logarithmic plot of ratio of distributions for positive and
negative work as a function of performed work. The curves with
symbols are drawn using Eq. (D5) for different times. The two solid
lines [cyan (light gray) and black] correspond to fluctuation theorems
given by Eqs. (22) and (23), respectively. Other parameters are as
follows: DT = 1, DA = 20, γ = 2.5, λ = 0.5, τA = 5, u = 1.

V. CONCLUSION

In this paper, we have investigated the dynamics of an
inertial particle in an active bath characterized by two types of
Ornstein-Uhlenbeck (OU) processes. Two timescales, namely,
inertial time and correlation time are found to be important
and have almost similar effect on the dynamics. In the bath
modeled by the usual OU process, the particle covers a shorter
average distance if the motion is highly persistent. On the
contrary, long-range correlations (or low dragging) cause the
particle to travel longer distances if the bath is described
by the modified Ornstein-Uhlenbeck process. Similar effects
have been found on the work fluctuations. However, in the
steady-state limit, the dynamical parameters become irrele-
vant, and the system follows the extended fluctuation theorem
with an effective temperature.

Here we present a simple but effective formalism to deal
with an underdamped particle in the presence of an active
(extra) noise. This method can also be applied to obtain
other dynamical quantities of inertial active particles such
as mean-square speed and swim pressure. Apart from work
fluctuations, one can employ this technique to explore sev-

eral thermodynamic properties such as energy fluctuations,
entropy productions, etc.
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APPENDIX A: CHARACTERISTIC FUNCTIONAL
OF GAUSSIAN NOISE ηA(t )

As discussed earlier, the noise ηA(t ) can be expressed in
terms of the Ornstein-Uhlenbeck process (OUP) as given in
Eq. (2). The analytical solution for the OUP is known and
well documented, e.g., see Ref. [59]. It can be represented as

ηA(t ) = ηA(0)e− t
τA + 1

τA

∫ t

0
dt1 e− t−t1

τA ξ (t1), (A1)

where ηA(0) follows the initial distribution P[ηA(0)],

P[ηA(0)] =
√

τA
2πDA

e− τA
2DA

η2
A(0)

. Here ξ (t ) is the white Gaus-

sian noise and it has the following probability distribution

functional: P [ξ ] = e− 1
4DA

∫ t
0 dt1ξ 2(t1 )

. By virtue of Eq. (A1), the
characteristic functional of ηA(t ) can be expressed as

〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA = 〈eiηA(0)
∫ t

0 dt1 p(t1 )e
− t1

τA 〉ηA(0)

× 〈e i
τA

∫ t
0 dt1 p(t1 )

∫ t1
0 dt2 e

− t1−t2
τA ξ (t2 )〉ξ . (A2)

Using the distributions of η(0) and ξ (t ), one can derive the
averages as follows:

〈eiηA(0)
∫ t

0 dt1 p(t1 )e
− t1

τA 〉ηA(0)

=
∫

dηA(0) P[ηA(0)]eiηA(0)
∫ t

0 dt1 p(t1 )e
− t1

τA

=
√

τA

2πDA

∫
dηA(0) e− τA

2DA
η2

A(0)eiηA(0)
∫ t

0 dt1 p(t1 )e
− t1

τA

= e− DA
2τA

∫ t
0 dt1

∫ t
0 dt2 p(t1 )e

− t1+t2
τA p(t2 )

, (A3)

〈e i
τA

∫ t
0 dt1 p(t1 )

∫ t1
0 dt2 e

− t1−t2
τA ξ (t2 )〉ξ

= 〈e i
τA

∫ t
0 dt2 ξ (t2 )

∫ t
0 dt1 p(t1 )�(t1−t2 )�(t−t1 ) e

− t1−t2
τA 〉ξ

=
∫

dξ e− 1
4DA

∫ t
0 dt1ξ 2(t1 )+ i

τA

∫ t
0 dt2 ξ (t2 )

∫ t
0 dt1 p(t1 )�(t1−t2 )�(t−t1 ) e

− t1−t2
τA

= e
− DA

τ2
A

∫ t
0 dt3

∫ t
0 dt2

∫ t
0 dt1 p(t1 )p(t2 )�(t1−t3 )�(t2−t3 ) e

− t2−t3
τA e

− t1−t3
τA

= e
− DA

τ2
A

∫ min(t1 ,t2 )
0 dt3 e

2t3
τA

∫ t
0 dt2

∫ t
0 dt1 p(t1 )p(t2 ) e

− t1+t2
τA

= exp

[
− DA

2τA

∫ t

0
dt2

∫ t

0
dt1 p(t1)p(t2) e− t1+t2

τA

(
e

2 min(t1 ,t2 )
τA − 1

)]

= exp

[
− DA

2τA

∫ t

0
dt2

∫ t

0
dt1 p(t1)p(t2)

(
e− |t1−t2 |

τA − e− t1+t2
τA

)]
. (A4)
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In the third steps of Eqs. (A3) and (A4), we have performed
the standard Gaussian integration. Substituting the results of
Eqs. (A3) and (A4) in Eq. (A2), one can obtain

〈ei
∫ t

0 dt1 p(t1 )ηA(t1 )〉ηA = e− DA
2τA

∫ t
0 dt1

∫ t
0 dt2 p(t1 ) e

− |t1−t2 |
τA p(t2 )

, (A5)

which is the characteristic functional of noise ηA(t ) with the

autocorrelation function 〈ηA(t1)ηA(t2)〉 = DA
τA

e− |t1−t2 |
τA .

APPENDIX B: PROBABILITY DISTRIBUTION
FUNCTIONAL P [x]

For the reader’s convenience, here we briefly discuss
the path integration technique applied to our case. To start
with, we write down the probability distribution functional
of white noise ηT (t ) in Eq. (1), which is given by P [ηT ] =
e− 1

4DT

∫ t
0 dt1η2

T (t1 )
. With the help of Eq. (1), the functional can be

rewritten in terms of path x(t ), and it reads

P0[x(t )] ∼ e− 1
4DT

∫ t
0 dt1[ 1

γ
ẍ(t )+ẋ(t )+ U ′ [x(t ),t]

mγ
−ηA(t )]2

. (B1)

Since x(t ) and ηA(t ) follow different trajectories, one needs
to take into account the distribution for ηA as well. So the
probability distribution functional for the whole process is

P {[x(t ), ηA(t )]}

∼ e− 1
4DT

∫ t
0 dt1[ 1

γ
ẍ(t )+ẋ(t )+ U ′ (x(t ),t )

mγ
−ηA(t )]2− 1

4DT

∫ t
0 dt1[τAη̇A(t )+ηA(t )]2

,

(B2)

where the exponent in the above equation corresponds to the
stochastic action. Now one can express the propagator as a
path integral of P [{x, ηA}] with respect to x(t ) and ηA(t ) [60],

and it reads

P(xt , vt , t |x0, v0, 0) =
∫ x(t )=xt , v(t )=vt

x(0)=x0, v(0)=v0

Dx P [x], (B3)

where

P [x] =
∫

ηAt

∫
ηA0 P(ηA0)

∫ ηA(t )=ηAt

ηA(0)=ηA0

DηA P {[x(t ), ηA(t )]},
(B4)

with P(ηA0) being the initial distribution of ηA(t ). Without
the noise ηA(t ), one can employ semiclassical approximations
for the path integration to get exact result [60,61]. How-
ever, a more convenient way to treat the problem where an
extra noise ηA(t ) is involved is the phase-space path integra-
tion (PSPI) technique. Here one first finds the characteristic
functional of the white noise which can be computed as fol-
lows:

〈ei
∫ t

0 dt1 p(t1 )ηT (t1 )〉ηT =
∫

DηT ei
∫ t

0 dt1 p(t1 )ηT (t1 )P [ηT ]

=
∫

DηT e− 1
4DT

∫ t
0 dt1η2

T (t1 )ei
∫ t

0 dt1 p(t1 )ηT (t1 )

= e−DT
∫ t

0 dt1 p2(t1 ). (B5)

Now we can perform inverse Fourier transform of the above,
and it yields

P [ηT ] =
∫

Dpe−DT
∫ t

0 dt1 p2(t1 )−i
∫ t

0 dt1 p(t1 )ηT (t1 ). (B6)

Substituting ηT by using Eq. (1), one can obtain Eq. (5b),
and finally, doing the ensemble average over all possible
paths of ηA(t ), we arrive at Eq. (5c) which is equivalent
to Eq. (B4). So the propagator is P(xt , vt , t ; x0, v0, 0) =∫ x(t )=xt , v(t )=vt

x(0)=x0, v(0)=v0
Dx P [x], as given by Eq. (6). The reader is

referred to Refs. [36,51] for detailed discussions on this topic.

APPENDIX C: PROBABILITY DISTRIBUTION FUNCTION (PDF), P(xt, vt, t )

The details of the PDFs for two cases (free particle and harmonically confined particle) studied in Sec. III of this article are
given below.

1. Free particle, U (x) = 0

In Sec. III A, the PDF has the form of Eq. (9) with X being the column matrix, and its transpose, XT = (xt , vt ). The inverse
of matrix C f is given by

C−1
f =

[
C−1

xx C−1
xv

C−1
vx C−1

vv

]
, (C1)

where

C−1
xx = 1

C0

[
γ 2DT

(
γ 2τ 2

A − 1
)2

e2t (γ+ 1
τA

) − 2γ 3DAτA
(
γ 2τ 2

A − 1
)
eγ t+ t

τA + γ 2DA
(
γ 2τ 2

A − 1
)
(γ τA + 1)e

2t
τA

+ γ 2DA(γ τA − 1)
(
γ 2τ 2

A − 1
)
e2t (γ+ 1

τA
)]

,

C−1
xv = C−1

vx = 1

C0

{
γ
(
γ 2τ 2

A − 1
)
(γ τA + 1)et (γ+ 2

τA
)[(γ τA − 1)(DT + DA) − DA] − γ DT

(
γ 2τ 2

A − 1
)2

× e2t (γ+ 1
τA

) − γ 3DAτ 2
A

(
γ 2τ 2

A − 1
)
eγ t+ t

τA + γ 2DAτA
(
γ 2τ 2

A − 1
)
(γ τA + 1)e2γ t+ t

τA − γ 2DAτA

× (
γ 2τ 2

A − 1
)
eγ t+ t

τA − γ DA
(
γ 2τ 2

A − 1
)2

e2t (γ+ 1
τA

) + γ DA
(
γ 2τ 2

A − 1
)
(γ τA + 1)e

2t
τA

}
,
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C−1
vv = 1

C0

{
2
(
γ 2τ 2

A − 1
)
(γ τA + 1)et (γ+ 2

τA
)[(γ τA − 1)(DT + DA) − DA] + 2DT

(
γ 2τ 2

A − 1
)2

(γ t − 1)

× e2t (γ+ 1
τA

) + 2γ 2DAτ 2
A

(
γ 2τ 2

A − 1
)
(γ τA + 1)e2γ t+ t

τA − 2γ 2DAτ 2
A

(
γ 2τ 2

A − 1
)
eγ t+ t

τA + DA
(
γ 2τ 2

A − 1
)

× (γ τA + 1)e
2t
τ + DA(γ τA − 1)

(
γ 2τ 2

A − 1
)
e2t (γ+ 1

τA
)[−2γ τA(γ τA + 2) + 2γ t (γ τA + 1) − 3]

}
and

C0 = −γ
(
(γ τA + 1)2e

2t
τA

(
D2

T (γ τA − 1)2 − DT DA(γ τA − 1)(−2γ τA + 2γ t + 5) + D2
A

× {
γ
[
3γ τ 2

A − 2τ (γ t + 3) + 2t
] + 4

}) + (γ τA − 1)2e2t (γ+ 1
τA

){DT DA(γ τA + 1)
[
2γ τA(γ τA + 3) − 2γ t

× (γ τA + 2) + 7
] − D2

T (2γ t − 3)(γ τA + 1)2 + D2
A

[
3γ τA(γ τA + 2) − 2γ t (γ τA + 1) + 4

]} + 2γ 2DAτA

× et (γ+ 1
τA

)[DT
(
γ 2τ 2

A − 1
)
(2t + 3τA) + 2DA

(
γ 2τ 2

At − 2τA − t
)] − 2γ DAτA(γ 2τ 2 − 1)et/τ [(γ τA − 1)

× (DT + 2DA) + DA] − 2γ DAτA
(
γ 2τ 2

A − 1
)
et (2γ+ 1

τA
)[DT (γ τA + 1)2 + 2γ DAτA + DA] − 2

(
γ 2τ 2

A − 1
)

× et (γ+ 2
τA

)[(γ τA − 1)(DT + DA) − DA][(γ τA + 1)(2DT + DA) + DA] + γ 2D2
Aτ 2

A (γ τA − 1)2

+ γ 2D2
Aτ 2

A (γ τA + 1)2e2γ t + 2γ 2D2
Aτ 2

A

(
γ 2τ 2

A − 1
)
eγ t

)
.

2. In a harmonic potential, U (x) = λ
2 x2

The distribution of velocity can be obtained after integrating the propagator given in Eq. (15) of Sec. III B over the initial and
final positions and initial velocity, as follows:

P(vt , t ) =
∫

dxt

∫
dv0

∫
dx0P(xt , vt , t |x0, v0, 0)P0(x0, v0)

=
∫

dxt

∫
dv0

∫
dx0

∫
d pt

∫
d p0e−DT

∫ t
0 dt1 p2(t1 )〈ei

∫ t
0 dt1 p(t1 )ηA(t1 )〉ηA P0(x0, v0)

× e− i
γ

[vt p(t )−v0 p(0)]−ixt [p(t )− 1
γ

ṗ(t )]+ix0[p(0)− 1
γ

ṗ(0)]
, (C2)

where P0(x0, v0) is the initial distribution of both position and velocity of the particle. Here we consider that the initial velocity

has the Boltzmann distribution, and the particle was initially at position x0 = 0, i.e., P0(x0, v0) = δ(x0)
√

1
2πγ DT

e− v2
0

2γ DT . Taking

initial conditions into account, Eq. (C2) can be computed analytically, and it reads

P(vt , t ) =
√

1

2πσ 2
v (t )

e
− v2

t
2σ2

v (t ) , (C3)

with

σ 2
v (t ) = γ e−t ( 3γ

2 + 1
τA

)

2�2(−γ τA + �τA − 2)(−γ τA + �τA + 2)[τA(γ + �) − 2][τA(γ + �) + 2]

[
−32γ�DAτAeγ t sinh

(
�t

2

)

× [γ (γ τA + 2) − �2τA] + 64γ�2DAτAeγ t cosh

(
�t

2

)
+ 2�2(−γ τA + �τA + 2)[τA(γ + �) − 2]et ( 1

τA
+ 3γ

2 )

× {DT (−γ τA + �τA − 2)[τA(γ + �) + 2] − 4DA} − (γ τA − �τA + 2)[τA(γ + �) + 2]et ( 1
τA

+ γ

2 )

× (cosh(�t ){4γ DA[γ (2 − γ τA) + �2τA] + (� − γ )(γ + �)DT (−γ τA + �τA + 2)[τA(γ + �) − 2]}
− 8γ�DA sinh(�t )) + (γ − �)(γ + �)[τA(γ + �) + 2](γ τA − �τA + 2)et ( 1

τA
+ γ

2 )[
τ 2

A (γ − �)(γ + �)DT

− 4γ τA(DA + DT ) + 8DA + 4DT
]]

,

where � = √
γ (γ − 4λ). The distribution of displacement can be expressed as

P(xt , t ) =
∫

dvt

∫
dv0

∫
dx0P(xt , vt , t |x0, v0, 0)P0(x0, v0)

=
∫

dvt

∫
dv0

∫
dx0

∫
d pt

∫
d p0e−DT

∫ t
0 dt1 p2(t1 )〈ei

∫ t
0 dt1 p(t1 )ηA(t1 )〉ηA P0(x0, v0)

× e− i
γ

[vt p(t )−v0 p(0)]−ixt [p(t )− 1
γ

ṗ(t )]+ix0[p(0)− 1
γ

ṗ(0)]
, (C4)
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and the integration over the variables leads to

P(xt , t ) =
√

1

2πσ 2
x (t )

e
− x2

t
2σ2

x (t ) , (C5)

with

σ 2
x (t ) = 2γ e−γ t

�2(γ − �)(γ + �)(γ τA − �τA − 2)(γ τA − �τA + 2)[τA(γ + �) − 2][τA(γ + �) + 2]

×
(

2�2eγ t (−γ τA + �τA + 2)[τA(γ + �) − 2]
[
τ 2

A (� − γ )(γ + �)DT − 4γ τA(DA + DT ) − 4(DA + DT )
]

− 16γ�2DAτ 3
A (γ − �)(γ + �) cosh

(
�t

2

)
e

1
2 t (γ− 2

τA
) − cosh(�t )(−γ τA + �τA − 2)[τA(γ + �) + 2]

× {4γ DA[τA(γ 2 + �2) − 2γ ] + (γ 2 + �2)DT (−γ τA + �τA + 2)[τA(γ + �) − 2]} − 2γ�

×
{

8DAτ 2
A (γ − �)(γ + �)(γ τA + 2) sinh

(
�t

2

)
e

1
2 t (γ− 2

τA
) + sinh(�t )[τA(γ + �) + 2](γ τA − �τA + 2)

× [
τ 2

A (γ − �)(γ + �)DT − 4γ τA(DA + DT ) + 4(DA + DT )
]} − (� − γ )(γ + �)(−γ τA + �τA − 2)

× [τA(γ + �) + 2]{4DA(γ τA − 2) + DT (−γ τA + �τA + 2)[τA(γ + �) − 2]}
)

.

APPENDIX D: COMPUTATION OF P(W )

To compute Eq. (20), one needs to find the characteristic function of work which is given by

CW (α) = 〈e−iαW [x(t )]〉

=
∫

dx f

∫
dx0

∫
dv f

∫
dv0

∫
Dx e−iαW [x(t )] P [x(t )]P (x0, v0), (D1)

where P (x0, v0) is initial probability distribution function of the particle. By aid of Eqs. (5c) and (18), one can write

P [x(t )] =
∫

Dq e−iqt
vt
γ

−ixt (qt − q̇t
γ

)+iq0
v0
γ

+ix0(q0− q̇0
γ

) e−DT
∫ t

0 dt1 q(t1 )2〈ei
∫ t

0 dt1 q(t1 )ηA(t1 )〉ηA(t1 )

× eiλu
∫ t

0 dt1 t1q(t1 ) e−i
∫ t

0 dt1 x(t1 )[ q̈(t1 )
γ

−q̇(t1 )+λq(t1 )]
. (D2)

Therefore, Eq. (D1) can be rewritten explicitly, using Eq. (D2), as

CW (α) =
∫

dxt

∫
dx0

∫
dvt

∫
dv0

∫
Dx

∫
Dq e−iqt

vt
γ

−ixt (qt − q̇t
γ

)+iq0
v0
γ

+ix0(q0− q̇0
γ

)P (x0, v0)

× e−DT
∫ t

0 dt1 q(t1 )2〈ei
∫ t

0 dt1 q(t1 )ηA(t1 )〉ηA(t1 ) eiλu
∫ t

0 dt1 t1q(t1 ) e−iα λ
2 u2t2

e−i
∫ t

0 dt1 x(t1 )[ q̈(t1 )
γ

−q̇(t1 )+λq(t1 )−αλu]
. (D3)

One can perform the path integration over x(t ), which yields a δ functional, viz.,∫
Dxe−i

∫ t
0 dt1 x(t1 )[ q̈(t1 )

γ
−q̇(t1 )+λq(t1 )−αλu] = δ

[
q̈(t1)

γ
− q̇(t1) + λq(t1) − αλu

]
.

Further, the integration over vt and xt can be done easily, as follows:
∫

dvt e
−iqt

vt
γ = δ( qt

γ
), which implies qt = 0.∫

dxt e
−ixt (qt − q̇t

γ
) = δ(qt − q̇t

γ
), which leads to, q̇t = γ qt = 0. Taking all these results into consideration, we obtain

q(t1) = αu − αu

θ
e− γ

2 (t−t1 )sinh

[
γ θ

2
(t − t1)

]
− αu e− γ

2 (t−t1 )cosh

[
γ θ

2
(t − t1)

]
,

where θ =
√

1 − 4λ
γ

= �
γ
.P (x0, v0) can be taken as an equilibrium, Boltzmannian distribution, viz.,

P (x0, v0) =
√

λ

2πDT
e− λ

2DT
x2

0

√
1

2γπDT
e− 1

2γ DT
v2

0 .
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Now one can easily perform the integration over x0 and v0 in Eq. (D3), and it reads∫
dx0

∫
dv0eiq0

v0
γ

+ix0(q0− q̇0
γ

)P (x0, v0) = e− DT
2λ

(q0− q̇0
γ

)2− DT
2γ

q2
0 .

Therefore, Eq. (D3) can be recast as

CW (α) = e−DT
∫ t

0 dt1 q(t1 )2〈ei
∫ t

0 dt1 q(t1 )ηA(t1 )〉ηA(t1 ) eiλu
∫ t

0 dt1 t1q(t1 ) e−iα λ
2 u2t2

e− DT
2λ

(q0− q̇0
γ

)2− DT
2γ

q2
0 . (D4)

The average over ηA(t1) can be calculated using Eq. (4). Finally, by virtue of Eq. (D4) and Eq. (20), the distribution of work can
be expressed as

P(W ) = 1

2π

∫ +∞

−∞
dα eiα[W −W̄ (t )]−α2 σ2

W (t )

2 =
√

1

2πσ 2
W (t )

e
− (W −W̄ )2

2σ2
W (t ) , (D5)

where the mean of the work is given by

W̄ (t ) = λ

2
u2t2 − λu

∫ t

0
dt1 t1

{
u − u

θ
e− γ

2 (t−t1 )sinh

[
γ θ

2
(t − t1)

]
− u e− γ

2 (t−t1 )cosh

[
γ θ

2
(t − t1)

]}

= u2

[
t + 1

γ
− 1

λ
+

(
1

λ
− 1

γ

)
e− γ

2 t cosh

(
γ

2
θt

)
+

(
1

θλ
− 3

θγ

)
e− γ

2 t sinh

(
γ

2
θt

)]
, (D6)

and the variance of the work can be written as

σ 2
W (t ) = 2DT

∫ t

0
dt1

{
u − u

θ
e− γ

2 (t−t1 )sinh

[
γ θ

2
(t − t1)

]
− u e− γ

2 (t−t1 )cosh

[
γ θ

2
(t − t1)

]}2

+ DA

τA

∫ t

0

∫ t

0
dt1 dt2

{
u − u

θ
e− γ

2 (t−t2 )sinh

[
γ θ

2
(t − t2)

]
− u e− γ

2 (t−t2 )cosh

[
γ θ

2
(t − t2)

]}
e− |t1−t2 |

τA

×
{

u − u

θ
e− γ

2 (t−t1 )sinh

[
γ θ

2
(t − t1)

]
− u e− γ

2 (t−t1 )cosh

[
γ θ

2
(t − t1)

]}
+ DT

γ

[
u − ue− γ

2 t cosh

(
γ

2
θt

)

− u

θ
e− γ

2 t sinh

(
γ

2
θt

)]2

+ DT

λ

[
u − ue− γ

2 t cosh

(
γ

2
θt

)
− u

θ
e− γ

2 t sinh

(
γ

2
θt

)
+ u

2θ
e− γ

2 t sinh

(
γ

2
θt

)

− uθ

2
e− γ

2 t sinh

(
γ

2
θt

)]2

= 2DT u2

[
t + 1

γ
− 1

λ
+

(
1

λ
− 1

γ

)
e− γ

2 t cosh

(
γ

2
θt

)
+

(
1

θλ
− 3

θγ

)
e− γ

2 t sinh

(
γ

2
θt

)]

+ DAu2

γ 2λ2τ 4
A − γ 2τ 2

A + 2γ λτ 2
A + 1

[
2e− t

τA γ λτ 3
A

(
1 + γ τA + λγ τ 2

A

) + 2λe−γ t

γ 2θ2
(2 − γ τA)

(
1 + γ τA + λγ τ 2

A

)

+ e−γ t (1+θ )

2λθ2

(
1 + γ τA + λγ τ 2

A

)[2λ2

γ
τA + θτA(2λ − γ ) + λ

γ
(3 − θ ) − 4λτA + γ τA + θ − 1

]

+ e−γ t (1−θ )

2λθ2

(
1 + γ τA + λγ τ 2

A

)[2λ2

γ
τA − θτA(2λ − γ ) + λ

γ
(3 + θ ) − 4λτA + γ τA − θ − 1

]

+ τA

θ
e− (1−θ )

2 γ t− T
τA

(
θ − θγ 2τ 2

A − λγ τ 2
A − λγ 2τ 3

A + 2λ2γ τ 3
A

) + τA

θ

(
θ − θγ 2τ 2

A + λγ τ 2
A + λγ 2τ 3

A − 2λ2γ τ 3
A

)
× e− (1+θ )

2 γ t− T
τA + 1

γ λθ

(
1 + γ τA + λγ τ 2

A

){γ [γ τA(λτA − 2) + λτA(5 − 2λτA) + 2] − 4λ}

× [
e− (1−θ )

2 γ t − e− (1+θ )
2 γ t

] + 1

γ λ
(λ + γ 2τA{2λ[−τA(λτA + 2) + λτAt + t] − 3} + γ (2λt − 3))

× (
1 − γ τA + λγ τ 2

A

) + 1

λ

[
e− (1−θ )

2 γ t + e− (1+θ )
2 γ t

](
1 + γ τA + λγ τ 2

A

)
[γ τA(λτA − 2) + λτA + 2]

− τA
[
e− (1−θ )

2 γ t− t
τA + e− (1+θ )

2 γ t− t
τA

]
(γ τA + 1)[γ τA(λτA − 1) + 1

]
. (D7)
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