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We present a Monte Carlo study of the backbone and the shortest-path exponents of the two-dimensional
Q-state Potts model in the Fortuin-Kasteleyn bond representation. We first use cluster algorithms to simulate
the critical Potts model on the square lattice and obtain the backbone exponents dz = 1.7320(3) and 1.794(2)
for Q = 2, 3, respectively. However, for large Q, the study suffers from serious critical slowing down and
slowly converging finite-size corrections. To overcome these difficulties, we consider the O(n) loop model
on the honeycomb lattice in the densely packed phase, which is regarded to correspond to the critical Potts
model with Q = n?. With a highly efficient cluster algorithm, we determine from domains enclosed by the
loops dp = 1.64339(5), 1.73227(8), 1.793 8(3), 1.838 4(5), 1.8753(6) for 0 = 1,2, 3, 2443, 4, respectively,
and dpin = 1.0945(2), 1.0675(3), 1.0475(3), 1.0322(4) for O = 2,3,2+ /3, 4, respectively. Our estimates
significantly improve over the existing results for both dp and d;,. Finally, by studying finite-size corrections

in backbone-related quantities, we conjecture an exact formula as a function of n for the leading correction

exponent.
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I. INTRODUCTION

The Potts model [1,2] is an extension of the celebrated
Ising model and plays an important role in the theory of
phase transition and critical phenomena. It also has broad
applications in various fields like condensed-matter physics
[2]. Given a connected graph G = (V, E) with V the vertex
(site) set and E the edge set, each vertex has a spin of an
integer value 0 =0, 1, ..., Q — 1, and two spins at the ends
of an edge are coupled as —J4,, 5,, Where J represents the
interaction strength and § is the Kronecker delta function.
Accordingly, the partition function can be written as

Zpows = ) [ [ €, )

o} (ij)

where the inverse temperature 8 has already been set to be
1, the summation {o} is over all possible spin configurations,
and (ij) is for all pairings of spins on the edges. For Q = 2, the
Potts model reduces to the Ising model with the Ising coupling
strength K = J/2.

The Potts model can be reformulated in graphical repre-
sentations, including the Fortuin-Kasteleyn (FK) bond [3,4]
and Q-flow (loop) representations [5,6]. Both the graphical
representations can be obtained from the original spin rep-
resentation by high-temperature expansion techniques, and,
recently, these two graphical models also have been directly
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mapped onto each other with the introduction of a loop-cluster
joint model [7].

The FK bond representation is also known as the random-
cluster (RC) representation, in which each edge is either
empty or occupied. Each occupied bond has a statistical
weight (relative to an empty one) as v = exp(J) — 1, and each
connected component (also called cluster) has a fugacity Q.
The partition function of the RC model then reads as

Zye =y v, 2)

ACG

where the summation is over all possible subgraphs of G and
N, and N, represent the total numbers of occupied bonds
and clusters, respectively. As an important consequence, the
parameter Q can now take any nonnegative real number. For
ferromagnetic coupling J >0, the bond weight v is positive,
and each configuration in Eq. (2) has a probability interpreta-
tion. As special cases, the RC model reduces to the standard
bond percolation in the Q — 1 limit, and the spanning tree or
forest for Q— 0 [4]. The FK representation has an important
role in conformal field theory [8] and in stochastic Loewner
evolution [9,10], leading to much advanced theoretical pro-
gresses for the Potts model. Further, based on passing back
and forth between the spin and FK representations, efficient
cluster methods (i.e., the Swendsen-Wang (SW) [11] and
Wolff algorithms [12]) are developed and widely used.

In addition to physical quantities from the original spin rep-
resentation, the RC model has very rich geometric structures
associated with FK random clusters, and a variety of critical
exponents are used to characterize these geometric behaviors,
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which were first introduced in percolation [13—15]. The Eu-
clidean diameter &; of the largest cluster acts as the correlation
length and diverges as &, ~¢~", witht = (v. — v)/v. and v, the
critical point and v is frequently called the correlation-length
exponent. The mass s of any critical cluster has a power-law

dependence on its diameter & as s ~ Esd " for s > 1, with
dy the fractal dimension. In two dimensions (2D), the hull
and the external perimeter of clusters can be further defined
and have fractal dimensions dy,; and dgp, respectively. For
a pair of connected sites with distance |x| > 1, the graph
distance S, i.e., the minimum length of all connecting paths
between them, algebraically diverges as S ~ |x|dmin , With dpin
the shortest-path exponent. If a voltage difference is applied
between these two sites, the total number N, of bonds carry-
ing nonzero current scales as N, ~ |x|%%, where dp is called
the backbone exponent. Further, the total number N4 of red
bonds, which carry all the current, behaves as Nq ~ [x|drea
with dyeq the red-bond exponent.

In the past decades, the Q-state Potts model has been
extensively studied [16—19]. In 2D, the Potts model exhibits
a second-order phase transition for Q <4, and the exact
values of most critical exponents have been identified. In
the Coulomb gas theory [18,19], the Coulomb-gas coupling
strength g relates to Q as

0 = 4cos’(mg/4),

and the thermal and magnetic exponents of the leading and
subleading renormalization fields are known as

ge(2,4], 3)

y1=3-06/g, yo=4-—16/g, 4)
_ (g+2)(g+6) _(g+10)(g—2)
1 - —’ h2 - —7
8g 8g

where the leading thermal exponent y,; is the inverse of the
correlation-length exponent v as y,; = 1/v. The subleading
field, with y,» <0, governs the convergence of leading correc-
tions; logarithmic corrections arise as Q approaches to 4, for
which y;, — 0.

The fractal dimension d; of FK clusters is identical to the
leading magnetic exponent as d; = y1, and the exact values
of some other geometric exponents are [20]

dhuH: 1+2/gs dEP:1+g/8f
drea = (4 —g)(3Bg+4)/g. (5)

However, there is still a set of geometric critical exponents,
including dp and dy,;,, whose exact values are unavailable.
Monte Carlo simulations have been used to estimate them
[21-26], and Table I lists some estimates of dg and dyip.

In this work, we apply the SW and Wolff cluster methods
to simulate the critical Potts model on the square lattice,
expecting to obtain better results for dg and dp;, than those
in Refs. [21-24,26]. An improved algorithm is formulated to
classify the occupied bonds into “bridges” and “nonbridges”
[23]. From the fractal dimension of bridge-free clusters, we
determine dg = 1.7320(3) for Q = 2 and 1.794(2) for Q = 3.
The estimate of dg for Q = 2 is consistent with Ref. [24],
and for Q = 3 it nearly rules out the result in Ref. [21]. As
Q increases, however, the cluster methods suffer from severe
critical slowing-down and finite-size corrections become very

TABLE 1. Best estimates of dg and d,;, for the two-dimensional
Potts model with Q =1,2,3,2 + /3,4 and g is the Coulomb-gas
coupling strength. The quoted values and the error margins are
estimated from a variety of fitting results, and both statistical and
systematic uncertainties are already taken into account.

(Q7 g) db’ dmin
(1,8/3) 1.643 36(10) [23] 1.130 77(2) [26]
Present 1.643 39(5) —

2,3) 1.732 1(4) [24] 1.094 0(2) [24]
Present 1.732 27(8) 1.094 5(2)
(3,10/3) 1.789 5(5) [27] 1.066 2(30) [22]
Present 1.793 8(3) 1.067 5(3)
(2++/3,11/3) — —
Present 1.838 4(5) 1.047 5(3)

4,4) 1.873(4) [27] —
Present 1.875 3(6) 1.032 2(4)

strong, preventing us from obtaining high precision of dg for
large Q.

We then consider the O(n) loop model [28] on the
honeycomb lattice, of which the configuration is a gas of
nonintersecting loops. Let n be the fugacity of a loop and x be
the statistical weight for a loop segment (an occupied bond);
the partition function reads as

Zioop = y_ x“n, (6)

loops

where N, is the number of loops and £ is the total length of all
the loops. For n = 1, the loop model reduces to the flow (loop)
representation of the honeycomb-lattice Ising model, with the
coupling strength as tanh(K) = x [29].

The phase diagram of the O(n) loop model is shown in
Fig. 1. As the bond weight x is increased, the system under-
goes a second-order phase transition x from the dilute phase,

22
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FIG. 1. Phase diagram of the O(n) loop model on the honeycomb
lattice. The system is in dilute phase if bond weight x <x, and in DP
phase if x> x, . Vertical blue arrows sketch the directions of renor-
malization flows and illustrate that the whole DP phase (x; <x < 00)
is critical and in the same universality for each n.
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consisting of small loops, into a critical densely-packed (DP)
phase, where loops have fractal structures. The universality of
the DP phase is governed by the line x_ of stable fixed points.
The exact locations of x (n) are known as [30]

2442 —n. (7)

l/xi =

The two curves meet at (n=2, x4+ =1/+/2). In the language
of universality, the O(n) loop model on the critical branch x
(DP phase) corresponds to the tricritical (critical) Q-state Potts
model with Q = r? [30,31]. An interesting note is that, at x,
the O(1) loop model is typically regarded as the critical Ising
model instead of the tricritical one-state Potts model.

In other words, despite the absence of an exact transforma-
tion between the loop model (6) and the Potts model (1), the
two systems have the same Coulomb-gas coupling strength
g as long as Q = n?. This correspondence is expected to hold
true for any real 0 < Q < 4, where, for noninteger Q, the Potts
model should be formulated in the FK bond representation.
The relation between g and Q is still given by Eq. (3), with
g € [2,4] for x_ and g € [4, 6] for x,.. Furthermore, Egs. (4)
and (5) for critical exponents still hold true. However, what
physical quantities in the loop model, described by these
equations, need to be identified, and this has been largely
explored in Refs. [32,33]. The thermal field along the x di-
rection has exponent y,, in Eq. (4), instead of y;;. The loops
and the domains (faces) enclosed by the loops have the fractal
dimensions dp,; and dy =y, respectively. The quantities,
of which the scaling is governed by y;;, are identified as the
magnetization and the susceptibility of Ising spins living on
the triangular lattice that is dual to the honeycomb lattice.

Highly efficient worm-type and cluster algorithms have
been developed for the O(n) loop model with n > 1 [32,33].
It is shown that critical slowing-down barely exists at x.., and
is completely absent in the DP phase, as qualitatively under-
stood as following. For worm-type and cluster algorithms,
the dynamic exponent z has the so-called Li-Sokal bound
[34] z > zZmin = /v, where «/v is the scaling exponent for
specific heat, and, further, this lower bound is rather sharp
Z A Zmin 10 2D. For the critical Potts model, one has z;, =
2y;1 — 2, leading to z > 0 for Q > 2. Moreover, as Q increases,
the critical slowing-down becomes more severe, since y;| is
an increasing function of Q. However, the O(n) loop model
has a/v = 2y, — 2, and thus z;,;,,(n > 1) < 0 along x; and
Zmin < —2 in the whole DP phase.

We aim to determine the backbone exponent dg and the
shortest-path exponent dy,;, by studying the O(n) loop model
along the line x_ (n). For this goal, we assume that the domains
of DP loops and the corresponding FK random clusters not
only have the same fractal dimension but also exhibit the same
scaling for other geometric properties. In comparison with the
critical Potts model, the advantage of studying the loop model
along x_(n) is twofold: The absence of critical slowing-down
and the absence of finite-size corrections from y;, (corrections
from other sources can still exist).

Our final estimates of dp and dy,;, are given in Table I and
significantly improve over the existing results. The agreement
with the FK bond representation confirms our assumption that
the domains of the DP O(n) loops have the same geometric

structures as the critical FK random clusters, and we expect
that this correspondence can be extended to the x; branch.

In the analysis of quantities associated with bridge-
free (backbone) clusters for the DP O(n) loop model, we
observe that, despite the absence of corrections from y,,,
finite-size corrections are still significant and become more
and more severe as n increases. For the special case of n = 2,
logarithmic corrections seem to arise. On the basis of our nu-
merical results, we conjecture an exact formula, as a function
of n, for the leading correction exponent.

The remainder of this paper is organized as follows.
Algorithms for simulation and measurement are described in
Sec. 11, together with a list of sampled quantities. Section III
presents our results for the backbone exponent and Sec. IV
presents results for the shortest-path exponent. A brief discus-
sion is given in Sec. V.

II. ALGORITHMS AND OBSERVABLES

A. Simulation of the Potts model

For integer (O, the celebrated SW and Wolff cluster
algorithms are used, and, for real Q > 1, the Chayes-Machta
(CM) method [35] is applied. They can be understood by the
so-called induced-subgraph picture as following Ref. [32].

For the RC model (2) on graph G = (V, E), one first de-
composes Q as Q = Q,+Qjp. Independently for each cluster
in a FK bond configuration, one then chooses color “o” with
probability Q,/Q or color “B” with probability Qg/Q, and
assigns the chosen color to all sites in the cluster. Conse-
quently, the lattice sites are partitioned as V=V, U Vg, and
the edge set £ becomes E = E, U Eg U E,5; an edge e € Eqg
connects a pair of sites, respectively, in V,, and Vg, and it is
not occupied by definition. It can be seen that, conditioning
on this decomposition, the bond configuration is nothing other
than the combination of a Q,-state RC model on the induced
subgraph G, = (V,, E,) and another Qg-state RC model on
Gg. Now, one can update these induced RC models by any
valid algorithm. One valid update is the identity operation,
which is “do nothing” for the RC model, corresponding to
the “inactive” color of Chayes and Machta [35]. Of course,
we must also include at least one nontrivial update.

A simple choice is to set Q, = 1 for Q > 1, so that the
corresponding induced model on G, is the standard bond
percolation and can be trivially updated, i.e., each edge e € E,
is independently occupied with probability p. On this basis, a
basic variant of CM algorithm is formulated as:

(1) Independently for each cluster, choose the active color
“a” with probability 1/Q and otherwise “pB” (inactive), re-
sulting in a random partition V =V, UVyg as well as £ =
E, UEg U Eqg.

(2) Independently for each edge e € E,, place an occupied
bond with probability p = v/(1 + v) according to Eq. (2), and
for e € E\ E,, do nothing.

Here E \ E, represents a complementary subset of E, with
edges in E, being excluded. A new FK bond configuration
is then obtained after ignoring/discarding the randomly as-
signed colors.

For Q > 2, the efficiency of the CM algorithm can be
further improved by increasing the number of active colors
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FIG. 2. Illustration of the generalized Ising model on the trian-
gular lattice and the O(n) loop model on the honeycomb lattice with
periodic boundary conditions. The hexagons in red (blue) denote the
spin-up (spin-down) sites and loops, i.e., the domain walls between
the generalized Ising spins, are specified by black lines.

to be m = [Q], with [Q] the ground integer of Q. Namely, for
each cluster, an active color ; (i = 1, ..., m) is chosen with
probability 1/Q, leading to m copies of the bond percolation
on G,,. For integer Q, where the “do-nothing” operation is
absent, the celebrated SW algorithm is recovered. A single-
cluster variant of the CM method is also available [36].

B. Simulation of the O(n) model

The induced subgraph picture can also provide a versatile
platform to design Monte Carlo algorithms for the O(n) model
(6) with n > 1. The basic idea is to set n = ny + ng with
ny = 1, and to simulate the induced O(1) loop model. More
precisely, independently for each loop, one randomly assigns
the active color “«a” with probability 1/n and the inactive color
“B” with probability 1 — 1/n. In addition, one assigns the
active color to all those sites that are not on loops, since they
have an implicit weight of “1” (unity), as in Eq. (6). The O(1)
loop model on the induced subgraph can then be simulated by
the worm algorithm. A variant of worm-type algorithm for the
O(n) loop model in 2D and 3D can be found in Refs. [33,37].

Note that the honeycomb-lattice loops are the boundaries
of Ising domains on the dual triangular lattice, with the
one-to-two correspondence between the loop and the spin
configuration of dual Ising spins. The dual coupling strength
K* relates to x as 2K* = — In(x), which is ferromagnetic for
x<1 and antiferromagnetic for x> 1. The number of dual
Ising domains is simply AV; = Ay + 1, with N, the loop num-
ber and, thus, 7 is also the fugacity of an Ising domain. In other
words, the O(n) loop model can be regarded as a generalized
Ising model on the triangular lattice, of which the partition
function is written as

Zoin = y_nNV [ Jexp(K*sis)), ®)

{s} (i)
where the summation is over all the Ising configurations.
Figure 2 demonstrates the relation between the loop model
and generalized Ising model. The Ising spins live on the sites
of the triangular lattice, and the spin values are specified by
the colors of the hexagonal faces. The domain walls are drawn

between the boundaries of domains, which correspond to the
loops in the O(n) loop model on the honeycomb Ilattice. In
Fig. 2, there are A; = 11 domains and N, = 10 loops.

Applying the induced-subgraph picture to Eq. (8), one
obtains a standard Ising model on induced subgraph G, of
the triangular lattice, which can be simulated by the SW or
Wolff cluster algorithms. The bond-occupation probability is
p=1—e"2K" =1 — x between a neighboring pair of parallel
spins for x< 1 or p = 1 —¢?" =1—1/x between antiparallel
spins for x> 1. Nevertheless, some cautions are needed for
the identify operation to the complementary subgraph G\ G,
which can no longer be “do-nothing.” Instead, one should
place occupied bonds on all the edges e € E\ E,,, independent
of the underlying Ising spins, so that all sites in V4 and their
neighboring sites in V,, are in the same cluster. As a result,
the domain topology on G\ G, is kept unchanged, thanks to
the Ising symmetry. For explicitness, the bond occupation
probability for x < 1 is listed as

1—x ifsi=s;andi€V,,jeVy;
p=10 ifs;#s;jandi € V,, j € Vy; )
1 otherwise.

For x > 1, similar procedure can be applied and the only dif-
ference is as follows: Within the active subgraph G,, the bond
is placed between antiparallel spins (s; # s;) with probability
p=1-—1/x.

For the O(n) loop model in the DP phase, both the cluster
algorithm and the worm method exhibit no critical slowing-
down, and their efficiency is approximately the same. Since
we are interested in the geometric structures of Ising domains
in this work, simulating the generalized Ising model (8) can
avoid the complication of passing back and forth between the
honeycomb and the triangular lattice.

C. Identification of nonbridges

Following Ref. [23], we classify the occupied bonds of a
FK bond configuration into bridges and nonbridges and study
the resulting bridge-free clusters to determine the backbone
dimension dg. A bridge is an occupied bond whose deletion
would break a cluster into two, and removing all the bridges
would produce a bridge-free configuration, which consists of
isolated sites and blobs. In other terminology, blobs are also
called bridge-free clusters and biconnected clusters, in which
any two sites are connected by at least two independent paths.
For the Ising domains on the triangular lattice, occupied bonds
have to be first placed within the domains before the bond
classification.

Two distinct methods to identify nonbridges are introduced
in Refs. [23] and [38], of which the former makes use of the
planarity of 2D lattices. In the latter, clusters are grown by
breadth-first procedure with help of a treelike data structure;
whenever a newly visited bond is to close a loop, one back-
tracks the two branches of tree until the joint site, and all
passing bonds are marked as nonbridges. A problem is that
a nonbridge may be visited for many times. Since the number
of nonbridges is of system size order, which is observed in
Refs. [23,24], a higher efficient algorithm is desired to identify
nonbridges.
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FIG. 3. Identification procedure for nonbridges. (a) Grow the
depth-first oriented walk until it is a to-be-closed loop, as labeled
by the walk [0], [1], [2], ..., [9]. (b) Backtrack to the root site ([2]),
construct a flat tree (red arrows), and mark all the passing bonds as
nonbridges (thick blue bonds). (c) Apply the last-in-first-out rule so
that the old elements [9], ..., [6] are removed and new elements, [6]
and [7], are added to the walk. (d) Add a new loop and replace the
existing root by the new one. The final configuration consists of four
bridge-free clusters, three of which are isolated sites (those with red
circles).

Hereby, we employ a depth-first growth with a chainlike
data structure YW[£] and introduce a treelike graph D[i] with
some minimal depth. The chainlike array W[{] is to keep trace
of the depth-first growth: Let W[{] denote the newly added
site, W[+ 1] stores the next to-be-added site. It is required
that, at one step, only one of the unvisited sites connecting to
WI[4] is added, and thus the chain, W[0], WI[1], --- , W[£+
1], is nothing other than an oriented walk. Further, the “last-
in-first-out” rule is applied: If all neighboring sites of W[{]
have been visited, then W[{] is removed and the incoming site
WI[E—1] becomes the walk frontier. Array D[i] is a directed
graph consisting of many trees, and each tree is to represent
a bridge-free cluster (including an isolated site). The parent
site of site i is given by D[i], and the root of a tree is the
site with the parent being itself. Initially, D[i] = i is set for all
sitesi € V.

The procedure is sketched in Fig. 3. Starting with an initial
site, the depth-first walk is performed until it is a to-be-closed
loop, labeled by [0], [1], ..., [9] in Fig. 3(a). Then, the root
is found starting from the joint site, [2], and the loop is
identified by backtracking D[i] (if applicable) or W[{] to
the root. Meanwhile, all the passing bonds are marked as
nonbridges (thick blue bonds) and all the passing sites take
the root as their parent [Fig. 3(b)]. Afterwards, the depth-first
walk is continued with the last-in-first-out rule, as illustrated
by Fig. 3(c). When a new loop is added, the existing root is
taken place by the new one if they are different [Fig. 3(d)].
In this way, it is kept that the parent D[i] of site i is always
visited no later than site i itself, so that the loop identification
by backtracking D[i] works properly. When all bonds in the
cluster are visited, the depth-first walk is done, and all the
nonbridges are successfully identified. As a by-product, all
bridge-free clusters are constructed so that if one can further
keep track of the sizes of trees, the associated quantities can
be calculated immediately.

In the backtracking procedure for identifying a loop, D(7)
has a higher priority than W[{]: If D(i) # i, then the back-

tracking is applied to D[i] instead of W[£—1]. This is to
avoid visiting a nonbridge for many times. In this work, we
observe that trees D(i) are very flat and their typical depth
is of a few units. In practice, the trees can be further flatten:
When a loop is to be formed, one tries to continue the walk by
visiting another neighboring site of WW[{]. In other words, a
self-avoiding walk is performed as long as possible before the
backtracking procedure. Therefore, the present method has a
nearly optimal efficiency for identifying nonbridges.

D. Sampled quantities

On the basis of bridge-free clusters, we sample the size
of the largest cluster as By = (B;) and calculate the second
moment of cluster sizes as B, = L=2(}_ 1), where the sum is
over all bridge-free clusters B and (-) represents the ensemble
average. For the O(n) loop model, we also distinguish the
spin-up domains from the spin-down ones and calculate the
averaged size By = ((Biy + B1})/2).

To determine the shortest-path exponent dy,i,, we use the
breadth-first algorithm to grow clusters; the number S of
layers after finishing the cluster growth corresponds to the
maximum graph distance between the seed site and any other
site in the cluster. We then sample the longest graph distance
among all the clusters as §; = (Sy).

At criticality, these sampled quantities are expected to
asymptotically diverge as a power-law scaling of linear system
size L. More precisely, they behave as

S1 ~ [ win and
By ~ By ~ L%, B, ~ L%, (10)

III. RESULTS FOR BACKBONE EXPONENT

We simulate the critical Q-state Potts model on the square
lattice and the DP O(n) loop model with system size L ranging
from 4 to 8192. Periodic boundary conditions are imple-
mented. For the Potts model, we take Q = 2, 3 and the exact
critical point v, = 4/Q. For the loop model, the simulation is

at the branch x_(n) withn =1, «/5, \/5, V2+ \/§, 2, corre-
sponding to Q = 1,2, 3,2 + /3, 4, respectively. We generate
more than 10 independent samples for each system size L <
256 and no fewer than 107 independent samples for L > 256.

We perform least-squares fits to the finite-size scaling
ansatz

O =L (a+ b L’ + byL"*) + co, (11)

where O = Sy, By, Ba, B> and the corresponding exponent yo»
is given by Eq. (10). The term with ¢y describes the back-
ground contribution of the system, and those with b; and
b, account for leading and subleading finite-size corrections,
respectively. In comparison with the leading scaling term with
amplitude a, all the other three terms play a role of corrections.
As a precaution against correction-to-scaling terms that we
miss including in the fitting ansatz, we impose a lower cutoff
L > L, on the data points admitted in the fits and system-
atically study the effect on the residuals (denoted by x?) by
increasing L,,. In general, the preferred fit for any given ansatz
corresponds to the smallest L,, for which the goodness of the
fit is reasonable and for which subsequent increases in L,, do
not cause the x2 value to drop by vastly more than one unit
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TABLE II. Fitting results of B, for the Ising model and of B, for
the Q = 3 Potts model.

Q Lm dB a b| V1 Xz/DF
2 8 1.73217(9) 0.7995(6) 0.1168(9) —0.66(1) 4.0/7
16 1.7320(1) 0.8003(8) 0.121(4) —0.68(2) 2.1/6
32 1.7320(2) 0.800(1) 0.12(1) —0.68(5) 2.1/5
16  1.73223(8) 0.7990(5) 0.104(3) —-5/8 2.3/6
32 L7321(1)  0.7995(8) 0.098(7)  —5/8 1.5/5
3 16 1.7940(6) 0.638(7) 0.415(2) —0.44(1) 10.0/6
32 1.7936(9) 0.64(1) 0.42009) —0.46(3) 9.8/5
16 1.7933(1) 0.647(1) 04152) —0.46 12.0/7
32 1.77935(2) 0.645(2) 04214) —046 9.8/6
64 1.7932(3) 0.648(3) 0.411(10) —-0.46 8.6/5

per degree of freedom (DF). In practice, by “reasonable” we
mean that x2/DF =~ 1. The systematic error is obtained by
comparing estimates from various reasonable fitting ansatz.

A. Estimate from the Potts model

The QO — 1 Potts model is the standard bond percolation,
and the geometric structures of critical percolation clusters on
the square lattice have been extensively studied in Ref. [23],
which gives dg = 1.64336(10).

The Coulomb-gas coupling of the Ising model (Q = 2) is
g = 3, and, according to Eq. (4), the subleading thermal and
magnetic scaling fields have exponents y,, = —4/3 and yj; =
13/24, respectively. However, the subleading magnetic field
with y;, is considered to be redundant due the Z, symmetry
of the Ising spins, and the subleading thermal field with y,,
is believed to play no role in the scaling of thermodynamic
quantities in the spin representation. Indeed, finite-size correc-
tions with exponent y,, = —4/3 are not observed in physical
observables; for quantities like energy, magnetization, specific
heat, and susceptibility, the leading finite-size corrections are
found to be governed by exponent —2. Nevertheless, it re-
mains open whether corrections with exponent —4/3 would
arise in some geometric quantities.

According to the least-squares criterion, the B; data for
Q =2 are fitted to Eq. (11). At first, we set b, = 0 and leave
dg, a, by, y1, and ¢ as free parameters, but no stable fitting
results can be obtained. By further fixing ¢y = 0, which is
effectively a correction term, we obtain dg = 1.7320(2) and
y1 = —0.68(5), of which the correction exponent is much
larger than —2 or —4/3. The results are shown in Table II.
Therefore, for geometric quantities associated with bridge-
free clusters, the leading finite-size corrections probably arise
from some other resource. In the framework of conformal
field theory, an exponent —5/8 appears at several places in
the Kac table for the Ising model [39]. With y; = —5/8 being
fixed, the fit yields dg = 1.73223(8) for L,, = 16 (Table II).
Following the same procedure, the fit of the B, data gives
dg = 1.7323(5), which is consistent with dg from B; but
has a slightly larger error bar. Comparing the fitting results
of B; and B, for different L,,, we take the final estimate as
dp = 1.7320(3). We choose not to seriously take into account
the smaller error bar from the fits with y; = —5/8 being fixed,
since it is only a crude guess and the exact value of y; is

L—5/8
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0.05 0.10 0.15 0.20

FIG. 4. Estimated backbone exponent dg for the Ising model
(a) and the Q = 3 Potts model (b). The approximate linearity of red
lines indicates that the leading correction exponent is y; & —0.6 for
0 =2 and —0.4 for Q = 3. The upward and downward bending of
other curves reflects the reliability of the finally quoted central values
and their error bars.

not available. In Fig. 4(a), the B, /L% data are plotted versus
L™/8 with dg chosen to be the central value of the estimate
as well as the central value plus or minus three error bars.
The approximate linearity of the red line and the upward and
downward bending curves reflect the reliability of the final
estimate dg = 1.732 0 and of the quoted error margin 0.000 3.

The leading correction exponent for the Q =3 Potts
model, with the Coulomb-gas coupling g = 10/3, is y;, =
—4/5. By fixing b, = 0 for the subleading correction term and
co = 0 for the background contribution, we fit the B, data to
Eq. (11) and obtain dp = 1.793 6(10) and y; = —0.46(3). The
value of y; is much larger than y,, = —4/5, again suggesting
that the leading finite-size corrections arise from some other
source. The data are also well described when the term with
co is included and y; = —0.46 is fixed in Eq. (11), as shown
in Table II. Corrections due to the subleading thermal field
with y;,, = —4/5 should also exist, and, thus, there simultane-
ously exist corrections from different sources. Nevertheless,
to identify different correction terms is very challenging for
numerical analysis, particularly because our data are limited.
The fits of By yield dp = 1.792(2). To be conservative, we
quote our final estimate as dgp = 1.794(2), of which the relia-
bility is demonstrated by Fig. 4(b).

We did not simulate the Potts model for larger value of Q,
due to severe critical slowing-down and finite-size corrections.
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TABLE III. Fitting results of dp from B, for the DP O(n) loop model with n = 1, V2, \/§, V2 + /3.

0 L, dp a by V1 XZ/DF
1 16 1.643 39(1) 1.4922(2) —1.529(9) —1.082(3) 4.2/6
32 1.643 40(2) 1.4918(4) —1.574) —1.091(9) 3.0/5
64 1.643 39(2) 1.4921(6) —1.5(1) —1.08(2) 2.8/4
32 1.643 35(1) 1.4932(3) —1.07(1) —1 4.2/5
64 1.643 37(2) 1.4928(4) —1.02(3) -1 2.1/4
2 32 1.732 27(3) 1.1140(5) —0.40(3) —1.00(3) 5.4/4
64 1.732 27(5) 1.1139(8) —0.4(1) —1.01(8) 5.3/3
32 1.732 27(1) 1.1140(2) —0.399(3) -1 5.4/5
64 1.732 27(2) 1.1140(3) —0.400(8) -1 5.4/4
3 16 1.793 9(1) 0.898(3) 0.105(4) —0.42(3) 54/5
32 1.793 8(2) 0.900(4) 0.11(1) —0.46(6) 4.9/4
32 1.793 66(3) 0.9024(5) 0.126(3) —1/2 5.4/5
64 1.793 70(5) 0.9018(8) 0.130(5) —1/2 4.4/4
2 8 1.838 3(2) 0.757(3) 0.2102 —0.304(6) 4.5/6
+ 16 1.838 4(2) 0.755(5) 0.211(2) —0.30(1) 4.3/5
V3 8 1.838 38(3) 0.7546(4) 0.2114(7) —-0.3 5.0/7
16 1.838 36(4) 0.7549(5) 0.211(1) —-0.3 4.3/6
32 1.838 32(5) 0.7555(8) 0.209(2) —-0.3 3.5/5

B. Estimate from the loop model

For the O(n) loop model, the backbone dimension dg can
be obtained from the finite-size scaling of quantities includ-
ing By, By, and S,, all of which give results consistent with
each other. Nevertheless, the estimates from B, has some-
what better precision than those B; and By, probably because
B, includes the sizes of all Ising domains in its definition.
Table III summarizes the fitting results from B, for n =

1,42, 4/3, V2 + /3, corresponding to O = 1,2,3,2 + V3.

The fitting details are given below.

l.n=1

From Eq. (7) for the line of stable fixed points, one
has the bond weight x=1 for n=1, meaning that the cou-
pling strength for the dual Ising model K*= —% Inx=0 and
thus the Ising spins on different lattice sites are indepen-
dent. With up (down) spins being interpreted as occupied
(empty) sites, the DP O(1) loop model at the branch x_ is
just the site percolation on the triangular lattice. This is also
reflected in the induced-subgraph cluster algorithm, as formu-
lated in Sec. II, where the bond occupation probability p =
1 —x = 0 and each site is randomly occupied or empty with
probability 50%.

In the least-squares fit of the second moment B, of bridge-
free clusters by Eq. (11), if b, = 0 and by, y;, and ¢ are left
as free parameters, then we have dp = 1.64338(4) but the
correction amplitude b; is consistent with zero within its error
bar. With further fixing ¢y = 0, we obtain dg = 1.64339(2)
and y; = —1.09(1). The B, data can be also well described
by Eq. (11) with by = b, = 0 and ¢, as free parameter, and
the backbone dimension is dg = 1.643 35(5). The fitting re-
sults are listed in Table III. By considering all different fits,
we take the final estimate as dg = 1.643 39(5), of which the
reliability is illustrated in Fig. 6. The fits for By and B4 give

dp = 1.64337(9) and dp = 1.643 38(5), respectively, which
are consistent with that from B, but have slightly larger error
bars.

L
0.01 0.02 0.03
1.12 ‘ ‘ ‘
2 @n=2 173203 —&—
A dg=1.73227 o
o 173251 ——
3 L1
=
o
Q
1.10 v
A
092 F  ®)n=\3 A
A
(] I
% 0.91
= v
(ol
= 0.90 T 17929 A
v dy=1.7938 o
089 | ¥
. | 17947 v
0.04 0.08 0.12

L—l/2

FIG. 5. Backbone exponent dp for the DP O(n) loop model with
n=+/2 (a) and n = /3 (b). The upward or downward bending of
curves with the dp value deviating from the estimated value illustrates
the reliability of the quoted error bars. By comparing to Fig. 4, it is
seen that the results from the loop model have higher precision.
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FIG. 6. Estimated backbone exponent dp from the domains of the
DP O(n) loop model withn =1 (a) andn = v2 + /3 (b). The O(1)
loop model, which has the bond weight x = 1, is actually the site per-
colation on the triangular lattice. The upward or downward bending
of those curves, with the dg value deviating from the estimated value,
illustrates the reliability of the quoted error bars.

2.n=42

As described in Sec. II, the current study of the
honeycomb-lattice O(n) loop model is to simulate the gen-
eralized Ising model Eq. (8) on the triangular lattice by the
induced-subgraph cluster method. To determine the backbone
dimension dg for Q = 2, one can either simulate the standard
Ising model at the critical branch 1/x, = +/3 and study the
FK random clusters constructed in the cluster simulation or
simulate the O(+/2) loop model in the DP phase and study
the Ising domains. Namely, within the framework of the loop
model, there exists a correspondence between the FK random
clusters constructed at the critical branch x; with n = 1 and
the Ising domains in the DP phase with n* = /2.

We argue that such a geometric correspondence can be
extended to general n. Given the honeycomb-lattice loop
model with parameters (#, x), one can always construct on the
triangular lattice the Ising domains and FK-like random clus-
ters by placing occupied bonds with probability 1 — x within
each domain. Along the critical branch x, (n), we assume the
following duality relation: Both the fractal dimensions of do-
mains and of FK-like random clusters, dgacp and drg, are given
by yu1 in Eq. (4); nevertheless, the Coulomb-gas coupling g for
deace 18 in [4,6] and calculated from n as n = —2 cos(wrg/4),
while g, for dg is in [2,4] and relates to g as g, = 16/g.
As a consequence of this duality relation, we further argue
that the FK-like random clusters for (n, x;) have the same

geometric structures as the domains of the DP O(n,) loop
model with n, = —2cos(wg,/4), similarly to the correspon-
dence between the critical and tricritical Q-state Potts model
observed in Ref. [27]. For the marginal case n = n, = 2, this
means that, apart from multiplicative logarithmic corrections,
the FK-like random clusters and the domains have the same
fractal dimension. Finally, it is noted that, for n < 2, the FK
random clusters in the DP phase are too small to percolate. A
simple example is for (n=1, x_=1), where the bond proba-
bility is p=1 — x = 0 and each FK-like cluster is just a single
site.

For the critical Ising model, the induced-subgraph cluster
method reduces to the SW cluster algorithm, which still suf-
fers from some critical slowing-down due to the logarithmic
divergence of the specific heat. Hereby, we determine the
backbone dimension dp from the O(+/2) loop model at the
branch x_, for which critical slowing-down is completely
absent.

We perform the least-squares fits for the B, datato Eq. (11).
By setting b, =0 and leaving the other correction parameters
free, we obtain dg =1.732 19(5), and ¢ is consistent with zero
within its error bar. By further fixing ¢o=0, we have dg=
1.73227(5) and y; = —1.01(8). The error bar of dp can be fur-
ther suppressed if y; =—1 is taken. Nevertheless, this smaller
error bar cannot be taken into account seriously, since we are
not aware from what sources such finite-size corrections arise.
The fitting results are given in Table III, and the final estimate
is quoted as dp = 1.73227(8), of which the reliability for
the central value and the quoted error bar is illustrated in
Fig. 5. The fits for By and B, give dg = 1.7322(1) and dp =
1.7320(3), respectively, in excellent agreement with that
from B,.

3.n=«/§

The same fitting procedure is applied to the data of
By, B4, B>. It is now necessary to simultaneously include two
correction terms (e.g., with b; and ¢g). For n= /3, we obtain
dg = 1.793 8(3) from B,, 1.793 5(7) from B; and 1.794 0(7)
from B,. The leading correction exponent is estimated as y; =
—0.42(3), which is in good agreement with y; = —0.46(3)
from the Q = 3 Potts model. Both estimates of y; are sig-
nificantly larger than y,, = —2/5. This strongly suggests that
the leading corrections associated with backbone clusters are
from some scaling field with exponent near ~ —0.4. The
fitting results are listed in Table III, the final estimate is taken
as dg = 1.793 8(3) and shown Fig. 5(b).

4 n=V2+43

The Coulomb-gas coupling is g = 11/3, leading to y;, =
—4/11~—0.364. With b, =0, we obtain exponents dp =
1.8382(2) and y; = —0.304(6) for L,, = 8, and the correction
amplitudes are also well determined as b; = 0.210(2) and
co = —0.254(8). Although the estimated value of y; is larger
than y;, if the error bar of y; is taken into account, it is difficult
to conclude y; # y;». Nevertheless, it is clear that, as n in-
creases, finite-size corrections become larger and larger, albeit
they are smaller than those for the corresponding Potts model.
As n — 2, we expect that correction exponent y; — 0 and
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TABLE IV. Fitting results of the second moment D, of domain
sizes for the O(2) loop model at x.. = 1/+/2.

L, Vb, a b, i Xz/DF
4 1.750 000(8)  0.89188(4) 0.079(4) —2.004) 4.0/8
8 1.749 993(10) 0.89192(5) 0.12(5) -2.2(12) 2.7/7
4 1.750 000(6)  0.89188(3) 0.0787(6) -2 4.0/9
8 1.750 001(7)  0.89187(3) 0.079(2) -2 4.0/8

multiplicative logarithmic corrections would arise. The final
estimate is taken as dg = 1.838 4(5) and shown in Fig. 6(b).

C. Logarithmic corrections for n = 2

The two branches of the O(n) loop model meet at x. =
1/ V2 forn = 2, and the thermal field associated with the bond
weight x becomes marginal (i.e., y;» = 0). In accordance with
the phase diagram in Fig. 1, this thermal field is marginally
irrelevant for x > x4 and marginally relevant for x < x4, and,
at x4, its amplitude vanishes. It is expected that logarithmic
corrections, irrespective of multiplicative or additive forms,
are absent in thermodynamic quantities, including energy den-
sity, specific heat, and magnetic susceptibility, as well as in
geometric quantities associated with the sizes of loops or
domains.

To confirm this expectation, we sample the second moment
of domain sizes as D, = L=2(}_ D?), where the summation
is over all the dual Ising domains D. The domains have a
fractal dimension dy = yj; given by Eq. (4), and, for n = 2,
it is expected D, ~ L** =2 = L7/* with d; = 15/8. By fix-
ing b, = cp = 0 so that only one single correction term is
included in Eq. (11), we observe that the reasonably good
fits can already be obtained with the minimum size as small
as L,, = 4. The estimated exponent, dy = 1.87500(1), is ex-
cellent agreement with the exact value 15/8. The correction
exponent y; = —2.00(4) is well consistent with —2, and,
furthermore, the correction amplitude b; = 0.079(4) is very
small; see Table IV for details. For clarity, the rescaled data of
D,/L"/* are plotted versus size L in Fig. 7, and it can be seen
that, as long as for L > 128, finite-size corrections are buried
in statistical noise. The rapid convergence of D,/L’/* demon-
strates the absence of multiplicative or additive logarithmic
corrections for n = 2. It also strongly supports that, along the
line x_(n) of stable fixed points, finite-size corrections with
¥s2 should not occur in quantities associated with loops and
domains.

For the backbone exponent dg, we first try to fit the data to
Eq. (11), without logarithmic corrections being included, and
the results are shown Table V. Taking B, for an example, if
we fix b, = 0 and leave other parameters free, then no stable
results can be obtained. When ¢y = 0 is further fixed, we have
dp = 1.8669(8). Similar analysis for B4 and B; gives dp =
1.868(2) and 1.866(2), respectively. As shown in Table V, all
the estimates are consistent with each other. The estimated
value of dp is slightly smaller than the fractal dimension
dr =15/8.

In the earlier study [21], it was numerically observed that
the backbone exponent dp of the tricritical Potts model re-
duces to the fractal dimension d; of FK random clusters,

D, /L versus L
0.8921 r

!

0.8917 : : : : :
32 128 512 2048 8192

FIG. 7. Absence of multiplicative and additive logarithmic cor-
rections in geometric quantities associated with domain sizes of
the O(2) loop model at xy = 1/+/2, as illustrated by the rescaled
quantity D,/L7*. The horizontal axis is the log plot of linear size L.
All the finite-size data of D,/L”/* are more or less consistent with
the horizontal red dashed line at 0.89188, strongly indicating that
corrections of logarithmic types are absent and those of algebraic
forms are very small.

which can be explained by the fact that the red-bond scal-
ing field is irrelevant (i.e., dieq < O for g > 4). For the O(2)
loop model with g = 4, the red-bond scaling field is marginal
drea = 0, and thus, dp = dy = 15/8 might still be expected.
Nevertheless, the fitting results of dp in Table V deviate from
the predicted value systematically when the error bars are
taken into account. A plausible reason is due to logarithmic
corrections, which may still occur in backbone clusters. This
is also implicitly reflected by the small correction exponent
y1 &~ —0.2, as shown in Table V, which might actually corre-
spond to logarithmic corrections.

We assume that quantities on the basis of backbone clusters
follow the following finite-szie scaling ansatz

O =L°[InL + do*° (a + bL"), (12)

where the constant dy is commonly used in the fitting with
multiplicative logarithmic corrections. In comparison with
the general scaling ansatz for logarithmic corrections, we
have ignored in Eq. (12) additive logarithmic corrections
which appear in powers of 1/1n L. This is because, in the fit,

TABLE V. Fitting results for backbone exponent dg for the O(2)
loop model without logarithmic corrections, i.e., Eq. (11).

O Lm dg a bl Y1 XZ/DF
B, 16 1.8671(33) 0.733(6) 0.2303) —-0.29(1) 3.7/5
32 1.8667(4) 0.740(9) 0.230(2) —-0.30(2) 2.8/4
64 1.8669(8) 0.74(2)  0.2293) —029(4) 2.8/3
By, 32 1.869(1) 0.522(9)  0.051(8) —0.204) 1.5/4
64 1.868(1) 0.531(10) 0.046(5) —0.25(8) 0.9/3
B, 16 1.8664(6) 0.780(6) 0.1493) —-0.30(2) 3.7/5
32 1.8662(9) 0.782(10) 0.1492) -0.31(4) 3.6/4
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TABLE VI. Fitting results of dg for the O(2) loop model with the logarithmic ansatz (12) and y; = —1.

o Ly, dp a b $o do x2/DF
B, 64 1.875 1.171(3) 0.06(3) —0.246(2) 1.928(4) 2.3/3
128 1.875 1.171(8) 0.07(9) —0.246(4) 1.929(9) 0.5/2

128 1.875 6(3) 1.163(2) —0.12(8) —0.25 1.66(2) 2.1/2

B, 16 1.875 0.694(4) —0.042(2) —0.126(2) 4.2(1) 5.1/6
32 1.875 0.700(7) —0.038(5) —0.1293) 4.4(3) 43/5

16 1.874 93(8) 0.6919(9) —0.042(2) —0.125 4.13(7) 5.0/6

32 1.874 8(1) 0.693(2) —0.039(4) —0.125 4.2(1) 42/5

B, 16 1.875 0.960(6) —0.01(1) —0.120(2) 0.7(1) 43/6
32 1.875 0.956(10) —0.03(3) —0.118(3) 0.6(2) 4.0/5

64 1.875 0.96(2) —0.01(6) —0.120(6) 0.7(4) 3.9/4

16 1.875 3(1) 0.971(2) —0.006(8) —0.125 0.88(6) 43/6

32 1.875 4(2) 0.970(3) —0.01(2) —0.125 0.8(1) 4.1/5

64 1.875 3(3) 0.972(5) 0.01(4) —0.125 0.9(2) 3.9/4

(1) the effects of parameter dy and of those additive logarith-
mic corrections can interfere with each other and (ii) our data
are limited and can already be reasonably described without
multiplicative logarithmic corrections.

Since no prediction exists for the logarithmic exponent y»
for backbone clusters and it is difficult to get an estimate
to yo and J» simultaneously, we first fix y» with expected
value and get the estimate of y». For B,, we first fix yp =
2dg —2 =7/4 and leave all other parameters free, which
leads to no stable results. Then we fix y; = —1 and obtain
Yo = —0.246(2) for L,, = 64. More fits have been done with
y1 fixed to various values in the interval [—2, —1), which
give the estimate » = 0.24(1). Later, we fix y; = —1 and
Yo to various values in the range —0.23 < o < —0.25, and
we obtain the estimate dg = 1.8753(6) by covering all the
fitting results. Following the same procedure, we obtain the
estimate dg = 1.8747(7) and $» = 0.135(15) for Ba, dp =
1.8752(7), and $» = 0.122(8) for B;. The detail of the fitting
results are summarized in Table. VI. Thus, we expect (Yo, Yo )
is (15/8,1/8) for B4 and B; and is (7/4, 1/4) for B,. This
is further demonstrated in Fig. 8, where the approximately
straight lines in the log-log plot correspond to logarithmic
exponents o = —1/4 and —1/8.

In the four-state Potts model, the multiplicative logarithmic
correction exponent is —1/16 for the magnetization [40], and
thus, the size of the largest FK cluster also has logarithmic
exponent —1/16, half of our estimate —1/8 for backbone
clusters. This is an interesting observation, but it might be due
to the absence of additive logarithmic corrections in Eq. (12).
Unfortunately, it is very challenging to obtain conclusive
evidence from fits simultaneously with multiplicative and ad-
ditive logarithmic corrections. Further theoretical insights are
needed for the exact value of the logarithmic exponent for
backbone clusters at n = 2.

D. Conjectured formula for leading correction exponent in
backbone clusters

The fitting results of dg from the Q-state Potts and the DP
O(n) loop model suggest that, in geometric observables asso-
ciated with backbone clusters, the leading correction exponent
is yi~—1.0, —0.6, —0.4, —0.2 for Q = 1,2, 3,2+ /3, re-

spectively [the estimate y; ~—1 for the O(+v/2) loop model
might be due to the small amplitude of the correction term].
For Q =4 or n =2, there exists a marginal scaling field,
leading to multiplicative and additive logarithmic corrections.
These corrections cannot be accounted by the scaling field
with y;,. It is tempting to identify the exact value of y; from
the Kac table in the conformal field theory [41].

The Kac table is characterized by a pair of integers i, j > 0.
The value of a scaling dimension X; ;, which relates to the cor-
responding exponent y as y = 2 — X, is expressed as [39,42]

g Lt = jmpP—1
n 2m@m + 1)

) (13)

where the conformal anomaly m can be calculated from the
Coulomb-gas coupling as m = g/(4 — g) for g € [2,4] and
m=4/(g —4) for g € [4,6]. For the critical Potts model,
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FIG. 8. Log-log plot of rescaled backbone quantities versus
(InL + dy) for the O(2) loop model. The rescaled quantities are
B,/L'*, B;/L'/}, and B4/L"/®. For being concise, B, is multi-
plied by a constant such that the data for B4 and B, approximately
collapse on top of each other. The existence of multiplicative log-
arithmic corrections and the corresponding exponents are clearly
illustrated.
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TABLE VII. Fitting results of dg from B, for the DP O(n) loop model with n = 1, ﬁ, \@, V2 + /3. The leading correction exponent y;
is fixed at the value given by Eq. (14) and the subleading correction exponent is taken as y, = 2y;.

Q Lm dB a b] bz XZ/DF
1 64 1.643 34(2) 1.4935(5) —-0.67(3) —5.8(8) 2.0/4
128 1.643 33(3) 1.4937(8) —0.69(7) —-5(4) 2.0/3

2 16 1.732 20(2) 1.1153(3) —0.051(3) —0.57(1) 8.3/6
32 1.73217(3) 1.1159(6) —0.059(6) —-0.53(3) 6.3/5

64 1.732 20(5) 1.1154(9) —0.05(1) —0.6(1) 5.6/4

3 64 1.794 1(1) 0.894(2) 0.108(9) —0.04(2) 6.8/4
128 1.793 8(2) 0.899(3) 0.07(2) 0.06(6) 32/3

256 1.794 0(3) 0.895(6) 0.10(4) —0.0(1) 2.5/2

2 32 1.840 0(3) 0.714(5) 0.14(1) 0.102(7) 1.6/5
+ 64 1.840 0(4) 0.715(9) 0.14(2) 0.10(1) 1.6/4
V3 128 1.839 3(7) 0.73(2) 0.10(4) 0.13(3) 0.3/3

this gives m = 2,3, 5, oo for Q=1, 2, 3, 4, respectively. The
exactly known exponents, in Eqs. (4) and (5) can be mostly
identified in the Kac table with integer (i, j). An exception
is the leading magnetic dimension X;,;, of which the indices
i=j=(m+1)/2 are half integers for m = 2 (percolation).
On the basis of the estimated values of y;, we conjecture
that the corresponding indices are (i, j) = (2, 0), leading to

y1 = —(@m +3)/2m(m + 1),
= —(4-g)(g+12)/8g. (14

This predicts y; =—11/12, —5/8, —23/60, —47/263 for Q=
1,2, 3,24+/3, respectively, which are surprisingly close to
the numerical results of y;. Moreover, Eq. (14) gives y; — 0
as g— 4, and thus can explain the appearance of logarithmic
corrections for n = 2.

For the critical Q-state Potts model, the external-perimeter
fractal dimension dgp has indices as (i, j) = (1, 0) in the Kac
table, which is neighboring to (i, j) = (2, 0) conjectured for
y1. It is noted that dgp is also the fractal dimension of external
perimeters and hulls of backbone clusters [43]. This obser-
vation indirectly supports that the conjectured formula (14)
might be reasonable for backbone clusters.

On this basis, we reanalyze the B, data for the DP O(n)
loop model by Eq. (11) with y; being fixed at the predicted
value. Another correction term with b, or ¢y is also included,
and, for simplicity, we first fix the subleading correction ex-
ponent as y, = —2. For n = 1, the fit with ¢y = 0 gives dp =
1.643 33(3), and the fit with b, = O leads to dg = 1.643 35(5),
consistent with each other. The same procedure has been done
forn = +/2 and /3 , and the results are consistent with the pre-

vious estimates. Forn = /2 + ﬁ, the residual X2 is big until
L,, = 128, and the result is dg = 1.8417(5) for ¢y = 0. When
fixing b, = 0 and leaving c( free, we obtain dp = 1.841 5(5).
Both estimates deviate from the previous estimate 1.838 5(4).
This is probably due to that subleading finite-size corrections
cannot be described by exponent y, = —2.

We then set y, =2y; and fix ¢o = 0. The final esti-
mates dg = 1.64333(3), 1.73220(6), 1.7939(4), 1.8395(9)

are obtained forn =1, ﬁ, \/5, and v2 + \/g, respectively,
consistent with previous estimates. The fitting results with this
choice are summarized in Table VII. For n = ﬁ, we have
y» = 2y; = —5/4, close to —1. The amplitude b; is much

smaller than b,, and thus, for small system sizes, the sub-
leading corrections can surpass the leading ones. This might
explain that, in the previous fits, the estimated correction
exponent is y; & —1 in Table III. For small n, the precision
of dp with this choice is slightly improved.

IV. RESULTS FOR SHORTEST-PATH EXPONENT

Since the shortest-path exponent dy,;, of percolation (Q —
1) is already estimated to have a high precision [26], we
hereby present the results from the domains of the DP O(n)

loop model with n=\/§, \/§, V2+ «/5, and 2. We perform
the least-squares fits to the S; data by the ansatz (11). For
n= \/5 we first leave all parameters free but cannot get
stable results. Then we fix ¢o = b, = 0 and obtain the es-
timate dpi, = 1.09448(13) and y; &~ —0.96, close to —1. If
we fix y, = —2 and leave b, free, then the fit gives the con-
sistent estimate as dp,;, = 1.0945(1) and y; = —0.97(2). In
addition, fixing y; = —1 and leaving c( free gives the esti-
mate dpi, = 1.09455(1). We take the final estimate dp;, =
1.094 5(2) by considering the systematic error from different

fits. Following the same procedure for n = \/5, V24 «/§, 2,
we obtain dpi, = 1.0675(3), 1.0475(3), 1.0322(4), respec-
tively. The details of fits are summarized in Table VIII.

As shown in Table VIII, we find that the leading correction
exponents y; is always close to —1, irrespective of the value
of n, and, thus, that the precision of dy;, remains approxi-
mately unchanged as n increases. Unlike for the backbone
exponent dp, finite-size corrections do not become stronger
as n increases. In particular, no logarithmic corrections seem
to arise for n = 2. In Figs. 9 and 10, we plot S; /L versus
L~'. The approximate linearity of the red line and the upward
and downward bending curves reflect the reliability of the
estimates and the quoted error bars.

V. DISCUSSION

By cluster Monte Carlo methods, we carry out extensive
simulations of the Q-state Potts model on the square lattice
and of the O(n) loop model on the honeycomb lattice, up to
linear size L = 8192. The induced-subgraph picture adds a
valuable perspective to understand the celebrated Swendsen-
Wang algorithm and further provides a versatile platform to
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TABLE VIII. Fitting results of the shortest-path exponent dy,;, from S, for the DP O(n) loop model with n = ﬁ, «/’3‘, v2+ \/§, 2.

0 L, dmin a by Y1 XZ/DF
32 1.094 42(7) 1.1221(6) —2.01(3) —0.943(5) 2.3/4

64 1.094 5(1) 1.1212(9) —2.10(8) —0.96(1) 1.1/3

2 64 1.094 54(3) 1.1209(3) —2.132(7) —0.96 1.2/4
128 1.094 53(5) 1.1210(4) —2.14(2) —0.96 1.1/3

32 1.067 45(9) 1.0833(8) —1.82(3) —0.911(6) 2.7/4

64 1.067 5(1) 1.082(1) —1.9(1) —0.92(2) 2.1/3

3 32 1.067 58(3) 1.0822(2) —1.865(3) —-0.92 5.0/5
64 1.067 52(5) 1.0826(4) —1.878(9) —-0.92 2.1/4

128 1.067 52(7) 1.0826(6) —1.88(2) —-0.92 2.1/3

32 1.047 4(1) 1.0332(9) —1.71(3) —0.907(8) 4.2/4

2 64 1.047 5(2) 1.033(2) —1.7(1) —0.91(2) 4.1/3
+ 32 1.047 49(4) 1.0328(3) —1.724(4) —0.91 4.4/5
V3 64 1.047 47(6) 1.0330(4) —1.73(1) —0.91 4.1/4
128 1.047 49(9) 1.0328(7) —1.72(2) —0.91 4.0/3

32 1.031 9(1) 0.981(1) —1.46(3) —0.874(9) 4.1/4

4 64 1.032 1(2) 0.980(2) —1.6(1) —0.90(2) 2.6/3
64 1.032 15(7) 0.9795(5) —1.59(1) —-0.9 2.6/4

128 1.032 2(1) 0.9794(7) —1.58(2) —-0.9 2.6/3

formulate efficient cluster or worm-type algorithms for loop
models.

The backbone exponent dg and the shortest-path exponent
dmin are determined for the Fortuin-Kasteleyn random clusters
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L
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FIG. 9. Estimated shortest-path exponent dy,;, from the domains
of the DP O(n) loop model with n = +/2 (a) and n = +/3 (b). The
upward or downward bending of those curves, with the dy,;, value
deviating from the estimated value, illustrates the reliability of the
quoted error bars.

of the critical Potts model and for the domains of the DP O(n)
loop model. According to Coulomb gas theory, the DP O(n)
loop model corresponds to the critical Q-state Potts model
with O = n%. The excellent agreement of the dp and dyn
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FIG. 10. Estimated shortest-path exponent d;, from the do-
mains of the DP O(n) loop model with n = v/2 4+ +/3 (a) and n = 2
(b). The upward or downward bending of those curves, with the dpy,
value deviating from the estimated value, illustrates the reliability of
the quoted error bars.
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results between the two systems strongly supports that, in
addition to the overall fractal structure, the domains of the DP
loop model and the corresponding FK random clusters share
the same scaling for other geometric properties.

In comparison with the Q-state Potts model, the study of
the DP O(n) loop model benefits from the advantages that the
absence of critical slowing down and the absence of finite-size
corrections with exponent y;, in Eq. (4). Also, an improved
algorithm for identifying backbones is formulated, by adopt-
ing a depth-first cluster growth procedure and introducing an
auxiliary array of treelike structure.

As a consequence of these advantages, the estimates of dp
and dpi, achieve a precision better than the existing results.
It can be seen that, as Q increases, the backbone exponent dp
increases and the shortest-path exponent d,, decreases, and,
for Q = 4, the backbone exponent and the fractal dimension
coincide (apart from logarithmic corrections). This reflects
that the critical FK random clusters become more and more
compact as Q increases. Since the exact values of dg and dpi,
are still unknown for the two-dimensional Potts model, our
high-precision results can provide a solid testing ground for
future theoretical explorations.

Finite-size corrections in the DP O(n) loop model are also
studied along the line of stable fixed points. It is confirmed
that corrections with exponent y,, are absent. Particularly,
for the marginal case n = 2, multiplicative and additive
logarithmic corrections are not observed in quantities as-

sociated with the domain sizes and in the shortest path.
The leading correction exponent y; for the shortest path is
observed to be roughly around —1, independent of n. For
backbone clusters, however, finite-size corrections become
larger and larger as n increases, and logarithmic corrections
arise for n = 2. To account for these corrections, which are
beyond the description of exponent y;,, we conjecture an
exact formula, Eq. (14), for the correction exponent y;. The
predicted value of y; is consistent with our Monte Carlo data
and can explain the emergence of logarithmic corrections for
n = 2. Fixing the y, value can lead to smaller error bars of dp,
which are, however, not taken in our final estimate. It remains
as an interesting question to explore whether our conjecture
holds true.
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