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The statistics of the first-encounter time of diffusing particles changes drastically when they are placed under
confinement. In the present work, we make use of Monte Carlo simulations to study the behavior of a two-
particle system in two- and three-dimensional domains with reflecting boundaries. Based on the outcome of the
simulations, we give a comprehensive overview of the behavior of the survival probability S(t ) and the associated
first-encounter time probability density H (t ) over a broad time range spanning several decades. In addition,
we provide numerical estimates and empirical formulas for the mean first-encounter time 〈T 〉, as well as for
the decay time T characterizing the monoexponential long-time decay of the survival probability. Based on the
distance between the boundary and the center of mass of two particles, we obtain an empirical lower bound tB for
the time at which S(t ) starts to significantly deviate from its counterpart for the no boundary case. Surprisingly,
for small-sized particles, the dominant contribution to T depends only on the total diffusivity D = D1 + D2, in
sharp contrast to the one-dimensional case. This contribution can be related to the Wiener sausage generated
by a fictitious Brownian particle with diffusivity D. In two dimensions, the first subleading contribution to T is
found to depend weakly on the ratio D1/D2. We also investigate the slow-diffusion limit when D2 � D1, and
we discuss the transition to the limit when one particle is a fixed target. Finally, we give some indications to
anticipate when T can be expected to be a good approximation for 〈T 〉.

DOI: 10.1103/PhysRevE.105.044119

I. INTRODUCTION

The first-encounter time (FET) of diffusing particles is one
of the central quantities characterizing diffusion-influenced
reactions. Smoluchowski first recognized the importance of
the encounter step by showing that the bimolecular reaction
rate of two spherical particles is proportional to their lin-
ear sizes and diffusivities [1]. The original problem of two
particles diffusing in three-dimensional Euclidean space is
equivalent here to the simpler problem of a single particle
diffusing toward a static target. Smoluchowski solved the
single-particle diffusion equation and determined the survival
probability and thus the probability density of the first-passage
time to the target, which is equivalent here to the FET. Since
his seminal work, first-passage times to static targets have
been thoroughly investigated for various kinds of diffusion
processes, chemical kinetics, and geometric settings [2–27].
In the case of a fixed small target embedded in an otherwise
reflecting boundary, one deals with the so-called narrow es-
cape problem, for which many asymptotic results have been
derived [28–37] (see also the review in Ref. [38]). Numer-
ous studies were also dedicated to the problem of multiple
particles diffusing on translationally invariant (both finite and

infinite) lattices or in Euclidean spaces, which is relevant to
chemical reactions involving various species (see [39–46] and
references therein). In particular, the effect of interparticle
interactions (e.g., excluded volume), and the cooperativity
effect when, for instance, several predators hunt for a prey,
were analyzed [47–53]. Theoretical developments have been
complemented by numerical approaches, in which diffusion-
reaction processes were modeled by molecular dynamics or
Monte Carlo simulations [54–56].

In spite of this progress, the statistics of the FET be-
tween two particles diffusing in confined domains remains
poorly understood. As the translational symmetry is broken
by the presence of a confining boundary, the reduction of
two diffusing particles to a single particle diffusing toward
a static target is prohibited. One has therefore to describe
the dynamics of two particles inside a confining domain, and
the solution of diffusion-reaction equations becomes much
more sophisticated. Amitai et al. estimated the mean first-
encounter time (MFET) between two ends of a polymer chain
by computing the mean time for a Brownian particle to reach
a narrow domain in the polymer configuration space [57].
Tzou et al. studied the MFET for two particles diffusing on a
one-dimensional interval by solving the underlying diffusion
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equations [58]. In particular, they discussed the question of
whether a mobile trap can improve capture times over a fixed
trap. Even for such a simple geometric setting, an analytical
solution of the problem was not provided. Agliari et al. inves-
tigated the encounter problem for random walks on branched
structures, in particular on combs [59–61]. More recently,
Lawley and Miles computed the MFET for a very general
diffusion model with many small targets that can diffuse either
inside a three-dimensional domain or on its two-dimensional
boundary; their diffusivities can fluctuate stochastically, while
their reactivity can be stochastically gated [62]. Nayak et al.
investigated the capture of a diffusive prey by multiple preda-
tors in confined space via intensive Monte Carlo simulations
[63]. In particular, they focused on the characteristic timescale
associated with rare capture events and its dependence on the
number of searchers, the relative diffusivity of the target with
respect to the searcher, and the system size. In our former
paper [64], we brought some analytic insights into the in-
fluence of confinement onto the distribution of the FET in
one-dimensional settings, namely for two particles diffusing
on the half-line or on an interval. As discussed below, the
problem of two particles could be mapped here onto an equiv-
alent problem of a single particle diffusing on a planar region
(a wedge or a rectangle) and then solved exactly.

In this companion paper, we extend our analysis to two-
and three-dimensional confining domains. We consider two
Brownian particles A and B diffusing inside a bounded do-
main with a reflecting boundary, until their encounter that
triggers an instantaneous chemical reaction: A + B → C. We
investigate the survival probability, i.e., the probability of both
particles not having met up to a given time t . The survival
probability can be interpreted as the fraction of particles still
reactive at time t with respect to the initial number of parti-
cles, and it determines other important quantities such as the
probability density of the FET (whence its mean value and
higher-order moments follow, as well as the reaction rate).

The paper is organized as follows. In Sec. II, we formu-
late the diffusion-reaction problem and summarize the main
known theoretical results that are relevant for our study. The
Monte Carlo simulations and the statistical tools for analysis
of the survival probability and the FET probability density for
two particles inside a disk and a sphere with reflecting bound-
ary are described in Sec. III. The analysis in two dimensions
is developed for the particular case of a single particle in the
search for a fixed target (Sec. IV), for two identical diffusing
particles (Sec. V), and for two particles with different diffu-
sivities (Sec. VI). Extensions to the three-dimensional case
are presented in Sec. VII, while the main conclusions are
summarized in Sec. VIII. The Appendixes describe the details
of Monte Carlo simulations and of the estimation procedure.

II. SUMMARY OF SOME KNOWN
THEORETICAL RESULTS

In this section, we summarize some theoretical results on
the first-encounter time in two- and three-dimensional space.
Even though these results are known, they are dispersed in the
literature and not easily accessible. A summary of results for
one-dimensional settings was provided in [64].

A. Two diffusing particles

We consider two spherical particles of radii ρ1 and ρ2,
started from prescribed points x1 and x2 and diffusing with
diffusion coefficients D1 and D2 in a d-dimensional Euclidean
domain � ⊂ Rd with a smooth (e.g., C1-type) reflecting
boundary ∂�. The first-encounter time T of these particles is
a random variable characterized by the cumulative probability
distribution, P {T < t}, or, equivalently, by the survival prob-
ability S(t |x1, x2) = P {T > t}. As the encounter depends on
the positions of both particles, it is natural to consider their
joint dynamics in the phase space � × �, which is governed
by the second-order differential operator

D = −(
D1�x1 + D2�x2

)
, (1)

where �xi is the Laplace operator acting on xi. The survival
probability satisfies the joint diffusion equation:

∂S

∂t
= −D S (x1, x2) ∈ � × �, (2)

subject to the initial condition S(t = 0|x1, x2) = 1. As the
boundary ∂� of the confining domain � is reflecting (there
is no net diffusive flux across the boundary), the Neumann
boundary condition applies for both particles:

∂S

∂n1
= 0 (x1, x2) ∈ ∂� × �, (3a)

∂S

∂n2
= 0 (x1, x2) ∈ � × ∂�, (3b)

where ∂/∂ni is the normal derivative at the boundary point xi

oriented outward �. As we are interested in the first encounter,
the Dirichlet boundary condition is imposed whenever the
particles are in contact, i.e., within the distance |x1 − x2| = ρ:

S = 0 (x1, x2) ∈ �, (4)

where � = {(x1, x2) ∈ � × � : |x1 − x2| = ρ}, with

ρ = ρ1 + ρ2. (5)

In other words, the first-encounter time of two diffusing parti-
cle is equivalent to the first-passage time of a single diffusive
process (X (1)

t , X (2)
t ), describing the motion of these particles,

to the target �. The survival probability determines the prob-
ability density of the FET,

H (t |x1, x2) = −∂S(t |x1, x2)

∂t
, (6)

as well as the moments (if they exist):

〈T k〉 =
∫ ∞

0
dt t k H (t |x1, x2) = k

∫ ∞

0
dt t k−1 S(t |x1, x2),

(7)
with k = 1, 2, . . . . In particular, the MFET is the area below
the survival probability curve:

〈T 〉 =
∫ ∞

0
dt S(t |x1, x2). (8)

From Eqs. (2)–(4) and (7), one also finds that the moments
〈T k〉 (if they exist) satisfy the well-known hierarchy of PDEs,

D〈T k〉 = k〈T k−1〉 (x1, x2) ∈ � × �, (9)
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with

∂〈T k〉
∂n1

= 0 (x1, x2) ∈ ∂� × �, (10a)

∂〈T k〉
∂n2

= 0 (x1, x2) ∈ � × ∂�, (10b)

and

〈T k〉 = 0 (x1, x2) ∈ �. (11)

For any bounded domain �, the solution of the bound-
ary value problem (2)–(4) can be formally expanded over
the eigenfunctions of the governing diffusion operator D in
Eq. (2):

S(t |x1, x2) =
∞∑

n=1

e−�nt Un(x1, x2)
∫

�×�

dx′
1 dx′

2 U ∗
n (x′

1, x′
2),

(12)
where the asterisk denotes the complex conjugate, �n are
the eigenvalues, and Un(x1, x2) are the L2(� × �)-normalized
eigenfunctions of D: DUn = �nUn (n = 1, 2, . . .) [65]. The
eigenvalues are positive, have units of inverse time, and can be
enumerated in ascending order: 0 � �1 � �2 � · · · ↗ +∞,
whereas the eigenfunctions form a complete basis allowing
for such spectral expansions. In particular, the survival prob-
ability and the FET density exhibit an exponential decay at
long times,

S(t |x1, x2) ∝ e−t/T (t → ∞), (13)

with the decay time

T = 1

�1
, (14)

determined by the smallest eigenvalue �1. We emphasize that
T does not depend on the starting points x1 and x2. The
exponential decay implies that all positive moments of T are
finite.

In a previous paper [64], we discussed how this general
description can be applied in one-dimensional settings, in
which � × � is a planar region and � is either a half-line
or an interval. In higher dimensions (d � 2), � is a (2d − 1)-
dimensional region (of nontrivial shape) in a 2d-dimensional
domain � × � that makes analytical solutions generally un-
feasible. An exception is the case of diffusion in free space,
� = Rd , for which the change of coordinates simplifies the
problem and allows one to get the following solution:

(i) In three dimensions, the solution was found by Smolu-
chowski [1],

Sfree(t |x1, x2) = 1 − ρ

r
erfc

(
r − ρ√

4Dt

)
, (15)

where

r = |x1 − x2|
is the initial distance between the centers of two particles,

D = D1 + D2, (16)

and erfc(z) is the complementary error function. We re-
call that this survival probability reaches the long-time limit
Sfree(∞|x1, x2) = 1 − ρ/r > 0, i.e., the particles can escape

to infinity without meeting each other. The probability density
of the FET is

Hfree(t |x1, x2) = ρ

r

r − ρ√
4πDt3

exp

(
− (r − ρ)2

4Dt

)
. (17)

(ii) In two dimensions, there is an explicit formula for the
Laplace transform of the survival probability:

S̃free(p|x1, x2) =
∫ ∞

0
dt e−pt Sfree(t |x1, x2)

= 1

p

(
1 − K0(r

√
p/D)

K0(ρ
√

p/D)

)
, (18)

where Kν (·) is the νth-order modified Bessel function of the
second kind. The inverse Laplace transform can be expressed
as [36]

Sfree(t |x1, x2) = 2

π

∫ ∞

0

dq

q
e−Dtq2

× Y0(qr)J0(qρ) − J0(qr)Y0(qρ)

J2
0 (qρ) + Y 2

0 (qρ)
, (19)

where Jν (·) and Yν (·) are, respectively, the νth-order Bessel
functions of the first and second kind. One also gets

Hfree(t |x1, x2) = 2D

π

∫ ∞

0
dq q e−Dtq2

× Y0(qr)J0(qρ) − J0(qr)Y0(qρ)

J2
0 (qρ) + Y 2

0 (qρ)
. (20)

This integral representation allows for a rapid numerical com-
putation of Hfree(t |x1, x2). Levitz et al. proposed an explicit
approximation for this density [66], but it is only valid when r
is close to ρ (see the discussion in the supplemental informa-
tion of [36]). This density exhibits an extremely slow decay at
long times:

Hfree(t |x1, x2) � 2(r/ρ − 1)

t ln2(2Dt/ρ2)
(t → ∞), (21)

as well as the survival probability:

Sfree(t |x1, x2) � 2(r/ρ − 1)

ln(2Dt/ρ2)
(t → ∞). (22)

B. Single particle diffusing toward a static target

Due to mathematical challenges encountered in the anal-
ysis of the above problem (2)–(4) for two diffusing particles
in a confinement, most former theoretical works dealt with a
much simpler setting, in which one particle diffuses toward an
immobile particle considered as a static target or a sink [2–26].
This problem is equivalent to diffusion of a single pointlike
particle with diffusivity D1 = D inside a modified domain �′:

�′ = {x1 ∈ � : |x1 − ∂�| > ρ1, |x1 − x2| > ρ}, (23)

where x2 is the fixed position of the target (i.e., the second
particle with diffusivity D2 = 0), and |x1 − ∂�| is the Eu-
clidean distance from x1 to the boundary ∂�. In other words,
the diffusing particle of radius ρ1 cannot get closer to the
boundary ∂� of the confining domain � than by a distance
ρ1, and it cannot overlap with the fixed target of radius ρ2. The
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survival probability satisfies the ordinary diffusion equation,

∂S

∂t
= D�x1 S, x1 ∈ �′, (24)

subject to the initial condition S(t = 0|x1) = 1 and the mixed
boundary conditions:

∂S

∂n
= 0, x1 ∈ ∂�′, (25)

S = 0, x1 ∈ �′, (26)

where ∂�′ = {x1 ∈ � : |x1 − ∂�| = ρ1} is the reflecting
boundary of the shrunk confining domain �′, and �′ = {x1 ∈
� : |x1 − x2| = ρ} is the encounter region (for the sake of
simplicity, we assumed that |x2 − ∂�| > ρ, i.e., ∂�′ and �′
are disjoint; but more general settings can be considered as
well).

As the boundary value problem (24)–(26) has been thor-
oughly investigated and reviewed in the past, we only
summarize several results that will be relevant for our analy-
sis. For any bounded domain �′, the spectrum of the Laplace
operator is discrete, and the solution of (24) and (25) admits a
general spectral expansion [4,65],

S(t |x1, x2) =
∞∑

n=1

un(x1; x2) e−tλn (x2 )
∫

�′
dx′ u∗

n(x′; x2), (27)

where λn and un are the nth eigenvalue and L2(�′)-normalized
eigenfunction of the diffusion operator D′ = −D�x1 , both
depending on the position x2 of the static target through the
shape of �′. To avoid confusion, we distinguish the eigen-
pairs (λn, un) from (�n,Un) used in the case of two diffusing
particles. The eigenvalues can be ordered such as 0 < λ1 �
λ2 � · · · ↗ +∞. In particular, the survival probability decays
exponentially at long times,

S(t |x1, x2) ∝ e−t/T (x2 ) (t → ∞), (28)

with the decay time T (x2) determined by the smallest eigen-
value:

T (x2) = 1

λ1(x2)
, (29)

where we highlighted the dependence on the target position
x2, in contrast to the case (14) of two diffusing particles.

1. Concentric domains

The eigenvalues and eigenfunctions of the diffusion op-
erator are in general not known explicitly. One of the few
exceptions is the case when � and ∂� are concentric circles
or spheres of radii ρ and R, respectively (i.e., x2 = 0). In this
case, the rotational symmetry of �′ implies that S(t |x1, 0)
depends on x1 only via its radial coordinate, r = |x1 − x2| =
|x1|, which allows one to solve Eq. (24) in the Laplace space
[4] (see also [66–68]). Denoting by S̃ and H̃ the Laplace trans-
forms of S and H , respectively, the solution can be written as

S̃(p|x1, 0) = 1

p
[1 − H̃ (p|x1, 0)], (30)

with

H̃ (p|x1, 0) = (ρ/r)ν
Iν+1(zR̄)Kν (zr) + Kν+1(zR̄)Iν (zr)

Iν+1(zR̄)Kν (zρ) + Kν+1(zR̄)Iν (zρ)
,

(31)
where ν = d/2 − 1, z = √

p/D, Iν (·) is the νth-order modi-
fied Bessel function of the first kind, and

R̄ = R − ρ1.

More explicitly, one has

H̃ (p|x1, 0) = I1(zR̄)K0(zr) + K1(zR̄)I0(zr)

I1(zR̄)K0(zρ) + K1(zR̄)I0(zρ)
(32)

in two dimensions, and

H̃ (p|x1, 0) = ρ

r

R̄z cosh(R̄ − r)z − sinh(R̄ − r)z

R̄z cosh(R̄ − ρ)z − sinh(R̄ − ρ)z
(33)

in three dimensions.
The inverse Laplace transform of H̃ (p|x1, 0) can be per-

formed by means of the residue theorem. These expressions
determine all the moments of the FET, in particular,

〈T 〉 = R̄2 ln(r/ρ)

2D
− r2 − ρ2

4D
(d = 2), (34)

〈T 〉 = R̄3(r − ρ)

3Drρ
− r2 − ρ2

6D
(d = 3). (35)

The eigenvalues λn contributing to the survival probability
and to the FET probability density are related to the poles of
Eqs. (32) and (33):

λn = α2
n/R̄2, (36)

where αn are positive solutions of

J1(αn)Y0(αnρ/R̄) − Y1(αn)J0(αnρ/R̄) = 0 (37)

in two dimensions, and of

tan[αn(1 − ρ/R̄)] = αn (38)

in three dimensions. In the small target limit, ρ → 0, the
smallest eigenvalue λ1 vanishes as

λ1 � D

R̄2

{
2/ ln(R̄/ρ) (d = 2),
3ρ/R̄ (d = 3), (39)

so that the decay time T from Eq. (29) increases as

T � R̄2

Dd

{
ln(R̄/ρ) (d = 2),
R̄/ρ (d = 3) (40)

in leading order. It is instructive to compare the time T with
the mean first-passage time (MFPT) 〈T 〉 given by Eqs. (34)
and (35):

2dD

R̄2
(T − 〈T 〉) �

{
2 ln(R̄/r) + (r/R̄)2 (d = 2),
2(R̄/r) + (r/R̄)2 (d = 3).

(41)

One sees that the decay time T always exceeds 〈T 〉, and that
the difference between these two quantities is minimal at r =
R̄. This is a signature of the prevalence of long trajectories in
the behavior of the long-time decay; note that the MFET may
be smaller or larger than the decay time in the case of two
diffusing particles (see Sec. VI).
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In the limit R → ∞ of an infinite domain �, Eqs. (30) and
(32) lead to Eq. (18), whereas the inverse Laplace transform
of the limit of Eqs. (30) and (33) yields Eq. (15).

2. Small-target limit

For a small fixed target in an arbitrary bounded domain
�′, the asymptotic behavior of the smallest eigenvalue of
the Laplace operator has been thoroughly investigated (see
[69,70] and references therein).

For a confining disk of radius R̄, one has [69]

λ1 = 2πνD

|�′| − 4π2ν2

|�′| G(x2, x2) + O(ν3), (42)

where ν = −1/ ln ε, ε = ρ/R̄ is the dimensionless size of
the target, |�′| is the area of the shrunk domain �′, x2

is the location of the target, and G(x2, x2) is the regular part
of the Neumann Green’s function:

G(x2, x2) = − 1

2π
F2(|x2|/R̄), (43)

where

F2(z) = 3
4 + ln(1 − z2) − z2, (44)

so that

λ1 � 2νD

R̄2
(1 + νF2(|x2|/R̄)). (45)

The decay time is then

T (x2) � R̄2 ln(R̄/ρ)

2D

(
1 + F2(|x2|/R̄)

ln(R̄/ρ)

)−1

(ρ � R̄). (46)

This expression refines Eq. (40), which corresponds to |x2| =
0, with F2(0) = 3/4. In turn, the above asymptotic relation is
not applicable when |x2| approaches R̄ (i.e., when the target
is too close to the boundary) because of the logarithmic diver-
gence of the correction term (see below the asymptotic form
of the MFPT, which remains well defined in this limit).

In three dimensions, one has [70]

λ1 = D(ελ(1) + ε2λ(2) + O(ε3)), (47)

where

λ(1) = 4πC

|�′| = 3

R̄3
, (48)

and C is the capacitance of the target of unit size (which is
equal to 1 in the case of a spherical target). The next-order
correction λ(2) is again expressed in terms of the regular part
of the Neumann Green function. For a spherical confining
domain of radius R̄, one has

λ1 = 4πρD

|�′| − 16π2ρ2

|�′| G(x2, x2) + O(ρ3)

= 3ρD

R̄3

(
1 − ρ

R̄
F3(|x2|/R̄) + O(ρ2)

)
, (49)

where

F3(z) = 1

1 − z2
− ln(1 − z2) + z2 − 14

5
. (50)

As a consequence, the decay time behaves as

T (x2) � R̄3

3Dρ

(
1 − ρ

R̄
F3(|x2|/R̄)

)−1

(ρ � R̄). (51)

This expression refines Eq. (40), which corresponds to |x2| =
0, with F3(0) = −9/5, and thus

λ1 = 3ρD

R̄3

(
1 + 9

5

ρ

R̄
+ O(ρ2)

)
. (52)

Note that this result agrees with the direct asymptotic analysis
of the smallest eigenvalue obtained as λ1 = Dα2

1/R̄2, where
α1 is the smallest strictly positive solution of Eq. (38); see
[68]. Again, the opposite limit |x2| → R̄ yields the divergent
correction term, and thus is not applicable.

The asymptotic behavior of the MFPT to a small target
located on the boundary of the domain was given in Ref. [30]:

〈T 〉 � |�′|
2πD

×
{

ln(r/ρ) (d = 2),
�(d/2)
πd/2−1 (ρ2−d − r2−d ) (d � 3),

(53)

where r = |x1 − x2| is the distance between the target and the
starting position of the diffusing particle. For instance, one
gets

〈T 〉 � R̄2 ln(R̄/ρ)

2D

(
1 + ln(r/R̄)

ln(R̄/ρ)

)
(54)

for a disk of radius R̄, and

〈T 〉 � R̄3

3Dρ

(
1 − ρ

r

)
(55)

for a sphere of radius R̄ [71]. While the leading terms in both
expressions are identical to those in Eqs. (46) and (51), the
MFPTs depend on the positions of both particles (the searcher
and the target), whereas the decay time T depends only on the
position of the target.

III. MONTE CARLO SIMULATIONS

In this work, we undertake a systematic study of the FET
distribution in two- and three-dimensional domains. We re-
strict our analysis to two particles of identical radii:

ρ1 = ρ2 = ρ/2. (56)

We fix length units by setting ρ = 1. In turn, we vary other
parameters such as diffusion coefficients (D1, D2), the initial
positions of particles (x1, x2), and the size of the confinement
(R). While both the mathematical analysis of the boundary
value problem (2)–(4) and the associated numerical simula-
tions can be performed for particles of arbitrary size (under the
evident geometric constraint 2ρ < R), we restrict our study to
the case of relatively small particles: ρ � R.

For a given set of parameters, we simulated individual
trajectories of two diffusing particles in confinement and com-
puted their FET Ti in each run i (see the Appendix A for
technical details). To avoid exceedingly long trajectories, we
introduced a cutoff time tcut, at which the simulation was
stopped, even if two particles had not met. The cutoff time
was large enough to ensure that S(tcut|x1, x2) was very small
so that the cutoff did not influence the results (see below). The
simulation was repeated N = 106 times to get a good enough
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FET statistics and to access the long-time behavior of the
survival probability. The empirical curves of S(t |x1, x2) were
obtained by dividing the number of realizations with Ti > t by
N , whereas the empirical curves of H (t |x1, x2) were produced
as renormalized histograms obtained from the values of Ti.

Even though we will generally display S(t |x1, x2) and
H (t |x1, x2) for a broad range of timescales, the data corre-
sponding to large times exhibit high statistical uncertainties.
In fact, since we use N = 106 realizations, values of, say,
S(t ) � 10−4, were estimated with a relatively small number
of outcomes and have thus to be taken with care. There exist
efficient methods for improving the statistical accuracy of
rare events in Monte Carlo simulations. For instance, Nayak
et al. implemented one such method to access the long-time
behavior of the survival probability [63]. As our focus is on
the study of the whole distribution of the FET, we keep using
the basic Monte Carlo scheme.

The simulation results are systematically compared to
the available analytical results and approximations. The sur-
vival probability and the FET probability density in the
no-boundary case, Sfree(t |x1, x2) and Hfree(t |x1, x2), are given
by explicit formulas (15) and (17) in the three-dimensional
case; in turn, a numerical integration of Eqs. (19) and (20) was
used in two dimensions. These quantities for the concentric
planar case were obtained by a numerical inverse Laplace
transform of Eqs. (32) and (33), although spectral expansions
can also be obtained via the residue theorem.

The decay time T was estimated from the analysis of the
logarithmic time derivative of the survival probability. In fact,
the long-time relation (13) implies that −Ṡ(t )/S(t ) ≈ 1/T
over a broad range of times t ∈ (t1, t2), where a dot denotes
time derivative. Here t1 is the timescale above which the long-
time relation (13) is applicable, i.e., when the other terms of
the spectral expansion (12) can be neglected. Strictly speak-
ing, this timescale is determined by the second eigenvalue
of the diffusion operator, but in practice it is sufficient to
take t1 to be of the order of T (e.g., 5T ). The upper limit
t2, which formally could be infinitely large, is necessary to
eliminate statistical uncertainties in the survival probability
due to a limited number of realizations. In practical terms (see
Appendix B) we choose the time interval (t1, t2) in such a way
that, except for statistical uncertainties, −Ṡ(t )/S(t ) remains
(approximately) constant. Once the time range (t1, t2) is set,
the decay time can be estimated as

T = t2 − t1∫ t2
t1

dt (−Ṡ(t )/S(t ))
, (57)

while the accuracy of this estimate can be measured by the
norm of fluctuations of −Ṡ(t )/S(t ) around 1/T :

δT = T 2

√∫ t2
t1

dt[−Ṡ(t )/S(t ) − 1/T ]2

t2 − t1
(58)

(see the illustrations in Fig. 15 and further discussion in
Appendix B).

We emphasize that this estimation procedure is more in-
formative than a direct linear fit of ln S(t ). First, one can
choose the appropriate range (t1, t2) and also evaluate the error
δT . Second, in cases when one particle has a much smaller
diffusion coefficient than the other particle, there may exist

an intermediate regime, in which the exponential factor e−t/T

is affected by a slowly varying prefactor f (t ) converging to a
constant as t → ∞. This prefactor may result in a systematic
bias in the estimated decay time T . As such a bias is usually
small, it is difficult to appreciate from fitting ln S(t ). In turn,
its effect becomes more apparent when showing −Ṡ(t )/S(t ).

We also estimated the MFET. As the numerical simulations
have been performed with a time cutoff at tcut, one cannot
compute directly the MFET by taking an average over real-
izations Ti of the first-encounter time. Nevertheless, it can be
estimated through other quantities that are directly accessible.
The first one is the average of the first-encounter times gen-
erated in each run, constrained to be equal to tcut when the
particles have not yet met by the time tcut, i.e.,

T̄ = 1

N

N∑
i=1

min{Ti, tcut}, (59)

where Ti is the first-encounter time in the ith realization if
there were no cutoff. For large N , this empirical average
approximates the expectation

T̄ −−−→
N→∞

〈min{T , tcut}〉 =
∫ tcut

0
dt t H (t ) + tcut

∫ ∞

tcut

dt H (t )

=
∫ tcut

0
dt S(t ) = 〈T 〉 −

∫ ∞

tcut

dt S(t ) (60)

(here we omitted the arguments x1, x2 for brevity). This quan-
tity is clearly a lower bound for the MFET 〈T 〉. According to
the second line, this estimate corresponds to the truncation
of the integral in Eq. (8) at tcut. If tcut � T , the long-time
behavior of the survival probability can be approximated as

S(t ) � S(tcut ) exp ( − (t − tcut )/T ), (61)

so that

〈min{T , tcut}〉 � 〈T 〉 − T S(tcut ). (62)

In this way, one can control the error of the estimate T̄ and
choose an appropriate tcut; in particular, S(tcut ) should be very
small.

The other manner to estimate the MFET is by computing
the average with the conditional probability density:

Hcond(t ) = H (t )

( ∫ tcut

0
dt ′ H (t ′)

)−1

(63)

(again, the dependence on x1, x2 is omitted here). This density
is defined and well normalized for times from 0 to tcut. The
corresponding conditional MFET then reads

〈T 〉cond =
∫ tcut

0
dt t Hcond(t ). (64)

As tcut goes to infinity, the conditional mean approaches 〈T 〉.
Indeed, one gets

〈T 〉cond = 〈T 〉 − tcutS(tcut ) − ∫ ∞
tcut

dt S(t )

1 − S(tcut )

� 〈T 〉 − (tcut + T )S(tcut )

1 − S(tcut )
, (65)
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(i) (ii) (iii)

(iv) (v)

FIG. 1. Five initial configurations with a diffusing particle
(empty circle) and a fixed target (filled circle) inside a disk of radius
R = 10. The initial positions of the centers of the diffusing particle
and of the target are (i) x1 = (5, 0) and x2 = (0, 0), (ii) x1 = (7.5, 0)
and x2 = (2.5, 0), (iii) x1 = (0, 0) and x2 = (5, 0), (iv) x1 = (2.5, 0)
and x2 = (7.5, 0), and (v) x1 = (−2.5, 0) and x2 = (2.5, 0).

where we used again the approximation (61) to get the second
relation. One sees that 〈T 〉cond is very close to 〈T 〉 as soon as
tcut � T . From empirical data, the conditional MFET can be
estimated as

T̄ ∗ =
∑N

i=1 Ti ITi�tcut∑N
i=1 ITi�tcut

, (66)

where ITi�tcut = 1 if Ti � tcut and 0 otherwise. When T̄ and
T̄ ∗ are close, they are very good estimates of the MFET, as we
only neglected some outlier data [in all our simulations S(t ) is
very small for t = tcut and decays exponentially for t > tcut,
which makes the weight of those outliers negligible].

IV. FIXED TARGET PROBLEM IN TWO DIMENSIONS

To gain intuition into the dependence of the FET on the
initial positions, we start with the fixed target problem. The
comparison of numerical results with available theoretical
predictions will serve for validating Monte Carlo simulations.
We consider the confining domain � to be a disk of radius
R = 10 with a reflecting boundary; a particle started from
x1 diffuses with diffusion coefficient D1 = 1/2 toward an
immobile target (D2 = 0) fixed at x2. We fix the initial dis-
tance between the particles, |x1 − x2| = 5, and consider five
configurations shown in Fig. 1.

We will distinguish three regimes: Short times (t � tB)
when the boundary does not yet play any role; intermediate
times (tB � t � T ); and long times (t � T ), at which the
monoexponential decay of the survival probability is estab-
lished. Here T is the decay time defined by (29), whereas the
timescale tB will be defined below.

Figure 2(a) presents the survival probabilities for five con-
figurations shown in Fig. 1. At short times, the order in
which S(t ) first deviates from Sfree is S(ii) → S(iv) → S(i) →
S(iii) → S(v); see Fig. 2(b). The presence of the reflecting
boundary implies a reduction of the survival probability with
respect to the no-boundary case (dashed line). In fact, con-

FIG. 2. Survival probability vs time for a particle of diffusion
coefficient D1 = 1/2 in the search for a fixed target inside a disk
of radius R = 10. Symbols present S(t |x1, x2) for five configurations
of x1 and x2 described in Fig. 1: Squares (i), circles (ii), stars (iii),
crosses (iv), and triangles (v). The solid line is the exact solution for
case (i), obtained by numerical Laplace inversion of Eqs. (30) and
(32). The dashed line shows Sfree(t |x1, x2) from Eq. (19). Vertical
dashed lines indicate the values of tB: 10.1 for cases (ii) and (iv), 24.5
for cases (i) and (iii), and 45.1 for case (v). Note that tB corresponds
to the time at which S(t ) separates from Sfree(t ) for cases (i), (ii), and
(v), but not for cases (iii) and (iv). Panels (a), (b), and (c) illustrate
different aspects of the same survival probabilities.

finement does not allow the diffusing particle to move too
far away from the target. Then, in those initial arrangements
where the particles are closer to the boundary, they have more
chances to meet earlier. Let us now introduce an empirical
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TABLE I. Several estimates of the decay time T and MFET 〈T 〉
for the cases of Fig. 1. Here Tnum = 1/λ1 is obtained by means of
the numerical computation of the first eigenvalue λ1 of the Laplace
operator by a finite-element method (FEM), implemented in the
PDETOOL, MATLAB. The result for case (i) agrees with the exact
value provided by Eq. (37). Tasympt is obtained by the small-target
asymptotic formula (46), Tsimu is the value estimated from Monte
Carlo simulations, and δT is the corresponding error obtained from
Eq. (58). Note that the value of Tasympt for (iv) is too large because the
target is located near the boundary, and so Eq. (46) is not applicable.
On the other hand, T̄num is the estimate of 〈T 〉 obtained by solving
numerically the boundary value problem Eqs. (9)–(11) by a FEM
implemented in PDETOOL, MATLAB. Finally the two estimates T̄ and
T̄ ∗ of the MFET from Eqs. (59) and (66) are also given. A minor
but systematic difference between T̄num and these two estimates can
potentially be attributed to discretization effects in both numerical
methods (spatial discretization of FEM and temporal discretization
in Monte Carlo simulations).

Decay time MFET

Case Tnum Tasympt Tsimu(δT ) T̄num T̄ T̄ ∗

(i) 144 152 146 (3.6) 133 136 136
(ii) 165 174 167 (4.5) 108 110 110
(iii) 218 231 219 (3.6) 184 187 187
(iv) 305 558 308 (4.0) 228 231 230
(v) 165 174 167 (5.1) 157 160 160

timescale tB to describe when the boundary starts to matter,

tB ≡ (LM − ρ/2)2

2dD
, (67)

where LM is the distance between the boundary and the middle
point of the initial positions of the particles (their centers).
With this definition, tB(ii) = tB(iv) < tB(i) = tB(iii) < tB(v).

Equation (67) has the drawback that it does not recognize
that the time at which the boundary starts to matter is shorter
for case (ii) than for case (iv), and also shorter for case (i)
than for case (iii) [see Fig. 2(b)]. The reason for this behavior
is that for cases (ii) and (i) the diffusing particle starts from the
position that is closer to the boundary and it is therefore likely
for the diffusing particle to find the boundary rapidly and then
to move toward the target along the boundary [72]. In turn, if
the target is closer to the boundary, the particle can get farther
both from the target and the boundary at short times.

The latter argument can be extended to explain the long-
time behavior of the survival probability. For some locations
of the target, there could be extended regions in which the
moving particle may diffuse for a long time without approach-
ing the target. In particular, when the target is centered, the
survival probability at long times is expected to be the smallest
one, as confirmed by simulations. In this particular case, the
sum of the distances from the starting point of the moving
particle to the target and to the boundary is constant, i.e.,
it does not depend on the starting position of the moving
particle.

Figure 2(c) illustrates the exponential decay (28) of the
survival probability at long times, with the decay time T (x2)
given by Eq. (29). Table I provides T for the initial configu-
rations (i)–(v) described above. The values of T differ from

each other, except for the cases (ii) and (v), where T � 165,
highlighting the dependence of T on the position of the target
but not on the initial position on the diffusing particle. Expect-
edly, the smallest T is observed for the centered target, while
the configurations (iii) and (iv) yield larger T as the target
is located far from the center of the disk (note that a similar
effect for the MFET 〈T 〉 was reported in [12]). The values
of T estimated from Monte Carlo simulations are in excellent
agreement with their theoretical predictions from Eq. (29). We
also stress that the decay time T is in very good agreement
with its approximation by the small-target asymptotic formula
(46), except for the case (iv), in which the target is too close
to the boundary, and Eq. (46) is not applicable. We emphasize
that the second-order term in Eq. (46) is significant: The
leading-order approximation [such as Eq. (40)] would give
T ≈ 203 for all initial configurations.

In Table I we also provide the values of two estimates
T̄ and T̄ ∗ of the MFET. For the case (i), Eq. (34) yields
the MFET 〈T 〉 ≈ 133, which differs by only 2% from both
estimates T̄ and T̄ ∗. When comparing the cases (ii) and (v),
one observes that their MFETs are quite distinct, as opposed to
almost identical values of T in these cases. The initial config-
uration (ii) leads to a lower MFET than (v) because the center
of mass is closer to the boundary, favoring the encounter of
two particles at shorter times. This example illustrates the
dependence of the MFET on the initial position. Besides, the
estimates of the MFET are close to T in cases (i) and (v).
In case (v), the target is close to the center of the disk (that
avoids large void regions), and the relevance of the boundary
appears at larger times than in the other cases. Notice that,
roughly, the following rule-of-thumb holds: The sooner S(t )
separates from Sfree, the better is the agreement between the
MFET and T . This will also be seen to be the case for two
diffusing particles (see Secs. V B and VI).

In summary, the survival probability in confinement
changes, especially at long times, if the initial positions of a
diffusing particle and a fixed target are swapped, unless the
problem preserves the symmetry after the swap [e.g., in case
(v)].

Figure 3 illustrates the FET probability density H (t |x1, x2).
Let us first note that the simulations for case (i) manifest an ex-
cellent agreement with theory. One observes that the densities
coincide with the solution Hfree(t |x1, x2) for the no-boundary
case at least until tB. At long times, the densities exhibit an
exponential decay, with the decay time T depending on the
position of the target, as expected.

V. IDENTICAL DIFFUSING PARTICLES

In this section, we will see what happens if the fixed target
starts to diffuse as the other particle. In other words, we
study the statistics of the first-encounter time for two identical
diffusing particles with D1 = D2 = D/2, confined in a disk of
radius R with reflecting boundary.

In the no-boundary case, there is no difference between the
problem with a fixed target and the problem with two diffus-
ing particles, as the survival probability, given by Eq. (19),
depends on the sum of diffusion coefficients. However, in the
presence of a reflecting boundary, these two problems are no
longer equivalent, and we will compare them in this section.
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FIG. 3. FET probability density vs time for a particle of diffusion
constant D1 = 1/2 in the search for a fixed target inside a disk of
radius R = 10. Symbols present simulation results for five configu-
rations shown in Fig. 1: Squares (i), circles (ii), stars (iii), crosses (iv),
and triangles (v). The solid line shows the exact solution for the case
(i), obtained by numerical Laplace inversion of Eq. (32). The dashed
line is Hfree(t |x1, x2) from Eq. (20). Vertical dashed lines indicate the
values of tB: 10.1 for cases (ii) and (iv), 24.5 for cases (i) and (iii),
and 45.1 for case (v).

A. Two timescales

First, we identify two timescales that control the behavior
of the survival probability: tF , at which two particles typically
meet for the first time in the no-boundary case, and tB, above
which the influence of the boundary cannot be neglected. The
timescale tF can be defined as the most probable FET, i.e., the
time at which the FET density Hfree(t |x1, x2) is maximal [64].
In three dimensions, taking the time derivative of the explicit
formula (15) and equating it to 0 yields

tF = (r − ρ)2

6D
. (68)

In two dimensions, it was argued that Eq. (68) still gives an
accurate estimate of the most probable FET [36]. We empha-
size that the factor 6 in the denominator does not depend on
the space dimensionality, given that the short-time asymptotic
behavior of the PDF is given by e−(r−ρ)2/(4Dt )/t3/2 in all di-
mensions.

The second timescale tB might naively be thought of as be-
ing determined by the initial distance from each particle to the
boundary. Such a distance would indeed determine a timescale
for interaction of a single particle to the boundary. However,
as we are interested in the first-encounter time between two
particles, the initial distances between the particles and the
boundary are less relevant. For instance, if the particles are
diametrically opposed and very close to the boundary, the
boundary starts to affect the motion of each particle at very
early times, but these times are not so relevant for the first-
encounter time, at least for small particles. For this reason, we
keep using tB defined by Eq. (67), as justified below.

Now we can study how the survival probability depends
on the size of the domain and on the initial positions of the
particles. We first plot in Fig. 4 the survival probability for two
particles initially placed at x1 = (−2.5, 0) and x2 = (2.5, 0)

FIG. 4. Survival probability vs time for two diffusing particles
with equal diffusion coefficients D1 = D2 = 1/2 that are initially
placed at (−2.5, 0) and (2.5,0) inside a disk of radius R. Symbols
present simulation results for R = 3.75 (stars), R = 5 (circles), R =
10 (squares), R = 25 (triangles), and no boundary (crosses). The
solid line shows Sfree(t |x1, x2) from Eq. (19). Vertical dashed lines
indicate the values of tB: 2.6, 5.1, 22.6, and 150. Here tF � 2.7.

for different values of the domain radius R. As expected,
all simulation results coincide with Sfree(t |x1, x2) until ∼tB
corresponding to each value of R. It is also observed that the
survival probability decays faster for lower R.

Next, Fig. 5(a) shows the survival probability for three
initial configurations with fixed R = 10. In configurations (i)
and (ii), the center of mass of the two particles is at the origin,
implying the same time tB � 22.6 according to Eq. (67). One
observes that the deviation from the no-boundary case occurs
around this time, even though the two particles are much
closer to the boundary in case (ii). The survival probability
at tB is smaller in case (i). In turn, in configurations (i) and
(iii), the initial distances between the centers of the parti-
cles is the same, but both particles are shifted toward the
boundary in case (iii). The corresponding survival probabil-
ities are different, highlighting their dependence on the initial
positions of both particles (not only on their initial distance,
as in the no-boundary case). In particular, the simulation re-
sults deviate from Sfree(t |x1, x2) with r = 5 around tB � 5.1.
We conclude that the center of mass is a useful indicator of the
timescale tB at which the survival probability starts to differ
from its counterpart in the no-boundary case.

B. Long-time decay

While the above discussion focused on the short-time be-
havior, we now study the survival probability at long times:
t � max{tB, tF }. As the confining domain � is bounded, the
survival probability exhibits an exponential decay (13). We
estimate the decay time T from Fig. 5(b) and analyze the
dependence of T on the parameters. For three initial config-
urations, the numerical points follow parallel straight lines,
while their linear fit yields the same decay time T = 127 ± 5
(see Table II). In fact, the initial condition appears only in
the prefactor in Eq. (13), which shifts the curves vertically.
In other words, at long times, the system almost forgets about
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(a)

FIG. 5. (a) Three initial configurations of two diffusing particles
with equal diffusion coefficients D1 = D2 = 1/2 inside a disk of
radius R = 10, with the initial positions (i) (−2.5, 0) and (2.5,0),
(ii) (−8.75, 0) and (8.75,0), and (iii) (2.5,0) and (7.5,0). (b) Sur-
vival probability vs time over a broad range of times (logarithmic
scale for horizontal axis). (c) Long-time behavior (logarithmic scale
for vertical axis). Symbols refer to the above configurations: (i)
empty squares, (ii) circles, and (iii) filled squares. Lines represent
Sfree(t |x1, x2) from Eq. (19) for the initial interparticle distances
r = 5 (solid) and r = 17.5 (dashed). Vertical dashed lines indicate
the values of tB = 5.1 [case (iii)] and tB = 22.6 [cases (i) and (ii)].

the initial condition, in contrast to the case of a fixed target,
where T varied with the position of the target.

In the small target limit, ρ � R̄, it is instructive to check
whether the asymptotic formula (40), derived in the case of
a fixed target, is valid for two diffusing particles with D =
D1 + D2 = 2D1:

T � R̄2

2D
ln(R̄/ρ) (ρ � R̄). (69)

A similar claim for the MFET was recently proved in the
three-dimensional case [62]. First, we observe in Fig. 6 that
T is indeed proportional to 1/D. Each point corresponds to a

TABLE II. The decay time T , estimated error δT , and two
estimates T̄ and T̄ ∗ of the MFET from Eqs. (59) and (66) for
two diffusing particles with D1 = D2 = 1/2 inside a disk of radius
R = 10. The initial positions of the particles are (i) x1 = (−2.5, 0)
and x2 = (2.5, 0); (ii) x1 = (−8.75, 0) and x2 = (8.75, 0); and (iii)
x1 = (2.5, 0) and x2 = (7.5, 0); see Fig. 5. Note that Eq. (69) under-
estimates the decay time as T ≈ 101.6, whereas the inclusion of the
correction term A(1) ≈ 0.58 in Eq. (70) gives T ≈ 127.8, in perfect
agreement with the Monte Carlo estimate.

Decay time MFET

Case T (δT ) T̄ T̄ ∗

(i) 126 (2.4) 107 107
(ii) 127 (2.9) 162 162
(iii) 127 (4.9) 91 91

different value of the diffusion coefficient D = 2D1. A linear
fit in the double logarithmic scale yields the expected slope of
−1. Second, we analyze in Fig. 7 how T changes with the size
R̄ of the confining domain. We find that our simulation results
are well described by the formula

T � R̄2

2D
(C2 ln(R̄/ρ) + A(D1/D2) + · · · ), (70)

where C2 = 1, A(D1/D2) is a dimensionless function of
D1/D2, and · · · refers to next-order corrections, which are
small for ρ � R̄ and not accessible from our simulations.
Even though this section was focused on identical particles
with D1 = D2, i.e., only one value A(1), we keep the gen-
eral form A(D1/D2) that will be discussed for D1/D2 �= 1
in Sec. VI. This means that the asymptotic formula (40) for
a fixed target reproduces the main logarithmic term for the
case of two diffusing particles. Expectedly, the leading term
in Eq. (70) with D = 2D1 is twice as small as that in Eq. (40)
with D = D1, i.e., the decay is faster in the present case of
two identical searchers. In other words, to obtain the same
asymptotic decay for a fixed target, the searcher would need

FIG. 6. The decay time T vs D for two diffusing particles with
D1 = D2 = D/2 placed initially at (0, 0) and (2.5, 0) in a disk of
radius R = 10. Squares represent simulation results, while the solid
line is a linear fit with slope −1.
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FIG. 7. Scaled decay time 2DT/R̄2 vs ln(R̄/ρ ) for two diffusing
particles inside a disk of radius R, ranging from 7.5 to 25. Symbols
show the simulation results for D1 = 0.9 and D2 = 0.1 (squares),
D1 = D2 = 0.5 (circles), and D1 = 1 and D2 = 0.5 (triangles). Par-
ticle 2 (the one with the smallest diffusion coefficient) is initially
placed at the center, whereas particle 1 is placed at (5,0). The solid
lines correspond to Eq. (70) with C2 = 1 and, from top to bot-
tom, A(0.9/0.1) = 0.71, A(1/0.5) = 0.61, and A(0.5/0.5) = 0.58,
respectively. As a reference, the dashed line represents the case with
no correction term (A = 0).

to have diffusivity that is twice as large. We also outline that
the leading (logarithmic) term in Eq. (70) is inaccurate due
to the existence of the O(1) correction term A(D1/D2), as
confirmed by our simulations. Getting a rigorous derivation
of Eq. (70) and finding the correction term A(D1/D2) present
an interesting open problem. Note that other properties of
the decay time, such as its dependence on the number of
searchers, were investigated in [63].

C. MFET

Another important quantity is the MFET defined in Eq. (8).
Table II provides the values of two estimates T̄ and T̄ ∗ of the
MFET for the three initial configurations shown in Fig. 5(a).
In contrast to the decay time T , the MFET depends on the ini-
tial positions of the particles. Interestingly, the MFET can be
either smaller or larger than T (recall that in the case of a fixed
target, we observed that the MFET is always smaller than T ;
cf. Table I). In the small target limit, the main contribution to
the MFET comes from long trajectories that explore the whole
confining domain and correspond to the exponential decay of
the survival probability. In this limit, the MFET is typically
of the order of T , while its variations can be caused by the
prefactor in Eq. (13), which depends on the initial positions
of both particles. One can observe a clear correlation between
this prefactor [that shifts the curves in Fig. 5(b)] and the values
of the MFET in Table II.

D. Probability density

To further highlight the relevance of the boundary, we
study the shape of the FET probability density H (t |x1, x2). In
the no-boundary case, this density has a single hump around
tF : As t grows, the probability of first encounter initially

FIG. 8. FET probability density vs time for two diffusing par-
ticles of diffusion constants D1 = D2 = 1/2, initially placed at
(−2.5, 0) and (2.5,0) inside a disk of radius R. Symbols repre-
sent simulation results for R = 3.75 (stars), R = 5 (circles), R = 10
(squares), R = 25 (triangles), and R = ∞ (crosses). The solid line
shows Hfree(t |x1, x2) from Eq. (20). Vertical dashed lines indicate the
values of tB: 2.6, 5.1, 22.6, and 150.

increases (as both particles need to travel a minimum distance
to meet), and then slowly decreases (as particles can diffuse
too far away from each other). The extremely slow decay (21)
of Hfree(t |x1, x2) leads to infinite MFET.

The reflecting boundary changes completely this long-time
behavior, given that H (t |x1, x2) exhibits an exponential de-
cay inherited from Eq. (13). In fact, the boundary prevents
diffusing particles from moving far away from each other,
thereby eliminating too long trajectories that were possible in
the no-boundary case.

In Fig. 8 we show the FET probability density for two
particles, whose centers were initially placed at (−2.5, 0)
and (2.5,0), with several values of the boundary radius
R = 3.75, 5, 10, and 25. Hence, in these cases, tB =
2.6, 5.1, 22.6, and 150, respectively, but tF = 2.7 is the
same. As tB increases, the FET probability density coincides
with Hfree(t |x1, x2) over a broader range of times t < tB and
thus widens. When tB � tF , one observes the emergence of a
second hump around tB.

Similar arguments can be used to describe Fig. 9, which
shows the FET probability density for three different configu-
rations of particles in the same bounded domain with R = 10
[as illustrated in Fig. 5(a)]. In cases (i) and (iii), the interpar-
ticle distance r = 5 is the same, and two probability densities
are close to each other (with the maximum around the same
tF � 2.7), although they start deviating from Hfree(t |x1, x2)
at different times tB. In turn, case (ii) with a larger distance
r = 17.5 has larger tF � 45.4 so that the maximum of the
FET probability density is shifted toward longer times. As
tB � 22.6 here is smaller than tF , the FET density exhibits
considerable deviations from Hfree(t |x1, x2) over the relevant
range of times. Finally, all the densities are very close to each
other at long times, given that the decay time T does not
depend on the initial positions of the particles.
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FIG. 9. FET probability density vs time for two diffusing par-
ticles of diffusion constants D1 = D2 = 1/2 inside a disk of radius
R = 10, with the initial positions of the particles: (i) (−2.5, 0) and
(2.5,0) (empty squares), (ii) (−8.75, 0) and (8.75,0) (circles), and
(iii) (2.5,0) and (7.5,0) (filled squares); see Fig. 5. Lines represent
Hfree(t |x1, x2) from Eq. (20) with the initial interparticle distances
r = 5 (solid) and r = 17.5 (dashed). Vertical dashed lines indicate
the values of tB = 5.1 [case (iii)] and tB = 22.6 [cases (i) and (ii)].

VI. TRANSITION FROM IMMOBILE TO MOBILE TARGET

In Secs. IV and V, we studied separately two scenarios
of bimolecular reactions: A diffusing particle searching for a
fixed target, and two identical diffusing particles searching to
meet one another. These scenarios exhibited different proper-
ties because the fixed target introduced a memory on the initial
condition that affects the behavior of the survival probability
both at short and long times. Here, we consider particles with
different diffusion coefficients to study the transition between
these two scenarios. In fact, as the diffusion coefficient D2

stands in front of the Laplace operator in Eq. (2), the limit
D2 → 0, corresponding to a fixed target scenario, is singular.
This is the mathematical origin of distinct behaviors of the
survival probability in the above two scenarios. In physical
terms, the timescale associated with the motion of the second
particle, L2/D2, is infinite at D2 = 0 (here L is an appropriate
lengthscale, e.g., L = R̄). In turn, if D2 is small (as compared
to D1) but strictly positive, one can expect that the survival
probability behaves at times t � L2/D2 as in the case of a
fixed target, and then switches to the behavior for two mobile
particles at longer times t � L2/D2. In other words, a smooth
transition between two scenarios can be expected.

To clarify this transition, we run simulations for parti-
cles with different D1 and D2 such that D = D1 + D2 = 1
is fixed. The first particle is located at the center of a disk
of radius R = 10 and the second one is at a distance r =
5. The survival probability is shown in Fig. 10(a) for five
cases: (i) D1 = 0, D2 = 1; (ii) D1 = 0.1, D2 = 0.9; (iii) D1 =
D2 = 0.5; (iv) D1 = 0.9, D2 = 0.1; and (v) D1 = 1, D2 = 0.
In this setting, tB � 22.6 for all cases so that the survival
probabilities remain close to Sfree(t |x1, x2) for t � tB. After-
wards, the curves start to deviate from each other, showing

FIG. 10. (a), (b) Survival probability for two diffusing particles
with (i) {D1, D2} = {0, 1} (filled circles), (ii) {1/10, 9/10} (filled
triangles), (iii) {1/2, 1/2} (crosses), (iv) {9/10, 1/10} (empty trian-
gles), and (v) {1, 0} (empty circles). In the initial state, the particle
with diffusion constant D1 is located at (0,0) and the other is placed
at (5,0) inside a disk of radius R = 10. The solid line is the ex-
act solution for the case {D1, D2} = {0, 1}, and the dashed line
presents Sfree(t |x1, x2). The vertical dashed line indicates the value of
tB = 22.6. (c) FET probability density for the same configurations.
Short-time deviations are caused by the binning artifact and a limited
number of realizations with small FET.

that the survival probability depends explicitly on D1 and D2,
and not only on their sum.

The long-time behavior of the survival probability is de-
tailed in Fig. 10(b). If one of the particles is fixed [cases (i)
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TABLE III. The decay time T and two estimates T̄ and T̄ ∗ of
the MFET from Eqs. (59) and (66) for two diffusing particles inside
a disk of radius R = 10. The particle with diffusion coefficient D1

is initially located at (0,0), while the particle with diffusion coeffi-
cient D2 is initially at (5,0). For cases (i) and (v), the small-target
asymptotic formula (46) yields T ≈ 76.2 and T ≈ 115.7, in excel-
lent agreement with simulation results. The exact value of T for case
(i) is 72.0, whereas 〈T 〉 is 66.6. Note that the estimated value of T
here is twice as small as that from the case (i) in Table I because the
diffusion coefficient D1 was twice as small in that case. For case (v),
the numerical solution of the corresponding boundary value problem
leads to T � 108.8 and 〈T 〉 � 92.2.

Decay time MFET

D1 D2 T (δT ) T̄ T̄ ∗

(i) 0 1 75 (3.1) 69 69
(ii) 0.1 0.9 133 (2.3) 90 90
(iii) 0.5 0.5 127 (3.3) 103 103
(iv) 0.9 0.1 134 (4.0) 107 107
(v) 1 0 110 (3.5) 94 94

and (v)], the survival probability exhibits a faster decay as
compared to cases (ii)–(iv) when both particles diffuse. One
sees that when the sum of the diffusion coefficients is fixed,
setting one of them equal to zero seems to be detrimental to
the survival probability at long times. This statement can be
called the “anti-Pascal principle,” as opposed to the “Pascal
principle.” The latter states that the survival probability of a
mobile target is less than or equal to the survival probability
of an immobile target when the diffusion coefficient of the
moving particle is fixed [46]. In other words, if the diffusion
coefficient of a “hunter” is fixed, an immobile “prey” has
more chances to survive than a mobile one. However, when
the sum of diffusion coefficients is fixed, the motion of the
“hunter” is slower if the “prey” also diffuses, and thus the
mobile “prey” survives longer. The fastest decay corresponds
to case (i) when the fixed target is located at the center of the
disk because it is the most accessible for the diffusing particle,
implying faster encounters.

While the decay time is clearly different for cases (i) and
(v) with a fixed target, the long-time behavior of the survival
probability in cases (ii)–(iv) is rather similar. In fact, accord-
ing to Eq. (13), the decay rate T is independent of the starting
positions, i.e., it should be the same for cases (ii) and (iv).
This is confirmed by our simulations (see also the estimated
values in Table III). In turn, the decay time in case (iii) of equal
diffusivities is 4% smaller than in cases (ii) and (iv). We note,
however, that such a small difference could still be an artifact
of numerical simulations or of an estimation procedure from
the data points, for which the monoexponential decay may not
be fully established at the available timescales.

Another important point is the prefactor, which is respon-
sible of the weak dependence of the long-time exponential
decay of the survival probability on the initial condition, as
in the case of identical particles. This prefactor can lead to
different MFETs, depending on whether the particle is close to
the boundary or not. Two estimates of the MFET are provided
in Table III. One observes that encounters are faster when the

FIG. 11. Survival probability S(t ) vs time t for different values
of D1: 0, 0.01, 0.02, 0.05, 0.1, 0.25, and 0.5, with D2 = 1 − D1. The
first particle starts from the center and the second particle from (5,
0) with R = 10. The inset displays the short-time behavior. Arrows
indicate the time tJ discussed in the text.

particle with the larger diffusion coefficient is close to the
boundary.

Similarly, the FET probability densities are also close to
each other [Fig. 10(c)]. In all considered cases, the probability
densities exhibit a single maximum around tF � 4. Interest-
ingly, at times t � tB, the presence of the reflecting boundary
shifts the probability densities upwards, as compared to the
free case (dashed line). A visual inspection suggests the pos-
sible presence of inflection point(s) for the curve H (t |x1, x2).

The limit of very slow targets

It is instructive to examine in detail the slow-target limit
D1/D2 → 0 when the sum of diffusion coefficients is fixed.
Figure 11 illustrates the behavior of the survival probability
for several values of D1: 0, 0.01, 0.02, 0.05, 0.1, 0.25, and
0.5, with D2 = 1 − D1. For short times (t � tB), all the curves
of S(t ) go along the static target line (D1 = 0) and, after a
certain time, begin to separate from it. The smaller D1 is,
the larger this time becomes. In this intermediate time range,
S(t ) cannot be described as ∝ exp(−t/T ), since it includes
a slowly varying prefactor. After a while, the curves separate
from the static target curve and bend toward the curve with
D1 = D2 = 0.5, which is reached (within the resolution of
the figure or simulation errors, that is, within a given relative
error) after a certain time tJ . One sees that the smaller D1

is, the larger tJ gets. These moments are marked with short
colored arrows. After these times tJ , the curves run together,
so that their slope is the same, which means that T is the same,
as it should be.

Since the diffusion operator D = −(D1�x1 + D2�x2 ) de-
pends on both D1 and D2, its eigenvalues and thus the decay
time T (D1, D2) are a priori a function of both diffusion co-
efficients D1 and D2. Even if their sum is fixed, the decay
time is still expected to depend on the ratio D1/D2. How-
ever, our numerical results and the above arguments suggest
that, even for not too large confining volumes, T (D1, D2) is,
to a very good approximation, a function of D1 + D2 alone
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(if D1 > 0 and D2 > 0); in this sense, the behavior is
reminiscent of the no-boundary case. This is an important
and counterintuitive result, which differs from the one-
dimensional setting [64], in which the decay time was indeed
a function of both D1 and D2. In turn, the characteristic time
tJ for relaxation into the monoexponential regime depends on
D1. In the limit D1 → 0, tJ seems to diverge, indicating the
singular character of this limit. In other words, as D1 → 0,
T (D1, D2) does not necessarily converge to T (0, D2) for the
static target. The singular character of this limit was estab-
lished in [64] for one-dimensional diffusion on an interval. In
higher dimensions, it would appear that the above arguments
still carry over, and we therefore conjecture that the singular
behavior would also hold. However, a more rigorous analysis
is required. Note, for instance, that the estimates of the decay
time in Table III for the cases with finite diffusivities differ,
although by 5% only. Concomitantly, we also observe a very
weak dependence of the coefficient A(D1/D2) on the ratio
D1/D2 (cf. Fig. 7).

VII. RESULTS IN THREE DIMENSIONS

Finally, we briefly extend our study to the three-
dimensional case when two spherical particles of equal radii
ρ1 = ρ2 = ρ/2 = 1/2 diffuse with diffusion coefficients D1

and D2 inside a sphere of radius R with reflecting boundary.
The results are qualitatively similar to the two-dimensional
case.

The similarity between two- and three-dimensional sys-
tems is one of the most relevant consequences of the presence
of a reflecting boundary. In fact, in the no-boundary case,
two- and three-dimensional problems were drastically dif-
ferent. Even though the MFET is infinite in both cases, the
recurrent Brownian motion performs a compact exploration
of the plane and visits any infinitesimal region with unit prob-
ability, whereas the transient diffusion in three dimensions
may escape to infinity and never return so that encounter
never happens with a strictly positive probability. In contrast,
the boundedness of the domain with a reflecting boundary
makes diffusion recurrent in any dimension, while the MFET
is always finite. This justifies the similar qualitative behavior
in 2D and 3D cases. In the remainder of the section, we
undertake a systematic analysis of the survival probability and
of the FET probability density in three dimensions, and we
compare them with their two-dimensional counterparts.

As in the 2D case, we introduce two timescales tB and tF
via Eqs. (67) and (68). The survival probability remains very
close to Sfree(t |x1, x2) up to tB. This is confirmed by Fig. 12(a),
which shows the survival probability for four different settings
(see the caption). At times around tB, the survival probability
for the case (iv) of a fixed target is lower than that for the
case (iii) of diffusing particles, if the particles are located
near the center of the sphere. In turn, if both diametrically
opposed particles are far from the center, the case (ii) of
diffusing particles favors rapid encounters as compared to the
case (i) of a fixed target. The explanation is the same as in 2D,
where a centered position of a fixed target helps to avoid large
first-encounter times.

Figure 12(b) illustrates the exponential decay of the sur-
vival probability at long times. One can see that empty

FIG. 12. (a), (b) Survival probability for two diffusing particles
initially located at (−r/2, 0, 0) and (r/2, 0, 0) inside a ball of radius
R = 4. Four considered cases are (i) r = 6, D1 = 1, and D2 = 0
(filled circles); (ii) r = 6, D1 = 1/2, and D2 = 1/2 (empty circles);
(iii) r = 2, D1 = 1/2, and D2 = 1/2 (empty squares); and (iv) r = 2,
D1 = 1, and D2 = 0 (filled squares). Lines show Sfree(t |x1, x2) given
by Eq. (15) for r = 6 (dashed) and r = 2 (solid). The vertical dashed
line indicates the value of tB = 2.0. Panel (a) shows a linear-log plot,
while the log-linear representation for long times is presented in
panel (b). (c) FET probability density.

symbols corresponding to diffusing particles follow two close
parallel straight lines, confirming that the decay time T is
independent of the initial positions. In turn, filled symbols
corresponding to a fixed target follow straight lines with
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TABLE IV. The decay time T , estimated error δT , and two
estimates T̄ and T̄ ∗ of the MFET from Eqs. (59) and (66) for two
spherical particles, initially placed at (−r/2, 0, 0) and (r/2, 0, 0)
inside a ball of radius R = 4, with (i) D1 = 1, D2 = 0, and r = 6;
(ii) D1 = D2 = 1/2, and r = 6; (iii) D1 = D2 = 1/2 and r = 2; and
(iv) D1 = 1, D2 = 0, and r = 2. For comparison, the small-target
asymptotic formula (51) yields T ≈ 9.9 for the case (ii); in turn,
this formula is not applicable for the case (iv) as the target is too
close to the boundary. Note that ρ/R̄ ≈ 0.29 is not small, which
can explain discrepancies. At the same time, Eq. (71) with C3 = 1.2
yields T ≈ 17.2 for the cases (i) and (iii), which differs from the
simulation results by less than 2%.

Decay time MFET

Case T (δT ) T̄ T̄ ∗

(i) 21.2 (0.3) 25.4 25.4
(ii) 16.9 (0.5) 20.8 20.8
(iii) 16.9 (0.6) 13.2 13.2
(iv) 9.5 (0.4) 8.5 8.5

distinct slopes, highlighting the dependence of T on the target
position.

Figure 12(c) shows the corresponding FET probability
densities. Like in the 2D case, the timescales tF and tB deter-
mine their shapes. Here, tB � 2.0 for all cases. Cases (i) and
(ii) present two humps, since tF � 0.7 � tB. In contrast, for
cases (iii) and (iv) tF � 6 � tB and the probability densities
present a single hump. As T is independent of the initial
positions of the particles in cases (ii) and (iii), the long-time
decay of the probability density is roughly the same; in turn, it
is different for cases (i) and (iv), for which T depends on the
initial position of the target (see Table IV).

One important difference with respect to the two-
dimensional case is the dependence of T on the size of the
system. As in 2D, one might be led to think that Eq. (40),
which was obtained for a fixed small target, is still valid
for diffusing particles upon setting D = D1 + D2. Figure 13
shows the decay time T as a function of R̄3 for different values
of R̄ for two sets of diffusion constants. In both cases, the
scaling of T with R̄3 is confirmed,

T � C3
R̄3

3Dρ
, (71)

but, in contrast to the prefactor C2 � 1 for the two-
dimensional case, here one has C3 � 1.2. This result reflects
again the singular character of the limit D1/D2 → 0.

VIII. CONCLUSIONS

In this paper, we studied the distribution of the first-
encounter time for two particles diffusing in bounded domains
with a reflecting boundary. Even though this is a typical sit-
uation for many biochemical reactions, most former studies
focused on the much simpler case with a fixed target (D2 = 0).
This problem of searching for a fixed target by a single dif-
fusing particle was therefore a reference benchmark in our
analysis, in spite of the singular character of the D2/D1 → 0
limit. Another benchmark is the no-boundary case, for which

FIG. 13. Scaled decay time T vs the scaled effective radius
R̄/ρ for two diffusing particles started from positions (−1, 0, 0)
and (1,0,0) inside a confining sphere of radius R equal to
4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, and 8, when D1 = 0.9 and D2 =
0.1 (squares), D1 = D2 = 1/2 (circles), and D1 = 1 and D2 = 1/2
(triangles). Solid and dashed lines correspond to Eq. (71) with C3 =
1.2 and 1, respectively.

the survival probability Sfree(t |x1, x2) and the FET probability
density Hfree(t |x1, x2) are known explicitly. The inclusion of
a reflecting boundary significantly affects the survival proba-
bility and the FET distribution. In particular, the translational
invariance of the no-boundary case no longer holds. For in-
stance, the reflecting boundary makes the survival probability
and the FET distribution explicitly dependent on the initial
positions of the particles with respect to the boundary, not
only on the initial distance between the particles. This de-
pendence is particularly significant at short times. Deviations
from Sfree(t |x1, x2) are stronger when both particles are closer
to the boundary.

We introduced two timescales, tF and tB, that qualita-
tively control the FET distribution. In particular, the survival
probability and the FET probability density can be well ap-
proximated by Sfree(t |x1, x2) and Hfree(t |x1, x2) when t � tB.
In contrast, the confinement effect cannot be generally ignored
at times exceeding tB. In turn, the value of tF determining the
position of the maximum of Hfree(t |x1, x2) affects the shape of
the FET probability density. When tF > tB, the FET probabil-
ity density exhibits a single maximum and has a mildly broad
shape. In turn, if tF � tB, the FET probability density is much
broader, and a second hump can emerge at times of the order
of tB.

The third important timescale is the decay time T charac-
terizing the long-time exponential decay of both S(t |x1, x2)
and H (t |x1, x2). If both particles are diffusing, the decay time
T does not depend on the initial positions of the particles; in
turn, if one particle is immobile (e.g., D2 = 0), T depends on
its fixed position. When the particles are small as compared to
the confinement, our results suggest

T � Cd R̄2

Dd
×

{
ln(R̄/ρ) (d = 2),
R̄/ρ (d = 3), (72)
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where D = D1 + D2, R̄ = R − ρ1, and ρ = ρ1 + ρ2 = 2ρ1.
The numerical prefactor C2 was shown to be close to 1 in two
dimensions, and C3 ≈ 1.2 in three dimensions. Explaining
the deviation of C3 from 1 remains an open problem. In the
small-target limit, T is also close to the MFET.

Equation (72) can be related to the volume v(T ) of the
Wiener sausage generated during time T by a diffusing par-
ticle with diffusion coefficient D and radius ρ [73]. As long as
DT/ρ2 � 1, it turns out that Eq. (72) with Cd = 1 provides
the time T required by the diffusive particle to generate the
volume of the Wiener sausage (i.e., the explored volume up to
time T ) equal to the volume v(T ) of the confining region of
radius R̄. This observation allows one to conjecture what the
extension of (72) to d > 3 could look like:

T � Cd R̄d

d (d − 2)Dρd−2
, (73)

where we used the relation v(T ) = v0d (d − 1)DT/ρ2 for
d � 3 and DT/ρ2 large, with v0 being the volume of a d-
dimensional sphere of unit radius [73].

The small-ρ behavior of T described by Eq. (72) is
drastically different from that of the one-dimensional case.
In the latter, there is no distinction between pointlike and
finite-size particles, i.e., the decay time is finite even at
ρ = 0. Here, there is no small-target asymptotic relation like
Eq. (72), and the dependence of the decay time T on the
diffusion coefficients D1 and D2 is not reduced to that of
D1 + D2 [64].

This work can be extended in several ways. First, for the
sake of providing realistic descriptions, it is important to in-
vestigate the statistics of first-encounter times in biochemical
reactions with reactants of different sizes. Even though the
same simulation algorithms can be used, distinct radii add an
extra lengthscale and thus make the introduction of timescales
more subtle. Second, the effect of external forces that bias
the random motion of diffusing particles can be important for
biological and chemical applications. Third, one can consider
particles undergoing subdiffusive dynamics, e.g., continuous-
time random walks with heavy-tailed waiting times [74,75].
As the statistics of particle trajectories remains unchanged,
the subordination concept suggests that exponential functions
in the spectral decomposition of the survival probability will
be replaced by Mittag-Leffler functions, allowing one to gen-
eralize our former results [17]. Similarly, one can consider
diffusing diffusivity and switching diffusion models for the
dynamics of both particles [23,76,77]. A rigorous mathemat-
ical analysis of the first-encounter distribution in the small
target limit can further clarify the important role of con-
finement in diffusion-influenced reactions. In particular, the
derivation of the leading-order asymptotic relation (72) and
the analysis of its dependence on the diffusion coefficients and
the radii of the particles are still open.

Finally, one of the most important perspectives consists
in accounting for partial reactivity of the particles. In fact,
upon an encounter, the particles typically have to overcome
an energy activation barrier or to undertake an appropriate
conformational change in order to react. As a consequence,
the reaction occurs with some probability that depends on
the reactivity of the particles. The role of partial reactivity

in the statistics of first-reaction times of a single particle
diffusing toward a static target was thoroughly investigated
[8,16,17,24,27,35,78,79]. In particular, the concept of the
boundary local time characterizing the number of encoun-
ters between the diffusing particle and the static target was
put forward to describe the statistics of first-reaction times
[27,80–84]. An extension of the current study to partially re-
active particles and the associated statistics of encounters is of
primary importance for a reliable description of bimolecular
reactions.
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APPENDIX A: SIMULATION PROCEDURE

In our algorithm, diffusing particles are modeled as
continuous-time random walkers [74]. These particles move
randomly by means of instantaneous jumps. The motion of
each particle in a d-dimensional domain is determined by
d + 1 random variables: the waiting time of a particle until its
next jump, and its displacements along each of the d space
directions. These random variables are drawn from corre-
sponding waiting time and jump length distributions. In the
algorithm, we fix the unit of time by setting the waiting time
PDF to be the exponential distribution exp(−t ). The random
displacements carried out by the ith particle are drawn from
zero-mean Gaussian distribution with variance σ 2

i j , where
i = 1, 2 for two particles, and j = 1, . . . , d . Therefore, the
diffusion coefficient of each particle is equal to

Di =
∑d

j=1 σ 2
i j

2d
. (A1)

To deal with isotropic diffusion, we choose σi1 = · · · = σid in
all simulations. The use of the exponential and Gaussian PDFs
is just a choice; other choices are possible, but the waiting time
density should have a finite mean, and the jump length PDF
should have a finite variance to produce normal diffusion [75].

The structure of the program is the following. At the initial
time, the centers of two particles are set in their prescribed
initial positions. Then, the times at which the particles are
expected to jump are assigned by means of an exponen-
tially distributed random variable. The time in the simulation
evolves until the minimum of both times. The particle with the
shorter waiting time takes a jump, whereas the other particle
remains at rest. The moving particle follows a straight line
from its initial position to its destination.

In the no-boundary case, only two simple situations could
be distinguished. If the moving particle collides with the
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FIG. 14. Illustration of two possible encounters for a 2d system
in the simulation algorithm. The empty disk shows the initial po-
sition of the moving particle, while the dashed circle would be its
next location if there were no encounter. The arrow indicates the
expected displacement of the center of the moving particle, whereas
the rectangle delimited by dotted segments represents the area swept
by the moving disk during its jump. The colored disks represent two
possible positions of the static particle that will produce an encounter
event.

other particle, the simulation stops and the encounter time
is recorded. Otherwise, the particle arrives at its destination
and a new waiting time is assigned. The collision takes place
if at least one of the following conditions is fulfilled: (i) the
distance from the center of the static particle (that is, the
particle momentarily at rest) to the destination is smaller than
ρ1 + ρ2, where ρ1 and ρ2 denote, respectively, the radii of the
moving and static particles; (ii) there exists a region around
the static particle inside the hypercylinder confined between
the initial and final positions of the moving particle. Both
situations are illustrated in Fig. 14 for two-dimensional sys-
tems (in this case, the aforementioned hypercylinder is just a
rectangle).

However, in the case of bounded domains, the destination
may be outside the confining domain. It is also possible that
the destination is inside the domain, but its distance to the
boundary is shorter than ρ1. For our purposes, both situa-
tions are equivalent, since the interaction of any particle of
radius ρ1 with a boundary of radius R is the same as that
of a pointlike particle with an effective boundary of radius
R − ρ1.

The implementation of the reflecting boundary can be done
as follows. Let us assume that the moving particle travels a
distance �l in a single step, and that the center of the particle
crosses the effective boundary of radius R − ρ1 after traveling
a distance δl . Let B be the point on the line of motion whose
distance to the intersection is equal to �l − δl , and assume
that this point lies inside the effective disk. Loosely speaking,
let us also term the radial direction as the line that joins
the intersection with the center of the disk of radius R − ρ1.
Thus, the center of the moving particle after the jump is the
point that is symmetric to B with respect to the radial direc-
tion. In this case, the encounter takes place provided that the
moving particle collides with the static particle either before

FIG. 15. The logarithmic derivative, −d ln S(t )/dt , of the sur-
vival probability S(t ) for four choices of D1: 0 (a), 0.01 (b), 0.1
(c), and 0.5 (d), with D2 = 1 − D1. The first particle starts from
the center of the disk of radius R = 10 and the second is located
at (5,0). The horizontal red line indicates the range of times (t1, t2)
used for estimating the decay time T . This estimation fails on panel
(b) because the monoexponential decay arises at longer times, at
which the accuracy of simulations is too low.

reaching the boundary, or after the reflection. Also, there is
an encounter if the distance between the final position of the
center of the moving particle and the center of the static par-
ticle is shorter than ρ = ρ1 + ρ2. Multiple reflections should
be considered when the point B is outside the effective disk.

We also set a time cutoff in order to avoid very long
trajectories prior to the encounter. The cutoff time is fixed at
tcut = 2500 for 2D systems and at tcut = 4000 for 3D. In all
cases, the number of realizations is N = 106.

APPENDIX B: ESTIMATION OF THE DECAY TIME

Estimating the decay time from the long-time asymptotic
behavior of the survival probability is not simple. As dis-
cussed in the main text, one should carefully select the range
of times, (t1, t2), over which the estimation is performed. In
fact, t should be long enough for the monoexponential decay
to already have settled, and short enough to avoid statistical
uncertainties and biases due to a limited number of Monte
Carlo realizations. Figure 15 illustrates this point by show-
ing the logarithmic derivative for four choices of D1 (with
D2 = 1 − D1), with the slower particle being at the center of
the disk. For D1 = 0 (fixed target), one observes a plateau
for t from 250 to 500, and then a rapid decrease due to
saturation artifacts. Using this range, one gets the estimate
T ≈ 75 given in Table III. Similarly, one gets accurate esti-
mates of the decay time for D1 = 0.1 and 0.5. In contrast, the
logarithmic derivative for the case D1 = 0.01 does not exhibit
a plateau, i.e., the exponential function e−t/T is affected by
another slowly varying function on the considered range of
times. One therefore needs a larger number of realizations or
more efficient simulation methods (such as in [63]) to access
the behavior of the survival probability at longer times, for
which the monoexponential decay is well established.
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