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Application of projection operator method to coarse-grained dynamics with transient potential
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We show that the coarse-grained dynamics model with the time-dependent and fluctuating potential (transient
potential) can be derived from the microscopic Hamiltonian dynamics. The concept of the transient potential was
first introduced rather phenomenologically, and its relation to the underlying microscopic dynamics has not been
clarified yet. This is in contrast to the generalized Langevin equation, the relation of which to the microscopic
dynamics is well-established. In this work, we show that the dynamic equations with the transient potential can
be derived for the coupled oscillator model, without any approximations. It is known that the dynamics of the
coupled oscillator model can be exactly described by the generalized Langevin-type equations. This fact implies
that the dynamic equations with the transient potential can be utilized as a coarse-grained dynamics model in a
similar way to the generalized Langevin equation. Then we show that the dynamic equations for the transient
potential can also be formally derived for the microscopic Hamiltonian dynamics, without any approximations.
We use the projection operator method for the coarse-grained variables and transient potential. The dynamic
equations for the coarse-grained positions and momenta are similar to those in the Hamiltonian dynamics, but
the interaction potential is replaced by the transient potential. The dynamic equation for the transient potential is
the generalized Langevin equation with the memory effect. Our result justifies the use of the transient potential
to describe the coarse-grained dynamics. We propose several approximations to obtain the simplified dynamics
model. We show that, under several approximations, the dynamic equation for the transient potential reduces to
the relatively simple Markovian dynamic equation for the potential parameters. We also show that with several
additional approximations, the approximate dynamics model further reduces to the Markovian Langevin-type
equations with the transient potential.
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I. INTRODUCTION

Soft matters such as polymers exhibit complex dynamics
at relatively long timescales. To describe the dynamics of
soft matters, mesoscopic coarse-grained models are useful.
For example, we can efficiently perform simulations for slow
relaxation processes of entangled polymers by utilizing some
coarse-grained models [1,2]. In many cases, coarse-grained
models are designed rather phenomenologically. As a result,
the dynamic equations and interaction models in phenomeno-
logical coarse-grained models are not fully justified, and
sometimes the connections between a coarse-grained model
and a microscopic (or atomistic) model are not clear either.
Some statistical mechanical methods to relate microscopic
and mesoscopic coarse-grained models are desired.

If we limit ourselves to static structures, the connection
between the coarse-grained and microscopic models can be
established systematically. To obtain the effective interaction
potential in a coarse-grained model, for example, we can em-
ploy the iterative Boltzmann inversion method [3]. With that
method, we can construct the accurate effective interaction
potentials starting from the underlying microscopic model.
Then we can efficiently reproduce static structures using the
coarse-grained model with the effective interaction potentials.
Such a coarse-graining procedure can be hierarchically per-

formed, and effective interaction potentials at several different
scales can be systematically constructed [4].

However, if we want to reproduce the dynamics by the
mesoscopic coarse-grained model, the situation becomes dif-
ficult. To reasonably describe the dynamics at the mesoscopic
level, we need some transport coefficients and memory ef-
fects that are consistent with the underlying microscopic
dynamics. The projection operator method [5–9] tells us a
straightforward way to calculate the coarse-grained dynamic
equations for mesoscopic coarse-grained variables. By op-
erating the projection operator to the time evolution of the
coarse-grained variables, we obtain the generalized Langevin
equations. The thus obtained generalized Langevin equa-
tions contain the so-called memory kernels, which represent
the memory effect due to the eliminated fast degrees of
freedom. With some additional approximations (the Gaus-
sian noise approximation and the Markov approximation), the
dynamic equations reduce to well-known simple Langevin
equations. The projection operator method has been utilized to
derive mesoscopic models such as the time-dependent density
functional [10], the dissipative particle dynamics (DPD) [11],
and hybrid models [12].

The projection operator method for the generalized
Langevin equation is an established method, and one that is
widely accepted as the standard method of coarse-graining.
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However, it is not a unique way to obtain the coarse-grained
dynamic equations, i.e., we can employ other coarse-graining
methods. For some targets, the generalized Langevin equa-
tion would be convenient, while for others some other
coarse-graining methods would be convenient. One simple
yet powerful coarse-graining method is the modeling with the
transient force (or the transient potential). The concept of the
transient force was first proposed by Kindt and Briels [13] in
the responsive particle dynamics (RaPiD) model for entangled
polymers, and then generalized to various soft matter systems
[2,14]. In the transient potential type models, interaction po-
tentials are modeled as time-dependent functions that relax
toward stable forms. The slip-spring type models [15–19] for
entangled polymers would be interpreted as models with tran-
sient potentials. Also, the dynamically heterogeneous motion
of particles in supercooled liquids can be reasonably described
with transient potentials [20,21]. Although the concept of the
transient potential seems to be promising, the dynamics mod-
els listed above are constructed phenomenologically. Whether
the use of the transient potentials is theoretically acceptable or
not is not understood. The connection between the transient
potential and the underlying microscopic model is not clear
either. Theories to connect the transient potential and the
underlying microscopic dynamics are demanding. Recently,
the author attempted to derive the transient potential from
the microscopic Langevin dynamics and justify the dynamics
models with the transient potentials. The Langevin equa-
tion with the transient potential (LETP) [21] was proposed
as a general coarse-grained dynamics model. The LETP was
obtained by introducing the transient potential as an addi-
tional and auxiliary degree of freedom to the system, and then
formally eliminating the fast degrees of freedom. Although
the previous work partly justified the use of the transient
potential, it does not give the explicit dynamic equation for the
transient potential. The transient potential obeys the stochastic
process with the memory effect, and we only have the formal
path probability for it. In addition, an overdamped Langevin
equation was employed as the microscopic dynamics model.
Thus the microscopic model itself was already (partly) coarse-
grained. Therefore, the relation of the LETP to its underlying
microscopic dynamics model is still not fully clear.

To fully justify the transient potential model and estab-
lish the connection between the dynamics of the transient
potentials and the underlying microscopic dynamics mod-
els, we may need to start the derivation from a microscopic
Hamiltonian dynamics. One may employ the underdamped
Langevin equation or the generalized Langevin equation.
However, these dynamic equations are also already (partly)
coarse-grained. Thus we employ the Hamiltonian dynamics
as the microscopic model. In this work, first we show that the
transient potential model can be exactly derived for the cou-
pled oscillator model, without any approximations (Sec. II).
The coupled oscillator model is a simple Hamiltonian dynam-
ics model, and is well known as a simple model from which
the generalized Langevin-type equations can be derived. The
dynamic equations with the transient potential can be derived
in a somewhat similar way to the generalized Langevin-type
equations. This fact encourages us to consider the construction
of the transient potential model for more general Hamiltonian-
based microscopic dynamics.

Then we apply the projection operator method to derive the
dynamics model with the transient potential (Sec. III). We in-
troduce the microscopic model and its equilibrium properties
(Secs. III A and III B), and we derive the effective dynamic
equations for coarse-grained variables with the transient po-
tential (Sec. III C). The effective dynamic equations for the
coarse-grained positions and momenta are shown to be sim-
ple canonical-type equations. The dynamic equation for the
transient potential can be formally expressed as the stochastic
partial differential equation with the memory effect. It can be
interpreted as the generalized Langevin equation for the tran-
sient potential. These dynamic equations are obtained without
any approximations and thus they are exact. Therefore, we can
formally justify the use of the transient potential to describe
coarse-grained mesoscopic dynamics. However, the exact dy-
namic equation for the transient potential is just formal and far
from tractable. Therefore, we introduce some approximations
to obtain a simple approximate dynamic equation for the
transient potential (Secs. III D and III E). We show that the
dynamic equation for the transient potential can be approx-
imated as the simplified dynamic equation for the potential
parameters. Therefore, the use of the transient potentials in
phenomenological dynamics models can be justified. Finally,
we discuss the properties of the obtained dynamics model and
how we can utilize them for practical purposes (Sec. IV). We
propose a possible method to estimate the potential parameter
from a given transient potential (Sec. IV A). We compare our
model with the generalized Langevin equation by the standard
coarse-graining method (Sec. IV B). We show that our dy-
namic equations reduce to the LETP in the previous work [21]
by introducing some additional approximations (Sec. IV C).

II. COUPLED OSCILLATOR MODEL

A. Dynamics model

The concept of the transient potential was first introduced
rather phenomenologically [2,13,14]. If we can rewrite mi-
croscopic dynamic equations into the dynamic equations with
a transient potential without approximations, the use of the
transient potential would be justified. For such a purpose,
a simple and analytically solvable model would be useful.
Here we consider an analytically solvable toy model: the cou-
pled oscillator model. The dynamic equations for the coupled
oscillator model can be exactly rewritten as the generalized
Langevin-type equations in a simple and straightforward way
[22–24]. This demonstrates the validity of the generalized
Langevin equation. In this section, we show that the coupled
oscillator model can also be rewritten as the dynamic equa-
tions with the transient potential.

We consider a simple coupled oscillator model in one-
dimensional space, which consists of 2N degrees of freedom.
We consider a single particle, the position and momentum
of which at time t are expressed as Q(t ) and P(t ). The
system consists of this target particle and (N − 1) particles
connected to the target particle by harmonic springs. We in-
terpret the (N − 1) particles except the target particle as a
heat bath, and we call these particles the bath particles. We
express the position and momentum of the jth bath particle
as θ j (t ) and π j (t ). Then the degrees of freedom for the heat
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bath can be expressed as the (N − 1)-dimensional position
and momentum vectors, θ(t ) ≡ [θ1(t ), θ2(t ), . . . , θN−1(t )] and
π(t ) ≡ [π1(t ), π2(t ), . . . , πN−1(t )].

We employ the following Hamiltonian:

H(Q, P, θ,π) = P2

2M
+

N−1∑
j=1

π2
j

2μ j
+ U (Q, θ), (1)

U (Q, θ) =
N−1∑
j=1

1

2
κ j (Q − θ j )

2, (2)

where M and μ j represent the mass for the target particle
and the jth bath particle, U (Q, θ) is the interaction potential
between the target particle and the heat bath, and κ j is the
spring constant for the jth bath particle. From the Hamiltonian
(1), the canonical equations are given as

dQ(t )

dt
= P(t )

M
,

dP(t )

dt
= −

∑
j

κ j (Q(t ) − θ j (t )), (3)

dθ j (t )

dt
= π j (t )

μ j
,

dπ j (t )

dt
= −κ j (θ j (t ) − Q(t )). (4)

Equations (3) and (4) are the dynamic equations of the cou-
pled oscillator model. Because they are linear differential
equations, we can of course solve them straightforwardly. We
consider the situation in which we can observe only the target
particle, Q(t ) and P(t ). Then we will observe that Q(t ) and
P(t ) obey the effective dynamic equations. In Secs. II B and
II C, we derive two sets of effective dynamic equations.

B. Generalized Langevin equation

By eliminating θ(t ) and π(t ) from Eqs. (3) and (4), we
can construct the effective dynamic equations for the target
particle. Here we briefly show the derivation of the general-
ized Langevin-type equations [22–24]. The first equation in
Eqs. (3) is expressed in terms of Q(t ) and P(t ) and thus no
further treatment is required. The second equation in Eqs. (3)
contains θ(t ) and thus we should eliminate it. Following the
standard procedure, we solve Eqs. (4) as

θ j (t ) = Q(t ) + [θ j (0) − Q(0)] cos(ω jt ) + π j (0)

ω jμ j
sin(ω jt )

−
∫ t

0
dt ′ cos (ω j (t − t ′))

P(t ′)
M

, (5)

where ω j ≡ √
κ j/μ j .

By substituting Eq. (5) into Eqs. (3) and rearranging
terms, we have the following generalized Langevin-type equa-
tions [24]:

dQ(t )

dt
= P(t )

M
, (6)

dP(t )

dt
= −

∫ t

0
dt ′K ′(t − t ′)

1

M
P(t ′) + ξ ′(t ). (7)

Here, K ′(t ) and ξ ′(t ) correspond to the memory kernel and the
noise, respectively. They are defined as

K ′(t ) ≡
∑

j

κ j cos(ω jt ), (8)

ξ ′(t ) ≡ [θ j (0) − Q(0)] cos(ω jt ) + π j (0)

ω jμ j
sin(ω jt ). (9)

If we can observe only Q(t ) and P(t ) and we cannot observe
θ(t ) and π(t ), we should interpret θ(0) and π(0) as random
variables. If we assume that these random variables obey the
equilibrium distribution, we have the fluctuation-dissipation
relation:

〈ξ ′(t )〉eq,0 = 0, 〈ξ ′(t )ξ ′(t ′)〉eq,0 = kBT K ′(|t − t ′|).
(10)

Here, 〈· · · 〉eq,0 represents the equilibrium statistical average
over θ(0) and π(0), kB is the Boltzmann constant, and T is
the temperature. The equilibrium statistical average is taken
for the canonical probability distribution determined by the
Hamiltonian (1).

Thus we find that the generalized Langevin-type equa-
tions are derived from the canonical equations, only with
straightforward calculations. The derivation shown above sup-
ports the use of the generalized Langevin equation with the
memory kernel to describe the coarse-grained dynamics.

C. Dynamic equations with transient potential

The generalized Langevin-type equations in Sec. II B are
not the unique model to describe the coarse-grained dynamics.
We expect that Eqs. (3) and (4) can be rewritten in other
forms. Now we consider rewriting them by utilizing the time-
dependent and fluctuating transient potential in a heuristic
way. If we concentrate only on Q(t ) and P(t ), the interaction
potential U (Q(t ), θ(t )) would be replaced by an effective po-
tential for Q(t ). This effective potential will change as time
evolves. Here we may call such an effective potential the
transient potential. We hypothetically rewrite the potential as
U (Q(t ), θ(t )) = �(Q(t ), A(t )), with

�(Q, A) = 1
2κeff(Q − A)2, (11)

where κeff represents the effective spring constant and A is the
effective position of the potential center. The effective position
can change in time, and thus we interpret A(t ) at time t as an
additional, auxiliary degree of freedom. From Eqs. (11) and
(2), it is straightforward to show that the following relations
hold:

κeff =
∑

j

κ j, A(t ) = 1

κeff

∑
j

κ jθ j (t ). (12)

With the transient potential (11), the second equation in
Eqs. (3) can be rewritten as

dP(t )

dt
= −∂�(Q(t ), A(t ))

∂A(t )
. (13)

We need to construct the dynamic equation for A(t )
to obtain the dynamic equations in closed form. From
Eqs. (12) and (4), we have the following dynamic
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equation for A(t ):

dA(t )

dt
= 1

κeff

∑
j

κ j
dθ j (t )

dt
= 1

κeff

∑
j

ω2
jπ j (t ). (14)

As is the case in Sec. II B, we solve Eqs. (4) to eliminate π(t ) in Eq. (14):

π j (t ) = −ω jμ j (θ j (0) − Q(0)) sin(ω jt ) + π j (0) cos(ω jt )

+
∫ t

0
dt ′

[
ω jμ j sin (ω j (t − t ′))

dA(t ′)
dt ′ + cos (ω j (t − t ′))κ j (Q(t ) − A(t ))

]
. (15)

By substituting Eq. (15) into Eq. (14), we have the dynamic equation for A(t ):

dA(t )

dt
= 1

κeff

∑
j

ω2
j

[
− ω jμ j (θ j (0) − Q(0)) sin(ω jt ) + π j (0) cos(ω jt )

+
∫ t

0
dt ′

(
ω jμ j sin (ω j (t − t ′))

dA(t ′)
dt ′ + cos (ω j (t − t ′))κ j (Q(t ) − A(t ))

)]
.

(16)

We can rewrite Eq. (16) in a simple and intuitive form. After some calculations, the dynamic equations become

dQ(t )

dt
= P(t )

M
, (17)

dP(t )

dt
= −∂�(Q(t ), A(t ))

∂Q(t )
, (18)

dA(t )

dt
= −

∫ t

0
dt ′ K (t − t ′)

∂�(Q(t ′), A(t ′))
∂A(t ′)

+ ξ (t ). (19)

(See Appendix A for detailed calculations.) K (t ) and ξ (t ) in Eq. (19) can be interpreted as the memory kernel and the noise for
the auxiliary degree of freedom, A(t ). We define the Laplace transform of a function f (t ) as f ∗(s) ≡ ∫ t

0 dt e−ts f (t ). K (t ) and
ξ (t ) are defined via their Laplace transforms:

K∗(s) ≡
[

1 + 1

κeff

∑
j

κ jω
2
j

ω2
j + s2

]−1
1

κ2
eff

∑
j

κ jω
2
j s

ω2
j + s2

, (20)

ξ ∗(s) ≡
[

1 + 1

κeff

∑
j

κ jω
2
j

ω2
j + s2

]−1
1

κeff

∑
j

[
− κ jω

2
j

ω2
j + s2

[θ j (0) − Q(0)] + ω2
j s

ω2
j + s2

π j (0)

]
. (21)

As is the case in Sec. II B, we interpret θ(0) and π(0)
as random variables and assume that they obey the equilib-
rium distribution. Although we cannot calculate the inverse
Laplace transforms of Eqs. (20) and (21) analytically, the first-
and second-order equilibrium moments can be calculated. We
have the following fluctuation-dissipation relation:

〈ξ (t )〉eq,0 = 0, 〈ξ (t )ξ (t ′)〉eq,0 = kBT K (|t − t ′|). (22)

The detailed calculations for Eq. (22) are shown in Ap-
pendix A.

From the calculations shown above, we find that the canon-
ical equations for the coupled oscillator model [Eqs. (3) and
(4)] can be modified both to the generalized Langevin-type
equations [Eqs. (6) and (7)] and to the dynamic equations with
the transient potential [Eqs. (17)–(19)]. In both cases we have
employed no approximations, and thus both sets of dynamic
equations [Eqs. (6) and (7) and Eqs. (17)–(19)] are exact.
We consider that the dynamic equations with the transient
potential can be justified in the same way as the generalized
Langevin-type equation.

The results in this section may be interpreted as follows.
The effective dynamic equations depend on the choice of the
coarse-grained degrees of freedom. If we use only Q(t ) and
P(t ) as the coarse-grained degrees of freedom, we have the
generalized Langevin-type equations. If we employ A(t ) as
the auxiliary degree of freedom, in addition to Q(t ) and P(t ),
we have the dynamic equations with the transient potential.
We conclude that the generalized Langevin equation is not the
unique expression for the coarse-grained dynamics, and we
can employ the dynamic equations with the transient potential
as well. In Sec. III, we attempt to derive the dynamic equa-
tions similar to Eqs. (17)–(19) for a more general dynamics
model.

The dynamic equations with the transient potential
[Eqs. (17)–(19)] are not in the same form as the LETP in
Ref. [21]. We cannot rewrite Eqs. (17)–(19) into the over-
damped Langevin equations. Thus our result for the coupled
oscillator model does not directly justify the LETP. We con-
sider that some approximations are required to rewrite the
dynamic equations as the LETP. We will discuss later how
the LETP-type dynamic equation can be related to dynamic
equations with the transient potential (Sec. IV C).
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III. THEORY

A. Microscopic dynamics model

We start from a microscopic dynamics model that obeys
the Hamiltonian dynamics. We consider a three-dimensional
system that consists of N particles. We express the position
and momentum of the ith particle at time t as ri(t ) and pi(t ),
respectively. Then the state of this system can be fully spec-
ified by two 3N-dimensional vectors (or a 6N-dimensional
vector), namely r(t ) ≡ [r1(t ), r2(t ), . . . , rN (t )] and p(t ) ≡
[p1(t ), p2(t ), . . . , pN (t )]. The dynamic equations are given as
the canonical equations:

dr(t )

dt
= ∂Ĥ(r(t ), p(t ))

∂ p(t )
,

d p(t )

dt
= −∂Ĥ(r(t ), p(t ))

∂r(t )
,

(23)
where Ĥ(r, p) is the Hamiltonian. (In this work, we do not
employ a thermostat for the microscopic dynamics.) For par-
ticles interacting via the interaction potential, the Hamiltonian
can be expressed as

Ĥ(r, p) = 1
2 p · m−1 · p + Û (r), (24)

with the diagonal mass tensor m (which is assumed to be
constant) and the interaction potential energy Û (r).

In principle, the dynamics of the system can be fully
described by Eq. (23). We consider the coarse-graining for
this system. We reduce the degrees of freedom and derive
the effective dynamic equations for coarse-grained variables
such as the centers of mass of several particles. In this
work, we limit ourselves to the case in which the coarse-
grained variables can be expressed as linear combinations
of the original position r(t ) [21]. Then we can split the
degrees of freedom r(t ) and p(t ) into the coarse-grained
slow degrees of freedom and the remaining fast degrees of
freedom. We assume that there are M coarse-grained posi-
tion variables, and we describe them with an M-dimensional
vector as Q(t ) ≡ [Q1(t ), Q2(t ), . . . , QM (t )] [Qj (t ) is the jth
coarse-grained position variable]. We describe the momentum
for Q(t ) as P(t ) ≡ [P1(t ), P2(t ), . . . , PM (t )]. We express the
remaining (3N − M ) positions by a (3N − M )-dimensional
vector as θ(t ) ≡ [θ1(t ), θ2(t ), . . . , θ3N−M (t )], and the momen-
tum for θ(t ) as π(t ) ≡ [π1(t ), π2(t ), . . . , π3N−M (t )]. Then the
position in phase space at time t can be fully specified by
a 6N-dimensional vector �(t ) ≡ [Q(t ), P(t ), θ(t ),π(t )]. Al-
though the fast degrees of freedom can be chosen rather
arbitrarily, we choose θ(t ) to be linear combinations of the
original positions [in the same way as Q(t )]. With an appro-
priate choice of θ(t ), the mass tensor can be block-diagonal.
Then we can rewrite the Hamiltonian (24) as

Ĥ(Q, P, θ,π) = 1
2 P · M−1 · P + 1

2π · μ−1 · π + Û (Q, θ),
(25)

where M and μ are mass tensors, and both of them are as-
sumed to be constant. (M and μ are not diagonal, in general.)
The interaction potential Û (Q, θ) is a function of Q and θ,
and the fast and slow degrees of freedom are coupled only
via the interaction potential. From Eq. (25), the canonical

equations are explicitly written as

dQ(t )

dt
= M−1 · P(t ),

dP(t )

dt
= −∂Û (Q(t ), θ(t ))

∂Q(t )
, (26)

dθ(t )

dt
= μ−1 · π(t ),

dπ(t )

dt
= −∂Û (Q(t ), θ(t ))

∂θ(t )
. (27)

Equations (26) and (27) are, of course, equivalent to Eq. (23).
If we successfully eliminate the degrees of freedom θ(t ) and
π(t ) from Eqs. (26) and (27), we will have the coarse-grained
effective dynamic equations for Q(t ) and P(t ).

We consider a physical quantity that can be expressed
as a function of the position in the 6N-dimensional phase
space. We express physical quantities that explicitly depend
on θ(t ) and/or π(t ) with hats, e.g., f̂ (�(t )) and ĝ(θ(t )). Some
physical quantities depend only on Q(t ) and P(t ). We express
physical quantities that depend only on the coarse-grained
variables with bars, e.g., h̄(Q(t ), P(t )).

The dynamics of the system can be essentially described
by the Poisson bracket or by the Liouville operator. The Liou-
ville operator (Liouvillian) L which corresponds to canonical
equations (26) and (27) is given as

L f̂ (�(t )) ≡ P(t ) · M−1 · ∂ f̂ (�(t ))
∂Q(t )

− ∂Û (Q(t ), θ(t ))
∂Q(t )

· ∂ f̂ (�(t ))
∂P(t )

+π(t ) · μ−1 · ∂ f̂ (�(t ))
∂θ(t )

− ∂Û (Q(t ), θ(t ))
∂θ(t )

· ∂ f̂ (�(t ))
∂π(t )

. (28)

Since the Hamiltonian dynamics is deterministic, a time-
dependent physical quantity can be formally expressed as a
function of the initial position in the phase space �0 ≡ �(0)
and time t . This can be realized by utilizing the time-shift
operator. A time-shifted physical quantity can be formally
expressed by utilizing the Liouville operator: f̂ (�(t )) =
etL f̂ (�0) (here the operator L is interpreted as the operator
for �0). Then the time derivative of a physical quantity at time
t becomes (d/dt ) f̂ (�(t )) = L f̂ (�(t )) = etLL f̂ (�0).

B. Equilibrium properties

We should eliminate the fast variables θ(t ) and π(t ) to ob-
tain the effective dynamic equations for Q(t ) and P(t ). Before
we proceed to the elimination of fast variables, we consider
the equilibrium probability distributions. In this subsection,
we consider only static properties. Thus we do not treat the
position in the phase space as a function of time in this
subsection, and we describe variables without the argument
t , such as � and Q. In equilibrium, the canonical probability
distribution function in the 6N-dimensional phase space can
be simply expressed as

	̂eq(�) = 1

Z exp

[
−Ĥ(�)

kBT

]
, (29)
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where Z is the partition function defined as follows:

Z ≡
∫

d� exp

[
−Ĥ(�)

kBT

]
. (30)

The equilibrium probability distribution for the coarse-
grained degrees of freedom can be obtained straightforwardly.
The equilibrium probability distribution for Q and P simply
becomes

	̄eq(Q, P) =
∫

dθ dπ 	̂eq(�)

=
√

det(2πμ)

Z exp

[
−P · M−1 · P

2kBT
− F̄ (Q)

kBT

]
,

(31)

where F̄ (Q) is the free energy for Q defined as

F̄ (Q) ≡ −kBT ln
∫

dθ e−Û (Q,θ)/kBT . (32)

In Sec. II C, we rewrote the dynamic equations by em-
ploying the transient potential and the additional, auxiliary
degree of freedom. Here we introduce the transient potential
to the system in a similar way. We do not know whether
the transient potential for Q can be expressed by some hy-
pothetical functional forms [such as Eq. (11)] with auxiliary
degrees of freedom or not. Therefore, we treat the potential
Û (Q, θ) itself as an auxiliary degree of freedom. We express
the transient potential as �(q̃), where q̃ is a dummy variable.
(In what follows, we employ variables with tildes such as
q̃ as dummy variables.) For static properties, we define the
transient potential as

�(q̃) ≡ Û (q̃, θ), (33)

and we employ �(q̃) as an additional degree of freedom. Here,
it should be emphasized that we introduce “a function” �(q̃),
not “a number” (such as a vector), as an auxiliary degree of
freedom. Equation (33) should hold for any q̃ (and this is why
we introduced the dummy variable q̃). Intuitively, Eq. (33)
means that the functional form of �(q̃) [not a single value at a
specific point such as �(Q)] should be tuned to reproduce the
original potential form under a given θ. A function �(q̃) itself
has infinite degrees of freedom, while Û (q̃, θ) has just finite
degrees of freedom. One might think that the introduction
of a function with infinite degrees of freedom may make
the expressions complicated and is useless. However, as we
will show, it is useful in some aspects. This situation would
be similar to the introduction of continuum fields (such as
the density field) to particle systems in order to construct
approximate models [25–30].

The state of the system at the coarse-grained level can now
be specified by Q, P, and �(q̃). For example, the equilibrium
probability distribution at the coarse-grained level should de-
pend on �(q̃) in addition to Q and P. We express physical
quantities that depend only on Q, P, and �(q̃) with bars,
e.g., h̄[Q, P,�(·)], in the same way as the quantities that
depend only on Q and P. Here, h̄[Q, P,�(·)] is a function
of Q and P and a functional of �(q̃) [“(·)” indicates that the

argument does not represent a specific value of the function at
a specific point, but rather the function itself]. The equilibrium
distribution function for Q, P, and �(q̃) becomes

	̄eq[Q, P,�(·)]

=
∫

dθ dπ δ[�(·) − Û (·, θ)]	̂eq(�)

=
√

det(2πμ)

Z

× exp

[
− 1

kBT

(
1

2
P · M−1 · P + �(Q) + ϒ̄[�(·)]

)]
,

(34)

where δ[�(·) − Û (·, θ)] represents the delta functional and
ϒ̄[�(·)] is defined as

ϒ̄[�(·)] ≡ −kBT ln
∫

dθ δ[�(·) − Û (·, θ)]. (35)

ϒ̄[�(·)] would be interpreted as an effective potential func-
tional for �(q̃). The transient potential �(q̃) can take various
functional forms, and the probability to take a specific func-
tional form is determined by Eq. (34). If we take the statistical
average over all the possible functional forms for Eq. (34), we
simply have

	̄eq(Q, P) =
∫

D�	̄eq[Q, P,�(·)]. (36)

Here,
∫
D� represents the functional integral over �(q̃), and

we have assumed that the measure for the functional integral
is appropriately chosen.

The conditional probability distribution (the local equilib-
rium distribution) of the transient potential under given Q and
P becomes 	̄eq[�(·)|Q, P] = 	̄eq[Q, P,�(·)]/	̄eq(Q, P).
Then we can show that the average force by the transient
potential under given Q and P simply reduces to that by the
free energy F̄ (Q):∫

D�

[
−∂�(Q)

∂Q

]
	̄eq[�(·)|Q, P]

= − exp

[ F̄ (Q)

kBT

] ∫
D�

∫
dθ δ[�(·) − Û (·, θ)]

∂�(Q)

∂Q

× exp

[
−�(Q)

kBT

]
= −∂F̄ (Q)

∂Q
. (37)

From Eqs. (34) and (37), in equilibrium, we find that force by
the transient potential −∂�(Q)/∂Q fluctuates around that by
the free energy −∂F̄ (Q)/∂Q.

C. Projection operators and dynamic equations for
coarse-grained variables

To obtain the effective dynamic equations for Q(t ), P(t ),
and the time-dependent transient potential, we utilize the
projection operator for these variables. To describe the time
evolution of the transient potential, we interpret the interac-
tion potential Û (q̃, θ(t )) as a function of time [and actually
it is a function of time via θ(t )]. Then Û (q̃, θ(t )) works as
the transient potential. We define the projection operator P
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as follows:

P f̂ (�0) ≡

∫
d�′

0 	̂eq(�′
0)δ(Q0 − Q′

0)δ(P0 − P′
0)δ[Û (·, θ0) − Û (·, θ′

0)] f̂ (�′
0)∫

d�′
0 	̂eq(�′

0)δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

= 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
dθ′

0dπ′
0 	̂eq(�′

0)δ[Û (·, θ0) − Û (·, θ′
0)] f̂ (�′

0).

(38)

Here, �0 = [Q0, P0, θ0,π0] and �′
0 = [Q′

0, P′
0, θ

′
0,π

′
0] are

initial positions in phase space. Equation (38) corresponds to
the partial equilibrium average over the initial state, under
fixed Q0, P0, and Û (q̃, θ0). As before, the functional form
of Û (q̃, θ0) is constrained [instead of a specific value such
as Û (Q, θ0)] in Eq. (38). Equation (38) would be considered
as an analog to the projection operator for the density field
in the time-dependent density functional model [10]. The
projection operator P extracts the component of a physical
quantity which can be expressed in terms of the initial values
of the coarse-grained parameters Q0, P0, and Û (q̃, θ0). From
Eq. (38), it is clear that P2 = P . We also define another
projection operator as Q ≡ 1 − P , which satisfies Q2 = Q
and PQ = QP = 0.

The dynamic equations for Q(t ) and P(t ) are given by
Eq. (26). They can be rewritten as

d

dt
Q(t ) = M−1 · P(t ), (39)

d

dt
P(t ) = etL

[
−∂Û (Q0, θ0)

∂Q0

]
= − ∂[etLÛ (q̃, θ0)]

∂ q̃

∣∣∣∣
q̃=Q(t )

.

(40)

Thus we find that, if we interpret etLÛ (q̃, θ0) as an additional
coarse-grained degree of freedom, the dynamic equations for
Q(t ) and P(t ) can be expressed only with the coarse-grained
variables in rather simple forms. We can rewrite the dynamic
equations in simple forms if we employ the following time-
dependent effective Hamiltonian for coarse-grained variables:

Heff(Q, P, t ) = 1
2 P · M−1 · P + �(Q, t ), (41)

�(q̃, t ) ≡ etLÛ (q̃, θ0) = Û (q̃, θ(t )). (42)

With the time-dependent effective Hamiltonian (41), Eqs. (39)
and (40) can be interpreted as the usual canonical equa-
tions for Q(t ) and P(t ). Equation (42) is the definition of
the time-dependent transient potential. [It reduces to Eq. (33)
if we consider only the time-independent static properties.]
Intuitively, Eq. (42) means that the time-dependent functional
form of �(q̃, t ) is tuned so that it reproduces the original
potential function, which evolves in time as θ(t ) evolves. If
the time-dependent functional form of �(q̃, t ) is given, the
dynamic equations (39) and (40) are expressed only in terms
of the coarse-grained variables Q(t ) and P(t ) at time t . This
is much different from the usual case in which we do not
employ the transient potential. (We will discuss the difference
between our method and the standard coarse-graining method
in Sec. IV B.)

Of course, the dynamic equations (39) and (40) are mean-
ingless unless we explicitly specify the dynamic equation for

the transient potential �(q̃, t ). The state of the system at the
coarse-grained level is now specified by {Q(t ), P(t ),�(q̃, t )}
instead of {Q(t ), P(t )}. We should derive the explicit form
of the dynamic equation for �(q̃, t ). Following the standard
procedure, we use the projection operators P and Q to obtain
the effective dynamic equation for �(q̃, t ). We utilize the
following operator identity by Kawasaki [5,9]:

etL = etLP +
∫ t

0
dt ′ et ′LPLQe(t−t ′ )LQ + QetLQ. (43)

By using the operator identity (43) for (∂/∂t )�(q̃, t ) =
etLLÛ (q̃, θ0), we can formally rewrite the dynamic equa-
tion for the transient potential as

∂

∂t
�(q̃, t ) = V̄ [Q(t ), P(t ),�(·, t ), q̃]

+ Ḡ[Q(·), P(·),�(·, ·), q̃, t] + �̂(�0, q̃, t ).

(44)

Here, V̄ [Q(t ), P(t ),�(·, t ), q̃], Ḡ[Q(·), P(·),�(·, ·), q̃, t],
and �̂(�0, q̃, t ) are the reversible (mode-coupling) term, the
damping term, and the fluctuating term, respectively. The
damping term depends on the history of the coarse-grained
variables [and thus it is a functional of Q(t ), P(t ), and
�(q̃, t )]. They are defined as

V̄ [Q(t ), P(t ),�(·, t ), q̃] ≡ etLPLÛ (q̃, θ0), (45)

Ḡ[Q(·), P(·),�(·, ·), q̃, t] ≡
∫ t

0
dt ′ et ′LPLQe(t−t ′ )LQ

×LÛ (q̃, θ0), (46)

�̂(�0, q̃, t ) ≡ QetLQLÛ (q̃, θ0). (47)

From Eqs. (45) and (46), the reversible and damping terms can
be expressed only in terms of the coarse-grained variables. On
the other hand, from Eq. (47), clearly the fluctuating term can-
not be expressed only in terms of the coarse-grained variables.

Now we calculate Eqs. (45)–(47) separately. First, we cal-
culate the reversible term V̄ [Q(t ), P(t ),�(·, t ), q̃] [Eq. (45)]:

V̄ [Q(t ), P(t ),�(·, t ), q̃]

= etLP
[
π0 · μ · ∂Û (q̃, θ0)

∂θ0

]

= etL

[
1

	̄eq[Q0, P0, Û (·, θ0)]

∫
dθ′

0 δ[Û (·, θ′
0)−Û (·, θ′

0)]

×
[∫

dπ′
0 π′

0	̂eq(�′
0)

]
· μ · ∂Û (q̃, θ′

0)

∂θ′
0

]
= 0. (48)
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Thus the reversible term is simply zero. We only have the
damping and fluctuating terms for the transient potential.

Secondly, we calculate the damping term
Ḡ[Q(·), P(·),�(·, ·), q̃, t] [Eq. (46)]. As Kawasaki explicitly
showed [5], the damping term can be expressed in a simple
form by utilizing the memory kernel. By combining Eqs. (46)
and (47), the damping term can be rewritten as follows:

Ḡ[Q(·), P(·),�(·, ·), q̃, t]=
∫ t

0
dt ′ et ′LPLQ �̂(q̃,�0, t − t ′).

(49)
Then the damping term reduces to

Ḡ[Q(·), P(·),�(·, ·), q̃, t]

= kBT
∫ t

0
dt ′ et ′L

[
1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d q̃′ δ

δÛ (q̃′, θ0)

×[
	̄eq[Q0, P0, Û (·, θ0)]K̄[Q0, P0, Û (·, θ0), q̃, q̃′, t − t ′]

]]

= −
∫ t

0
dt ′ et ′L

∫
d q̃′ K̄[Q0, P0, Û (·, θ0), q̃, q̃′, t − t ′]

×δ
̄[Q0, P0, Û (·, θ0)]

δÛ (q̃′, θ0)

+kBT
∫ t

0
dt ′ et ′L

∫
d q̃′ δK̄[Q0, P0, Û (·, θ0), q̃, q̃′, t − t ′]

δÛ (q̃′, θ0)
,

(50)

where δ/δÛ (q̃, θ0) represents the functional differential with
respect to Û (q̃, θ0), and we have defined the memory kernel
as

K̄[Q0, P0, Û (·, θ0), q̃, q̃′, t]≡ 1

kBT
P

[
�̂(�0, q̃, t )�̂(�0, q̃′, 0)

]
,

(51)

and the free-energy functional 
̄[Q, P,�(·)] ≡
−kBT ln 	̄eq[Q, P,�(·)]. [This free-energy functional

̄[Q, P,�(·)] is different from the free energy F̄ (Q);

̄[Q, P,�(·)] is for the set of all coarse-grained variables
{Q, P,�(q̃)}, whereas F̄ (Q) is only for Q.] We have utilized
several relations for the Liouville and projection operators
to calculate Eq. (50). The detailed calculations are shown
in Appendix B. From Eq. (34), the free-energy functional

̄[Q, P,�(·)] can be rewritten as the following simple form:


̄[Q, P,�(·)]= 1
2 P · M−1 · P + �(Q) + ϒ̄[�(·)] + (const).

(52)
Thirdly, we consider the property of the fluctuating term

�̂(�0, q̃, t ) [Eq. (47)]. The fluctuating term can be interpreted
as a random noise from the viewpoint of the coarse-grained

variables. [From the microscopic viewpoint, �̂(�0, q̃, t ) is
fully determined by the initial state �0 and is not a noise.]
From Eq. (47), clearly the fluctuating term is perpendicular to
the coarse-grained variables: P�̂(�0, q̃, t ) = 0. This is con-
sistent with our intuitive picture of the noise. To characterize
the properties of the fluctuating term, the (full) equilibrium
statistical average is suitable. We define the equilibrium sta-
tistical average of a physical quantity f̂ (�0) over the initial
state as 〈

f̂ (�0)
〉
eq,0 ≡

∫
d�0	̂eq(�0) f̂ (�0). (53)

The equilibrium statistical average of �̂(�0, q̃, t ) is zero:

〈
�̂(�0, q̃, t )

〉
eq,0 =

∫
d�0 	̂eq(�0)P�̂(�0, q̃, t ) = 0. (54)

The equilibrium statistical average of the second-order mo-
ment can be calculated as〈

�̂(�0, q̃, t )�̂(�0, q̃′, t ′)
〉
eq,0

= kBT 〈K̄[Q0, P0, Û (·, θ0), q̃, q̃′, |t − t ′|]〉eq,0 (55)

(the detailed calculations are shown in Appendix B). From
Eq. (55), the average of the second-order moment can be
related to the memory kernel (51). Equations (54) and (55)
can be interpreted as the fluctuation-dissipation relation of the
second kind.

From the results shown above, we can describe the dy-
namic equation for �(q̃, t ) in an explicit form. The resulting
dynamic equation is not a closed form in {Q(t ), P(t ),�(q̃, t )},
because the fluctuating term �̂(�0, q̃, t ) cannot be expressed
in terms of coarse-grained variables. Therefore, we inter-
pret �̂(�0, q̃, t ) as a random noise field, and we rewrite the
dynamic equation for �(q̃, t ) as a stochastic dynamic equa-
tion [31]. The time origin t = 0 can be taken arbitrarily and
thus we change the time integral from 0 to t to that from −∞
to t . We rewrite the noise field as �[Q(·), P(·),�(·, ·), q̃, t],
and we assume that it is a stochastic process. In general, the
noise field �[Q(·), P(·),�(·, ·), q̃, t] depends on the history
of the coarse-grained variables. Thus we should interpret the
noise field as the multiplicative colored noise. By combin-
ing Eqs. (39), (40), (44), (48), and (50), finally we have the
effective dynamic equations for the coarse-grained variables
{Q(t ), P(t ),�(q̃, t )}:

dQ(t )

dt
= M−1 · P(t ), (56)

dP(t )

dt
= −∂�(Q(t ), t )

∂Q(t )
, (57)

∂�(q̃, t )

∂t
= −

∫ t

−∞
dt ′d q̃′ K̄[Q(t ′), P(t ′),�(·, t ′), q̃, q̃′, t − t ′]

δ
̄[Q(t ′), P(t ′),�(·, t ′)]
δ�(q̃′, t ′)

+ kBT
∫ t

−∞
dt ′d q̃′ δK̄[Q(t ′), P(t ′),�(·, t ′), q̃, q̃′, t − t ′]

δ�(q̃′, t ′)

+ �[Q(·), P(·),�(·, ·), q̃, t]. (58)
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We interpret 〈· · · 〉eq,0 as the equilibrium statistical average
over the coarse-grained variables {Q, P,�(q̃)} [with the dis-
tribution function (34)] and also over the stochastic process.
Then the first and second moments of �(q̃, t ) [Eqs. (54) and
(55)] are rewritten as

〈�[Q(·), P(·),�(·, ·), q̃, t]〉eq = 0, (59)

〈�[Q(·), P(·),�(·, ·), q̃, t] �[Q(·), P(·),�(·, ·), q̃′, t ′]〉eq

= kBT 〈K̄[Q, P,�(·), q̃, q̃′, |t − t ′|]〉eq. (60)

Here, 〈· · · 〉eq represents the equilibrium statistical aver-
age at the coarse-grained level. It should be noted that
only the first- and second-order moments for the noise
field �[Q(·), P(·),�(·, ·), q̃, t] are given. The noise field
�[Q(·), P(·),�(·, ·), q̃, t] is not necessarily Gaussian.

Equations (56)–(60) are one of the main results of this
work. We conclude that we can formally construct the dy-
namic equations with transient potential from the microscopic
Hamiltonian dynamics without any approximations. The dy-
namic equation for the transient potential [Eq. (58)] can be
interpreted as the generalized Langevin equation for the tran-
sient potential. Therefore, at least formally, it inherits the
thermodynamic properties of the generalized Langevin equa-
tion. It would be fair to mention that Eq. (58) is just a formal
equation. It is a stochastic partial differential equation in M-
dimensional space with the memory effect, and it is useless
for practical purposes. In some aspects, Eq. (58) would be
similar to the stochastic dynamic density functional theory
[27,32,33] where the dynamics of the system is described
by a stochastic partial differential equation for the density
field. The fact that Eqs. (56)–(60) are just formal does not
mean that they are meaningless. They justify the concept of
the transient potential from the viewpoint of the microscopic
Hamiltonian dynamics. They can also be utilized as a starting
point to construct approximate yet simpler dynamic equations.
In Secs. III D and III E, we introduce some approximations
and simplify the dynamic equations.

D. Markov approximation

In Sec. III C, we have shown that the transient poten-
tial obeys the stochastic partial differential equation with the
memory kernel [Eq. (58)]. Such a partial stochastic differen-
tial equation with the memory kernel is clearly difficult to
handle. We want to approximate Eq. (58) by some simpler
forms. One possible approximation is to ignore the memory
effect (the Markov approximation). The memory kernel in
Eq. (58) can be approximately eliminated if the characteristic
timescale of the memory is sufficiently short compared with
that of the coarse-grained variables. Naively, we expect that
the memory kernel reflects the dynamics of the eliminated fast
degrees of freedom. Then, as far as the fast degrees of freedom
move much faster than the coarse-grained degrees of freedom,
the timescales can be assumed to be well separated and the
characteristic timescale of the memory is short. Although it
is not fully clear whether this assumption is reasonable or
not, here we simply employ it. Therefore, we approximate the
memory kernel in Eq. (58) as

K̄[Q, P,�(·), q̃, q̃′, t] ≈ 2L̄[Q, P,�(·), q̃, q̃′]δ(t ), (61)

with the memoryless mobility defined as

L̄[Q, P,�(·), q̃, q̃′] ≡
∫ ∞

0
dt K̄[Q, P,�(·), q̃, q̃′, t]. (62)

Then we have the following stochastic partial differential
equation without the memory effect as an approximation for
Eq. (58):

∂�(q̃, t )

∂t
≈ −

∫
d q̃′ L̄[Q(t ), P(t ),�(·, t ), q̃, q̃′]

× δ
̄[Q(t ), P(t ),�(·, t )]

δ�(q̃′, t )

+ kBT
∫

d q̃′ δL̄[Q(t ), P(t ),�(·, t ), q̃, q̃′]
δ�(q̃′, t )

+
√

2kBT
∫

d q̃′

× B̄[Q(t ), P(t ),�(·, t ), q̃, q̃′]W (q̃′, t ). (63)

To derive Eq. (63), we have assumed that
∫ ∞

0 dt δ(t ) = 1/2.
B̄[Q, P,�(·), q̃, q̃′] is the noise coefficient and W (q̃, t ) is the
white noise field. The noise coefficient B̄[Q, P,�(·), q̃, q̃′] is
defined via the following relation:

L̄[Q, P,�(·), q̃, q̃′] ≡
∫

d q̃′′B̄[Q, P,�(·), q̃, q̃′′]

× B̄[Q, P,�(·), q̃′, q̃′′]. (64)

The first- and second-order moments of W (q̃, t ) are given as

〈W (q̃, t )〉eq = 0, 〈W (q̃, t )W (q̃′, t ′)〉eq

= δ(t − t ′)δ(q̃ − q̃′). (65)

Equations (56), (57), and (63) are the approximate Marko-
vian dynamic equations with the transient potential. Here, we
should recall that the noise field W (q̃, t ) is not necessarily
Gaussian. Therefore, the approximate dynamic equation (63)
is Markovian but not Gaussian, in general. For some practical
purposes, we may assume that the noise field is Gaussian (the
Gaussian noise approximation). As we mentioned, Eq. (58)
can be interpreted as the generalized Langevin equation for
the transient potential. Then, Eq. (63) can be interpreted as
the (overdamped) Langevin equation for the transient poten-
tial. It inherits the thermodynamic properties of the (usual)
overdamped Langevin equation, such as the symmetric and
positive-definite nature of the mobility L̄[Q, P,�(·), q̃, q̃′]
and the detailed-balance condition.

The Markovian dynamic equation (63) is much easier to
handle compared with the non-Markovian dynamic equation
(58) with the memory kernel. It should be emphasized here
that we still have the memory effect for the coarse-grained
variables Q(t ) and P(t ) even under the Markov approximation
for �(q̃, t ). This is because the dynamic equation for P(t ) de-
pends on �(q̃, t ). �(q̃, t ) obeys its own dynamic equation (63)
and thus it has the time correlation. This time correlation will
be observed as the memory effect for P(t ). Therefore, if we
observe only Q(t ) and P(t ), we will find that the dynamics
is non-Markovian. The situation would be somewhat similar
to the hidden Markov model [34]. Such an expression of the
memory effect is one of the original motivations to introduce
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the transient potential in the phenomenological coarse-grained
dynamics models [2,13,14]. We consider that our dynamic
equations are able to reproduce complex dynamics even under
the Markov approximation, as expected, and we can justify the
phenomenological use of the transient potential to reproduce
the memory effect.

E. Approximation by potential parameters

In Sec. III D, the dynamic equation for �(q̃, t ) was
simplified as Eq. (63) under the Markov approximation.
Unfortunately, even under the Markov approximation, the dy-
namic equation is still complicated. The analytic handling as
well as numerical simulations are still difficult. The reason is
that Eq. (63) is a stochastic partial differential equation for a
function in M-dimensional space, which has infinite degrees
of freedom. This makes theoretical analyses difficult. Even if
we discretize the transient potential, it still has larger degrees
of freedom than the microscopic model. Thus the numerical
simulations would be practically impossible. Even if we can
perform simulations, it would be highly memory-consuming
and inefficient. Therefore, we want to further simplify the
dynamic equation for �(q̃, t ) with some additional approxi-
mations.

In Sec. II C, the dynamics of the transient potential was not
expressed as the dynamic equation for the transient potential
itself, but as the dynamic equation for the effective position.
If we can approximately express the transient potential by
finite parameters, the dynamics of the transient potential will
be described in a much simpler form. Such an approximation
was also proposed in Ref. [21]. Here we consider a possible
approximation for the transient potential by finite parameters.
We assume a hypothetical form for the transient potential,
and we try to mimic the full dynamics of the transient po-
tential. We approximate the transient potential by a specific
hypothetical functional form with time-dependent potential
parameters A(t ): �(q̃, t ) ≈ �̌(q̃, A(t )). This procedure would
be interpreted as the variational method. The hypothetical
transient potential �̌(q̃, A(t )) is a trial function, and the pa-
rameter A(t ) is determined so that the error between the true
and trial transient potentials is minimized. (We will discuss a
possible method to estimate the potential parameters from a
given transient potential and a hypothetical transient potential
form in Sec. IV A.)

Once the hypothetical functional form is given, the
degrees of freedom of the system are changed from
{Q(t ), P(t ),�(q̃, t )} to {Q(t ), P(t ), A(t )}. As we explained,
the new auxiliary degrees of freedom A(t ) represent potential
parameters in the hypothetical transient potential function,
and they behave as usual coarse-grained degrees of free-
dom [such as Q(t ) and P(t )]. The dimension of A(t ) can
be arbitrarily chosen [depending on the functional form of
�̌(q̃, A(t ))]. Here we assume that A(t ) is a Z-dimensional
vector: A(t ) = [A1(t ), A2(t ), . . . , AZ (t )]. In what follows, the
physical quantities that depend on the potential parameters
A(t ) are expressed with checks such as f̌ (A(t )). [In Ref. [21],
A(t ) was referred to as the pseudothermodynamic degrees
of freedom because it behaves in the same way as the usual
coarse-grained degrees of freedom that determine the thermo-
dynamic state.]

If we employ the hypothetical transient potential
�̌(q̃, A(t )), the equilibrium probability distribution should be
expressed as a function of Q, P, and A as 	̌eq(Q, P, A). We
assume that the hypothetical transient potential works as a
reasonable approximation for the original transient potential.
Then, we expect that some relations that involve �(q̃) should
be replaced by similar relations that involve A. In analogy to
Eq. (36), 	̌eq(Q, P, A) should be related to 	̄eq(Q, P) via the
following relation:

	eq(Q, P) =
∫

dA 	̌eq(Q, P, A). (66)

Also, the statistical average of the force by the transient poten-
tial should reduce to that by the free energy in a similar way
to Eq. (37):

−∂F̄ (Q)

∂Q
=

∫
dA

[
−∂�̌(Q, A)

∂Q

]
	̌eq(A|Q, P), (67)

with 	̌eq(A|Q, P) ≡ 	̌eq(Q, P, A)/	̄eq(Q, P). The functional
form of �̌(q̃, A) should be selected so that Eqs. (66) and (67)
hold (at least approximately). The free energy for Q, P, and A
would be expressed as


̌(Q, P, A) ≡ −kBT ln 	̌eq(Q, P, A)

= 1

2
P · M−1 · P + �̌(Q, A) + ϒ̌ (A) + (const),

(68)

where we have introduced the effective potential ϒ̌ (A), which
depends only on A. Here it should be noticed that ϒ̌ (A) does
not correspond to the approximation for ϒ[�(·)] defined by
Eq. (35). This is because the integral is taken over the function
�(q̃) in Eq. (36) whereas it is taken over the vector A in
Eq. (66). The variable transform gives an additional factor to
the free energy arising from the Jacobian [35,36].

By assuming the relation �(q̃, t ) ≈ �̌(q̃, A(t )), we can
approximately rewrite the derivatives as follows:

∂�(q̃, t )

∂t
≈ J̌(q̃, A(t )) · dA(t )

dt
, (69)

∂

∂A(t )
≈

∫
d q̃ J̌(q̃, A(t ))

δ

δ�(q̃, t )
, (70)

where J̌(q̃, A) ≡ ∂�̌(q̃, A)/∂A. Equations (69) and (70) can-
not be inverted since J̌(q̃, A) cannot be inverted in general.
Even though the exact inversion is not possible, we can
still seek an approximate inversion. We employ the Moore-
Penrose pseudoinverse [37] to approximately invert Eqs. (69)
and (70) [36]. The Moore-Penrose pseudoinverse J̌

+
(q̃, A) is

defined via
∫

d q̃′ J̌(q̃, A) · J̌
+

(q̃′, A)J̌(q̃′, A) = J̌(q̃, A). The
Moore-Penrose pseudoinverse gives the most reasonable solu-
tion for an inversion problem without a unique solution. Thus,
we may employ it as a physically reasonable approximate
inverse and invert Eqs. (69) and (70) as

dA(t )

dt
≈

∫
d q̃ J̌

+
(q̃, A(t ))

∂�(q̃, t )

∂t
, (71)

δ

δ�(q̃, t )
≈ J̌

+
(q̃, A(t )) · ∂

∂A(t )
. (72)
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Then the dynamic equation for the transient potential �(q̃, t )
[Eq. (63)] can be approximately converted to the dynamic
equation for A(t ):

dA(t )

dt
≈ −Ľ(Q(t ), P(t ), A(t ))

·
[
∂�̌(Q(t ), A(t ))

∂A(t )
+ ∂ϒ̌ (A(t ))

∂A(t )

]

+ kBT
∂

∂A(t )
· Ľ(Q(t ), P(t ), A(t ))

+
√

2kBT B̌(Q(t ), P(t ), A(t )) · W (t ), (73)

where Ľ(Q, P, A) and B̌(Q, P, A) are the mobility and
the noise coefficient tensors for A(t ), and W (t ) is the
Z-dimensional white noise vector. Both Ľ(Q, P, A) and
B̌(Q, P, A) are second-order tensors with Z × Z elements and
are defined as

Ľ(Q, P, A) ≡
∫

d q̃ d q̃′ J̌
+

(q̃, A)J̌
+

(q̃′, A)

× L̄[Q, P, �̌(·, A), q̃, q̃′]

≡ B̌(Q, P, A) · B̌
T

(Q, P, A), (74)

where B̌
T

(Q, P, A) represents the transpose of B̌(Q, P, A).
The first- and second-order moments of the noise vector W (t )
are

〈W (t )〉eq = 0, 〈W (t )W (t ′)〉eq = δ(t − t ′)1, (75)

where 1 is the unit tensor. The noise vector W (t ) is not neces-
sarily Gaussian in general. We expect that the approximate
dynamic equation (73) inherits the thermodynamic proper-
ties of Eq. (63); the mobility by Eq. (74) is symmetric and
positive-definite, and Eq. (73) is dissipative.

We can conclude that the auxiliary degrees of freedom A(t )
(approximately) obey the Langevin-type equation (73). There
is no reversible term in Eq. (73), in the same way as Eq. (63).
This would be natural because Eq. (73) is the approximation
for Eq. (58), which has no reversible term. Equation (73)
is one of the main results of this work. By combining
the hypothetical transient potential �(q̃, t ) ≈ �̌(q̃, A(t )) and
Eqs. (56), (57), and (73), we have the approximate Markovian
dynamic equations for {Q(t ), P(t ), A(t )}. The non-Markovian
dynamic equation (58) for the transient potential �(q̃, t ) with
infinite degrees of freedom is now reduced to the Markovian
dynamic equation (73) for the auxiliary potential parameters
A(t ) with just Z degrees of freedom. We consider that the sim-
plified approximate dynamic equation is still able to describe
various complex dynamics of the coarse-grained variables
Q(t ) and P(t ).

We should recall that the approximation can be justified
only if the hypothetical transient potential reasonably mimics
the full dynamics of the exact transient potential. Therefore,
the employed approximations may not be fully justified in
some cases. Nonetheless, this does not mean that the ap-
proximate dynamics model is not reasonable. An illustrative
example is the coupled oscillator model in Sec. II. As we
showed, the transient potential with the time-dependent poten-
tial parameter [Eq. (11)] perfectly reproduces the dynamics of
the exact transient potential for the coupled oscillator model.

The hypothetical transient potential with the potential param-
eters is exact in that case. We consider that the result in this
subsection justifies the use of the hypothetical transient poten-
tial with potential parameters to describe the coarse-grained
dynamics. In Sec. IV A, we will discuss one simple estimate
method for the potential parameter from a given transient
potential.

IV. DISCUSSIONS

A. Estimating potential parameters from transient potential

In Sec. III E, we showed that the dynamic equation for the
transient potential can be largely simplified by utilizing the
potential parameters A(t ). However, we did not show methods
to calculate the potential parameters from a given transient
potential. (There is essentially the same problem in Ref. [21].)
If we want to directly compare the full dynamics of the tran-
sient potential and the approximate dynamics of the potential
parameters, we will need the method to estimate physically
reasonable potential parameters A(t ) from a given transient
potential �(q̃, t ) for a given hypothetical transient potential
�̌(q̃, ã). Here, we assume that we have the explicit functional
form of �̌(q̃, ã) but the explicit values of the potential pa-
rameters are unknown (and thus the potential parameters are
expressed as a dummy variable ã). In molecular dynamics
simulations, we have the full information on the microscopic
degrees of freedom. This means that we can directly eval-
uate the transient potential �(q̃, t ) = Û (q̃, θ(t )). Therefore,
the method shown in this subsection may be interpreted as a
method to obtain the coarse-grained potential parameter A(t )
from the microscopic degrees of freedom.

In principle, A(t ) can depend on the history of �(q̃, t ).
However, the analyses that involve the time-series of the
potential parameters and the transient potential will be too
complex. As a working hypothesis, here we simply assume
that A(t ) is determined solely by the coarse-grained position
Q(t ) and the transient potential �(q̃, t ) at the same t . (This
would be interpreted as the sort of Markov approximation that
was utilized in Sec. III D.) Under this assumption, it is suffi-
cient for us to consider the estimate method of the potential
parameters A(t ) from a given transient potential �(q̃, t ) at a
certain time t . Then the estimate method becomes essentially
static. Thus we simply ignore the time dependence in this
subsection, and we describe the coarse-grained position, the
transient potential, and the potential parameters as Q, �(q̃),
and A. Now what we should consider is how to estimate
A, which gives the most reasonable approximation for the
transient potential, for given Q, �(q̃), and �̌(q̃, ã).

The potential parameters should be determined so that
they reproduce the original transient potential as accurate as
possible. Intuitively, this requirement is achieved if we mini-
mize a sort of distance between the original and hypothetical
transient potentials. Here we utilize the Kullback-Leibler di-
vergence [38] to measure how different two potentials are.
We employ the following Kullback-Leibler divergence for the
probability distributions [39]:

K(ã) ≡
∫

d q̃ 	̌eq(q̃, ã) ln
	̌eq(q̃, ã)

	eq(q̃)
, (76)
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where 	̌eq(q̃, ã) is the equilibrium probability distribution
under the hypothetical transient potential �̌(q̃, ã), and 	eq(q̃)
is the equilibrium probability distribution under the transient
potential �(q̃). The Kullback-Leibler divergence satisfies
K(ã) � 0 and it represents the discrepancy between two
equilibrium distributions. (It can be zero if and only if
two equilibrium distributions are the same.) We employ ã,
which minimizes the Kullback-Leibler divergence (76) as A:
∂K(ã)/∂ ã|ã=A = 0. Although this method looks plausible,
generally it is difficult to calculate Eq. (76) even numeri-
cally [since �eq(q̃) and �̌eq(q̃, ã) (with fixed ã) are functions
in M-dimensional space]. Thus we need to introduce some
approximations to minimize the Kullback-Leibler divergence
with a realistic calculation cost.

Although the Kullback-Leibler divergence (76) is a func-
tional of �(q̃) and �̌(q̃, ã), we may not need the full
information of the transient potentials. We limit ourselves
to considering the contributions around a given value of the
coarse-grained positions Q. However, in general the transient
potential may not be locally stable. We introduce a simple
trick here. We virtually add a trap potential to the system:

�trap(q̃) ≡ 1
2 (q̃ − Q) · Ctrap · (q̃ − Q), (77)

where Ctrap is a symmetric positive-definite tensor.
We employ the equilibrium probability distributions
under the transient potentials and the trap potential,
	eq(q̃) ∝ exp[−�(q̃)/kBT − �trap(q̃)/kBT ] and 	̌eq(q̃) ∝
exp[−�̌(q̃, ã)/kBT − �trap(q̃)/kBT ], to calculate the
Kullback-Leibler divergence. Due to the trap potential,
the equilibrium probability distributions should be stably
localized around q̃ ≈ Q. Thus we expand transient potentials
into the power series of �q̃(Q) ≡ q̃ − Q and we approximate
them as

�(q̃) ≈ �(Q) − F(Q) · �q̃(Q) + 1
2�q̃(Q) · C(Q) · �q̃(Q),

(78)

�̌(q̃, ã) ≈ �̌(Q, ã) − F̌(Q, ã) · �q̃(Q)

+ 1
2�q̃(Q) · Č(Q, ã) · �q̃(Q). (79)

Here, F(Q) ≡ −∂�(Q)/∂Q, F̌(Q, ã) ≡ −∂�̌(Q, ã)/∂Q,
C(Q) ≡ ∂2�(Q)/∂Q∂Q, and Č(Q, ã) ≡ ∂2�̌(Q, ã)/∂Q∂Q
are expansion coefficients. (In the remaining part of this
subsection, for simplicity, we do not explicitly describe
arguments for these expansion coefficients. The expansion
coefficients of the original transient potential are functions
of Q, whereas those of the hypothetical transient potential
are functions of Q and ã.) With these approximations, the
Kullback-Leibler divergence (76) can be (approximately)
simplified as

K(ã) ≈ 1

4
tr(G · �Č)2 + 1

2kBT
(�F̌ − F · G · �Č)

·G · (�F̌ − �Č · G · F ), (80)

where G ≡ (Ctrap + C)−1, �Č ≡ Č − C, and �F̌ ≡ F̌ − F.
See Appendix C for detailed calculations. Equation (80) can
be numerically evaluated with reasonable calculation costs
(G−1 is expected to be sparse in most cases). Thus we can nu-
merically find ã = A, which minimizes the Kullback-Leibler

divergence, and we can estimate the potential parameter A
from the transient potential �(q̃). If the trap potential is
strong, we may introduce an additional approximation for G
as G ≈ C−1

trap − C−1
trap · C · C−1

trap. In addition, if we take Ctrap to
be diagonal, G can be calculated straightforwardly.

Here we show some simple examples for the estimate of
the potential parameters from transient potentials. One simple
example is the transient potential for the coupled oscillator
model in Sec. II. If we interpret the transient potential (11)
as the hypothetical transient potential, κeff and A are the po-
tential parameters. The minimization of the Kullback-Leibler
divergence gives Eq. (12). [In this case, the Kullback-Leibler
divergence becomes zero if we set κeff and A as Eq. (12),
and the hypothetical transient potential perfectly reproduces
the original transient potential.] Thus we find that our method
works reasonably well, at least in this simple case.

Another simple example is the transient potential for a
single tagged particle in a supercooled liquid. At the short
timescale, the tagged particle will feel the cage potential
formed by surrounding particles. This cage potential can be
interpreted as a transient potential [20]. The center of the cage
can move or the potential may be destroyed and then newly
created. We employ the following hypothetical transient po-
tential:

�̌(q̃, ã, s̃) = 1
2κ s̃(q̃ − ã)2, (81)

where κ is a positive constant, and ã and s̃ are dummy po-
tential parameters that represent the cage center position and
the cage state, respectively. We assume that s̃ can take either
0 or 1. (s̃ = 0 corresponds to the free state, and s̃ = 1 corre-
sponds to the trapped state.) The Kullback-Leibler divergence
becomes

K(ã, s̃) ≈ 1

4
tr [G · (κ s̃1 − C)]2

+ 1

2kBT
[κ s̃(ã − Q) − F − F · G · (κ s̃1 − C)]

·G · [κ s̃(ã − Q) − F − (κ s̃1 − C) · G · F].

(82)

Note that F = −∂�(Q)/∂Q and C = ∂2�(Q)/∂Q∂Q can be
calculated straightforwardly if the transient potential is given.

We calculate ã and s̃, which minimizes the Kullback-
Leibler divergence, and we employ them as the potential
parameters A and S. If s̃ = 0, Eq. (82) becomes independent
of ã:

K(ã, 0) ≈ 1

4
tr(G · C)2 + 1

2kBT
F · (1 − G · C) · G

·(1 − C · G) · F. (83)

On the other hand, if s̃ = 1, Eq. (82) depends on ã. Thus we
should minimize it with respect to ã. We have the following
value as the minimized Kullback-Leibler divergence:

K(Amp, 1) ≈ 1
4 tr [G · (κ1 − C)]2 (84)

with Amp ≡ Q + [F + (κ1 − C) · G · F]/κ being the most
probable value of ã. By comparing the Kullback-Leibler di-
vergence values by Eqs. (83) and (84), we can determine S for
a given transient potential �(q̃). If S = 0, we do not need A

044117-12



APPLICATION OF PROJECTION OPERATOR METHOD TO … PHYSICAL REVIEW E 105, 044117 (2022)

because the hypothetical transient potential becomes indepen-
dent of A. If S = 1, A can be determined straightforwardly as
A = Amp.

By utilizing the method shown above, we will be able to
construct the time-dependent potential parameters from the
time-dependent transient potential. This method would be
utilized to directly extract the information of the transient
potential from, e.g., the molecular-dynamics simulation data.
In the molecular-dynamics simulations, the interaction poten-
tials between particles are generally nonlinear. However, in
our estimate method, only the local information around the
current coarse-grained positions is utilized [Eq. (78)]. Thus
even if the potentials are strongly nonlinear, our method based
on Eq. (80) will work as long as the expansion forms (with the
expansion coefficients F and C) are reasonable. Conversely,
if the potentials are not smooth (such as the hard-sphere
potential), our method will not work. The overall accuracy
of the approximation by the potential parameters would be
examined by calculating the Kullback-Leibler divergence. If
we have several different functional forms for the hypothetical
transient potential as possible candidates, we can judge which
is the best from the Kullback-Leibler divergence.

B. Comparison with the generalized Langevin equation

The coarse-grained dynamic equations with the transient
potential derived in this work are just one possible coarse-
graining model, and we can construct other coarse-grained
models for the same microscopic system. In this subsection,
we compare our model with the standard coarse-grained dy-
namics model, namely the generalized Langevin equation.

As we mentioned, the projection operator method is a
standard technique to construct the coarse-grained dynamic
equations. In the conventional coarse-graining method, we
consider only Q(t ) and P(t ) as the coarse-graining degrees of
freedom, and we do not employ the transient potential. Then
we have the following generalized Langevin equations for
Q(t ) and P(t ) [5,9]:

dQ(t )

dt
= M−1 · P(t ), (85)

dP(t )

dt
= −∂F̄ (Q(t ))

∂Q(t )

−
∫ t

−∞
dt ′ K̄ ′(Q(t ′), P(t ′), t − t ′) · M−1 · P(t ′)

+ kBT
∫ t

−∞
dt ′ ∂

∂P(t ′)

·K̄ ′T(Q(t ′), P(t ′), t − t ′) + ξ′(t ), (86)

where K̂
′
(Q, P, t ) is the memory kernel tensor and ξ′(t ) is the

noise vector. They satisfy the fluctuation-dissipation relation:

〈ξ′(t )〉eq = 0, 〈ξ′(t )ξ′(t ′)〉eq = kBT 〈K̄ ′(Q, P, |t − t ′|)〉eq.

(87)

Equation (85) is the same as Eq. (56), but Eq. (86) is
much different from Eq. (57). This is because the transient
potential is not included in this case. In Eq. (86), the time
evolution of P(t ) is primarily governed by the force by the free

energy −∂F̄ (Q(t ))/∂Q(t ), and the eliminated fast degrees of
freedom work as the friction (with the memory effect) and the
noise. From the viewpoint of the transient potential, the time
evolution of P(t ) is governed by the force by the transient
potential, −∂�(Q(t ), t )/∂Q(t ) [Eq. (57)]. We decompose
this force into the average −∂F̄ (Q(t ))/∂Q(t ) and the time-
dependent fluctuation −∂[�(Q(t ), t ) − F̄ (Q(t ))]/∂Q(t ). We
may interpret that the fluctuation part, −∂[�(Q(t ), t ) −
F̄ (Q(t ))]/∂Q(t ), works as the friction and noise terms in
the generalized Langevin equation. Intuitively, we expect that
Eq. (86) is reproduced if we eliminate the transient potential
�(q̃, t ) from Eqs. (57) and (58). In this sense, our dynamic
equations with the transient potential are less coarse-grained
than the generalized Langevin equations.

Here, it would be fair to mention that Eqs. (85) and (86) are
formally exact. There are several different ways to rewrite the
microscopic dynamic equations into coarse-grained dynamic
equations (as shown in Sec. II). The resulting effective dy-
namic equations depend on various factors, such as the choice
of the degrees of freedom and the operator identity for the
decomposition [40,41]. Our coarse-grained dynamics model
in Sec. III should be interpreted as just one possible candidate.
If one wants to describe the coarse-grained dynamics without
any additional degrees of freedom, the generalized Langevin
equation would be suitable. Then the memory kernel is re-
quired to reproduce the memory effect. If one does not want
to use the memory kernel, yet still wants to incorporate the
memory effect, the transient potential (with the Markov and
other approximations) would be utilized instead. If there are
some other coarse-grained dynamics models, of course they
would also be possible candidates.

C. Comparison with the Langevin equation with
the transient potential

In Ref. [21], the dynamic equation for Q(t ) was expressed
as the LETP. This is in contrast to the result in this work. We
have obtained the Hamiltonian-like dynamics for Q(t ) and
P(t ) [Eqs. (56) and (57)]. Thus, the dynamic equations ob-
tained in this work may seem to be inconsistent with the
LETP. In this subsection, we show that our model can reduce
to the LETP under some approximations.

We assume that the potential parameters and transient po-
tential can be decomposed into relatively fast and slow parts:
�̌(q̃, A(t )) = �̌(f)(q̃, A(f)(t )) + �̌(s)(q̃, A(s)(t )). Here, the su-
perscripts “(f)” and “(s)” represent the fast and slow parts,
respectively. We also assume that the effective potential can
be separated into two parts, in the same manner: ϒ̌ (A) =
ϒ̌ (f)(A(f) ) + ϒ̌ (s)(A(s) ). We consider the hypothetical case in
which the dynamic equations for fast and slow auxiliary
degrees of freedom are not kinetically coupled. The fast
auxiliary degrees of freedom are expected to represent the
fluctuation around the locally stable position for Q(t ). Thus
we assume that A(f)(t ) has the same dimension as Q(t ).
[A(f)(t ) is an M-dimensional vector, whereas A(s)(t ) is a
(Z − M )-dimensional vector.] We expect that the fluctuation
of A(f)(t ) around the locally stable position is not large, and
thus a simple harmonic potential would be sufficient to ap-
proximately express the fast part of the transient potential. If
we eliminate the fast auxiliary degrees of freedom, we will
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have the coarse-grained dynamic equations for relatively slow
degrees of freedom. This corresponds to the coarse-graining
for our coarse-grained dynamics model.

Based on the discussions above, we model the dynamics of
the fast auxiliary degrees of freedom as the simple Gaussian
stochastic process in the harmonic potential:

dA(f)(t )

dt
= −L(f) · ∂�̌(f)(Q(t ), A(f)(t ))

∂A(f)(t )

+
√

2kBT B(f) · W (f)(t ), (88)

�̌(f)(Q, A(f) ) = 1
2 (Q − A(f) ) · κ · (Q − A(f) ). (89)

Here, κ is a symmetric positive-definite second-order ten-
sor, and it is assumed to be independent of Q(t ). We have
assumed that ϒ̌ (f)(A(f) ) = (const) and the contribution of
ϒ̌ (f)(A(f) ) disappears in Eq. (88). L(f) is the mobility tensor
and is approximated to be constant. B(f) is the noise coeffi-
cient tensor, which is defined via L(f) = B(f) · B(f)T. Also, we
assume that the noise vector W (f)(t ) is the Gaussian white
noise vector. Its first and second moments are 〈W (f)(t )〉eq = 0
and 〈W (f)(t )W (f)(t ′)〉eq = 1δ(t − t ′). For the dynamics of the
slow auxiliary degrees of freedom, we employ the following
Langevin-type equation, which has the same form as Eq. (73):

dA(s)(t )

dt
≈ −Ľ

(s)
(Q(t ), P(t ), A(s)(t ))

·
[
∂�̌(s)(Q(t ), A(s)(t ))

∂A(s)(t )
+ ∂ϒ̌ (s)(A(s)(t ))

∂A(s)(t )

]

+ kBT
∂

∂A(s)(t )
· Ľ

(s)
(Q(t ), P(t ), A(s)(t ))

+
√

2kBT B̌
(s)

(Q(t ), P(t ), A(s)(t )) · W (s)(t ).

(90)

Here, Ľ
(s)

(Q, P, A(s) ) and B̌
(s)

(Q, P, A(s) ) are the mobility
and noise tensors, respectively, and they are assumed to be
independent of A(f)(t ). W (s)(t ) is the noise vector, and its
first and second moments are given as 〈W (s)(t )〉eq = 0 and
〈W (s)(t )W (s)(t ′)〉eq = 1δ(t − t ′). As before, the noise vector
W (s)(t ) can be non-Gaussian.

Equation (88) can be easily solved to give

A(f)(t ) = Q(t ) +
∫ t

−∞
dt ′ κ−1 · K (f)(t − t ′)

·
[
−dQ(t ′)

dt ′ +
√

2kBT B(f) · W (f)(t ′)
]
, (91)

with K (f)(t ) ≡ κ · exp(−tL(f) · κ) being the memory kernel
tensor. Then the dynamic equation for P(t ) [Eq. (57)] can be
rewritten as

dP(t )

dt
= −∂�̌(s)(Q(t ), A(s)(t ))

∂Q(t )

+
∫ t

−∞
dt ′ K (f)(t − t ′)

·
[
−dQ(t ′)

dt ′ +
√

2kBT B(f) · W (f)(t ′)
]
. (92)

Equation (92) can be interpreted as the generalized Langevin
equation with the transient potential �̌(s)(q̃, A(s) ). If the fast
auxiliary degrees of freedom relax much faster than the other
degrees of freedom, we can approximate the memory kernel
as ∫ t

−∞
dt ′ K (f)(t − t ′) · f (t ′) ≈

[∫ t

−∞
dt ′ K (f)(t − t ′)

]
· f (t )

≡ L(f) −1 · f (t ), (93)

where f (t ) is an arbitrary time-dependent vector, which varies
slowly compared with A(f)(t ). Then, we have the following
dynamic equation for the coarse-grained positions Q(t ):

M · d2Q(t )

dt2
≈ −∂�̌(s)(Q(t ), A(s)(t ))

∂Q(t )
− L(f) −1 · dQ(t )

dt

+
√

2kBT L(f) −1 · B(f) · W (f)(t ), (94)

where we have used P(t ) = M · dQ(t )/dt . We can interpret
L(f) −1 as the effective friction coefficient tensor for the coarse-
grained positions Q(t ). Thus we have the underdamped LETP
with the transient potential �̌(s)(q̃, A(s)(t )) as the approxima-
tion of our dynamics model.

If the inertia effect is weak, we can take the zero-mass limit
(M → 0) as a reasonable approximation. Then the dynamic
equation (94) can be further simplified as

dQ(t )

dt
≈ −L(f) · ∂�̌(s)(Q(t ), A(s)(t ))

∂Q(t )
+

√
2kBT B(f) · W (f)(t ).

(95)
Equation (95) has exactly the same form as the overdamped
LETP in Ref. [21]. Equations (95) and (90) describe the
dynamics of the reduced coarse-grained variables Q(t ) and
A(s)(t ) in closed form. Therefore, we conclude that the LETP
can be successfully obtained as a coarse-grained dynamic
equation starting from the microscopic Hamiltonian dynam-
ics. We should recall that the LETP (95) is not exact. To
derive Eq. (95), we have utilized various approximations: the
Markovian approximation, the hypothetical transient potential
with potential parameters, the decomposition of the potential
parameters into the fast and slow parts, the harmonic transient
potential and simple Langevin dynamics for the decomposed
fast part, and the zero-mass limit. Some of the approximations
are rough and may not be fully justified. Nonetheless, we con-
sider that the derivation shown above would be informative
when we use the LETP as a coarse-grained dynamics model.

If we accept approximations involved in the derivation of
the LETP, we find that the (overdamped) LETP can be ob-
tained in two different ways. One way is to directly utilize the
projection operator to the microscopic Hamiltonian dynamics
(as shown in this work). The Hamiltonian dynamics is first
reduced to the Hamiltonian-like dynamics with the transient
potential. Then by eliminating the relatively fast auxiliary
degrees of freedom with some approximations, we have the
LETP as the further coarse-grained dynamic equation. An-
other way is to derive the Langevin equation and then perform
the coarse-graining for it. By using the projection operator
method, we have the generalized Langevin equation from the
microscopic Hamiltonian dynamics (as shown in Sec. IV B).
With some approximations, the generalized Langevin equa-
tion can reduce to the overdamped Langevin equation. Then,
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by interpreting the overdamped Langevin equation as a mi-
croscopic model, and eliminating relatively fast degrees of
freedom, we have the LETP (as shown in the previous work
[21]). These two ways are not identical, but both of them
can reproduce the LETP. We expect that this is because the
LETP is a physically natural coarse-grained dynamic equa-
tion model.

We should comment that ϒ̌ (s)(A(s) ) [in Eq. (90)] does
not appear in the previous work. One may consider that the
result of this work is not fully consistent with the previous
work. This is due to the difference between the transient
potentials in this and previous works. We can interpret that
�̌eff(q̃, A(s) ) = �̌(s)(q̃, A(s) ) + ϒ̌ (s)(A(s) ) corresponds to the
transient potential in the previous work. In the LETP, as
we can observe in Eq. (95), only the derivatives of the
transient potentials with respect to q̃ are included. Since
∂�̌eff(q̃, A(s) )/∂ q̃ = ∂�̌(s)(q̃, A(s) )/∂ q̃, the LETP is essen-
tially not changed if we employ �̌eff(q̃, A(s) ) as the transient
potential. Also, the free-energy functional for {Q, P, A(s)}
satisfies ∂
̌(s)(Q, P, A(s) )/∂A(s) = ∂�̌eff(Q, A(s) )/∂A(s). Thus
the dynamic equation for A(s)(t ) [Eq. (90)] can be described
only with the transient potential �̌eff(Q, A(s) ). We consider
that the results in this work are consistent with those of the
previous work.

V. CONCLUSIONS

In this work, we showed that the dynamic equations with
the transient potential can be derived from the microscopic
Hamiltonian dynamics. We showed that the coupled oscilla-
tor model can be rewritten as the dynamics model with the
transient potential (Sec. II). The dynamic equations with the
transient potential [Eqs. (17)–(19)] are exact, and they can be
employed as an alternative to the generalized Langevin-type
equations [Eqs. (6) and (7)]. This implies that the dynamics
model with the transient potential can be used as a coarse-
grained dynamics model in various systems.

Then we derived the dynamic equations with the tran-
sient potential, starting from the microscopic Hamiltonian
dynamics for a more general system (Sec. III). To derive the
coarse-grained dynamic equation with the transient potential,
we introduced the projection operator for the coarse-grained
variables and the transient potential [Eq. (38)]. We derived the
dynamic equations for the coarse-grained positions and mo-
menta, Q(t ) and P(t ), and the transient potential �(q̃, t ). The
dynamic equations for the positions and momenta have almost
the same forms as the canonical equations [Eqs. (56) and
(57)], whereas the dynamic equation for the transient potential
[Eq. (58)] is the stochastic partial differential equation with
the memory kernel. The transient potential fluctuates around
the free energy F̄ (q̃). The dynamic equation for the transient
potential is exact but too complex and not suitable for practical
purposes.

We introduced several approximations to make the dy-
namic equation for the transient potential simple and tractable.
By employing the Markov approximation, we ignored the
memory effect and simplified the dynamic equation for the
transient potential. The approximate Markovian dynamic
equation [Eq. (63)] is, however, still not simple. To further
simplify the dynamic equation, we introduced a hypothetical

transient potential with the time-dependent potential parame-
ters A(t ). With some additional approximations, the dynamic
equation for �(q̃, t ) finally reduced to the Langevin-type dy-
namic equation for A(t ) [Eq. (73)]. For the estimate of the
potential parameters from the transient potential, we proposed
a simple method based on the Kullback-Leibler divergence
and showed that it works reasonably for some simple cases.
Thus we conclude that we can derive the relatively simple
dynamics model with the transient potential starting from the
microscopic Hamiltonian dynamics, although the employed
approximations may not be fully justified. Moreover, by em-
ploying further approximations, our dynamics model reduces
to the LETP after further coarse-graining. Therefore, we con-
sider that this work justifies the use of the LETP as the
coarse-grained model based on the microscopic Hamiltonian
dynamics.

We expect that this work supports the use of the tran-
sient potential to model mesoscopic coarse-grained dynamics.
Now we consider that the concept of the transient potential
is not phenomenological, rather it is based on the micro-
scopic Hamiltonian dynamics and a statistical mechanical
basis. The LETP in Ref. [21] can be derived from the mi-
croscopic Hamiltonian dynamics with some approximations.
The coarse-grained dynamics models with the transient poten-
tials can be employed as statistical mechanically appropriate
models. Even if we accept the concept of the transient po-
tential dynamics, whether it is really efficient and useful
for mesoscopic coarse-grained modeling is still not fully
clear. We will need to apply our method to some simple
mesoscopic dynamics to validate it. For example, the coarse-
graining of interacting many-particle systems (used in the
molecular-dynamics simulations) into coarse-grained parti-
cles interacting via the transient potentials is an interesting
and important target. If we apply our method to interact-
ing many-polymer systems, we will be able to construct the
coarse-grained dynamics, for example, for the centers of mass
of polymers and end-to-end vectors. It will justify (or re-
construct) the RaPiD model from the underlying microscopic
dynamics model, and it is an interesting future work. Another
future work will be to construct several phenomenological
dynamics models in the framework proposed in this work.
Although our derivation is rather formal, we consider it to
be informative when we construct phenomenological coarse-
grained models.
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APPENDIX A: MEMORY KERNEL AND NOISE IN THE COUPLED OSCILLATOR MODEL

In this Appendix, we show the detailed calculations for the memory kernel and the noise for the transient potential in the
coupled oscillator model. We derive the dynamic equation for A(t ) [Eq. (19)]. We perform the Laplace transform for Eq. (16):

sA∗(s) − A(0) = 1

κeff

∑
j

[
− κ jω

2
j

ω2
j + s2

(θ j (0) − Q(0)) + ω2
j s

ω2
j + s2

π j (0)

+ κ jω
2
j

ω2
j + s2

(sA∗(s) − A(0)) + ω2
j s

ω2
j + s2

κ j (Q∗(s) − A∗(s))
]
. (A1)

Rearranging Eq. (A1), we have

sA∗(s) − A(0) =
[

1 − 1

κeff

∑
j

κ jω
2
j

ω2
j + s2

]−1
1

κeff

∑
j

[
− ω2

j s

ω2
j + s2

κ j (A∗(s) − Q∗(s))

− κ jω
2
j

ω2
j + s2

(θ j (0) − Q(0)) + ω2
j s

ω2
j + s2

π j (0)

]
. (A2)

Equation (A2) can be rewritten as

sA∗(s) − A(0) = −K∗(s)κeff(A∗(s) − Q∗(s)) + ξ ∗(s), (A3)

with K∗(s) and ξ ∗(s) defined in Eqs. (20) and (21). The inverse Laplace transform of Eq. (A3) gives Eq. (19) in the main text.
We derive the fluctuation-dissipation relation [Eq. (22)]. The explicit expression of ξ (t ) in the time domain is not simple. In

the Laplace domain, from Eq. (21), we have 〈ξ ∗(s)〉eq,0 = 0. The inverse Laplace transform gives the first equation in Eq. (22).
From the time-translational symmetry, the second-order moment satisfies 〈ξ (t )ξ (t ′)〉eq,0 = 〈ξ (t − t ′)ξ (0)〉eq,0 for t > t ′. For
t ′ � t , from the symmetry, we have 〈ξ (t )ξ (t ′)〉eq,0 = 〈ξ (t ′ − t )ξ (0)〉eq,0. Then we have 〈ξ (t )ξ (t ′)〉eq,0 = 〈ξ (|t − t ′|)ξ (0)〉eq,0.
We calculate the Laplace transform of 〈ξ (t )ξ (0)〉eq,0. By using Eqs. (20) and (9), we have

〈ξ ∗(s)ξ (0)〉eq,0 = kBT

[
1 + 1

κeff

∑
j

κ jω
2
j

ω2
j + s2

]−1
1

κ2
eff

∑
j

κ jω
2
j s

ω2
j + s2

= kBT K∗(s). (A4)

The inverse Laplace transform of Eq. (A4) gives the second equation in Eq. (22). Thus we have Eq. (22) in the main text.

APPENDIX B: SOME RELATIONS THAT INVOLVE LIOUVILLE AND PROJECTION OPERATORS

In this Appendix, we show some relations that involve Liouville and projection operators. These relations are utilized to
derive the dynamic equation for the transient potential in the main text, Eq. (58).

From the definition of the Liouville operator [Eq. (28)], we have
∫

d� f̂ (�)Lĝ(�) = ∫
d� [−L f̂ (�)]ĝ(�), L	̂eq(�) = 0,

and L[ f̂ (�)ĝ(�)] = f̂ (�)Lĝ(�) + [L f̂ (�)]ĝ(�), where f̂ (�) and ĝ(�) are arbitrary functions of �. Thus we have the following
relation: ∫

d� 	̂eq(�) f̂ (�)Lĝ(�) =
∫

d� [−L(	̂eq(�) f̂ (�))]ĝ(�)

=
∫

d� 	̂eq(�)[−L f̂ (�)]ĝ(�). (B1)

If the Liouville operator is operated to the product of the δ functions and the δ functional for the coarse-grained variables, we
have

L[δ(Q − Q′)δ(P − P′)δ[Û (·, θ) − Û (·, θ′)]]

= −
[

(LQ) · ∂

∂Q′ + (LP) · ∂

∂P′ +
∫

d q̃′ [LÛ (q̃′, θ)]
δ

δÛ (, q̃′, θ′)

]

×[δ(Q − Q′)δ(P − P′)δ[Û (·, θ) − Û (·, θ′)]]

= −
[

P · M−1 · ∂

∂Q′ − ∂Û (Q, θ)

∂Q
· ∂

∂P′ +
∫

d q̃′ [LÛ (q̃′, θ)]
δ

δÛ (q̃′, θ′)

]

×[δ(Q − Q′)δ(P − P′)δ[Û (·, θ) − Û (·, θ′)]]. (B2)
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For the projection operator P , we have the following relation:∫
d�0 	̂eq(�0) f̂ (�0)P ĝ(�0)

=
∫

d�0d�′
0

δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

	̄eq[Q0, P0, Û (·, θ0)]
	̂eq(�0) f̂ (�0)	̂eq(�′

0)ĝ(�′
0)

=
∫

d�0 	̂eq(�0)[P f̂ (�0)]ĝ(�0). (B3)

From P1 = 1, we also have ∫
d�0 	̂eq(�0) f̂ (�0) =

∫
d�0 	̂eq(�0)P f̂ (�0). (B4)

The projection for the product that involves the δ functions and the δ functional for the coarse-grained variables becomes

P
[

f̂ (�0)δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d�′′

0 	̂eq(�′′
0 ) f̂ (�′′

0 )δ(Q0 − Q′′
0 )δ(P0 − P′′

0 )

×δ[Û (·, θ0) − Û (·, θ′′
0 )]δ(Q′′

0 − Q′
0)δ(P′′

0 − P′
0)δ[Û (·, θ′′

0 ) − Û (·, θ′
0)]

= δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

	̄eq[Q0, P0, Û (·, θ0)]

∫
d�′′

0 	̂eq(�′′
0 ) f̂ (�′′

0 )

×δ(Q0 − Q′′
0 )δ(P0 − P′′

0 )δ[Û (·, θ0) − Û (·, θ′′
0 )]

= [P f̂ (�0)]δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)], (B5)

where �′′
0 = [Q′′

0, P′′
0, θ

′′
0,π

′′
0] is the initial position in the phase space. Similar relations to Eqs. (B3) and (B5) hold for Q:∫

d� 	̂eq(�) f̂ (�)Q(�)ĝ(�) =
∫

d� 	̂eq(�)[Q f̂ (�)]ĝ(�), (B6)

Q
[

f̂ (�0)δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= [Q f̂ (�0)]δ(Q0 − Q′

0)δ(P0 − P′
0)δ[Û (·, θ0) − Û (·, θ′

0)]. (B7)

For the combination of the Liouville operator and the projection operator Q, we have

QetLQ = Q
∞∑

n=0

1

n!
(tLQ)n =

∞∑
n=0

1

n!
(tQL)nQ = etQLQ (B8)

and ∫
d�0 	̂eq(�0) f̂ (�0)etQLĝ(�0) =

∞∑
n=0

1

n!

∫
d�0 	̂eq(�0) f̂ (�0)(tQL)nĝ(�0)

=
∫

d�0 	̂eq(�0)
∞∑

n=0

1

n!
[(tQL)n f̂ (�0)]ĝ(�0) =

∫
d�0 	̂eq(�0)[etLQ f̂ (�0)]ĝ(�0). (B9)

We calculate the expression PLQ�̂(�0, q̃, t − t ′) in the damping term [Eq. (49)]. We first calculate PLQ f̂ (�0) [with f̂ (�0)
being an arbitrary function of �0] and then we substitute �̂(�0, q̃, t − t ′) for f̂ (�0). From Eqs. (B1) and (B6), we have

PLQ f̂ (�0) = 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d�′

0 	̂eq(�′
0)δ(Q0 − Q′

0)δ(P0 − P′
0)

× δ[Û (·, θ0) − Û (·, θ′
0)]L′Q′ f̂ (�′

0)

= − 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d�′

0 	̂eq(�′
0)[Q′ f̂ (�′

0)]

×L′[δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= − 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d�′

0 f̂ (�′
0)	̂eq(�′

0)

×Q′L′[δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
. (B10)
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Here, L′,Q′ are the Liouville operator and the projection operator for �′
0. We find that operators Q′ and L′ are operated to the

product of δ functions in the integrand of Eq. (B10). We can utilize the relations (B2) and (B7) to simplify Eq. (B10),

Q′L′[δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= −Q′

[
P′

0 · M−1 · ∂

∂Q0
− ∂Û (Q′

0, θ
′
0)

∂Q′
0

· ∂

∂P0
+

∫
d q̃′ (L′Û (q̃′, θ′

0))
δ

δÛ (q̃′, θ0)

]

×[
δ(Q0 − Q′

0)δ(P0 − P′
0)δ[Û (·, θ0) − Û (·, θ′

0)]
]

= −Q′
∫

d q̃′ (L′Û (q̃′, θ′
0))

δ

δÛ (q̃′, θ0)

[
δ(Q0 − Q′

0)δ(P0 − P′
0)δ[Û (·, θ0) − Û (·, θ′

0)]
]

= −
∫

d q̃′ δ

δÛ (q̃′, θ0)
Q′[[L′Û (q̃′, θ′

0)]δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= −

∫
d q̃′ δ

δÛ (q̃′, θ0)

[
[Q′L′Û (q̃′, θ′

0)]δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
. (B11)

From Eqs. (B11) and (B10), we have

PLQ f̂ (�0) = 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d q̃′ δ

δÛ (q̃′, θ0)

∫
d�′

0 f̂ (�′
0)	̂eq(�′

0)

×[
[Q′L′Û (q̃′, θ′

0)]δ(Q0 − Q′
0)δ(P0 − P′

0)δ[Û (·, θ0) − Û (·, θ′
0)]

]
= 1

	̄eq[Q0, P0, Û (·, θ0)]

∫
d q̃′ δ

δÛ (q̃′, θ0)

×(
	̄eq[Q0, P0, Û (·, θ0)]P

[
f̂ (�0)(QLÛ (q̃′, θ0))

])
. (B12)

Finally, by substituting f̂ (�0) = �̂(�0, q̃, t − t ′) into Eq. (B12) and using �̂(�0, q̃, 0) = QLÛ (q̃, θ0), we have Eq. (50) in the
main text.

We calculate the equilibrium average of the second-order moment of the fluctuating term by utilizing Eqs. (B8) and (B9). For
t > t ′, we have

〈
�̂(�0, q̃, t )�̂(�0, q̃′, t ′)

〉
eq,0 =

∫
d�0 	̂eq(�0)[QetLQLÛ (q̃, θ0)][Qet ′LQLÛ (q̃′, θ0)]

=
∫

d�0 	̂eq(�0)[QetLQLÛ (q̃, θ0)][et ′QLQLÛ (q̃′, θ0)]

=
∫

d�0 	̂eq(�0)[e−t ′LQQetLQLÛ (q̃, θ0)]QLÛ (q̃′, θ0). (B13)

Here we utilize the following relations for operators: Q = Q2 and QetLQQ = QetLQ. Then Eq. (B13) can be further modified
as

〈
�̂(�0, q̃, t )�̂(�0, q̃′, t ′)

〉
eq,0 =

∫
d�0 	̂eq(�0)[e(t−t ′ )LQQLÛ (q̃, θ0)]Q2LÛ (q̃′, θ0)

=
∫

d�0 	̂eq(�0)[Qe(t−t ′ )LQLÛ (q̃, θ0)]QLÛ (q̃′, θ0)

=
∫

d�0 	̂eq(�0) �̂(q̃,�0, t − t ′)�̂(q̃,�0, 0), (B14)

where we have utilized Eq. (B6). Equation (B14) together with Eq. (51) gives

〈
�̂(�0, q̃, t )�̂(�0, q̃′, t ′)

〉
eq,0 = kBT

∫
d�0 	̂eq(�0)

1

kBT
P

[
�̂(�0, q̃, t )�̂(�0, q̃′, t ′)

]
= kBT 〈K̄[Q0, P0, Û (·, θ0), q̃, q̃′, t − t ′]〉eq,0. (B15)

For t < t ′, we utilize the time-reversal transform. Under the time-reversal transform, the equilibrium probability distribution
is not changed but the time evolution of the system is reversed. There is a reverse path in the phase space for a given path, and
the probabilities to find a path and its reverse path are the same. Then the correlation function (B15) should be symmetric under
the transform t → −t . This consideration gives Eq. (55) in the main text.
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APPENDIX C: CALCULATION OF KULLBACK-LEIBLER DIVERGENCE

In this Appendix, we show the details of the calculation for the approximate form of the Kullback-Leibler divergence
[Eq. (80)]. By utilizing the approximate form for the transient potential, Eq. (78), we have the following explicit expression
for the equilibrium probability distribution:

�eq(q̃) ≈ N exp

[
− 1

kBT

(
�(Q) − F · �q̃ + 1

2
�q̃ · C · �q̃ + 1

2
�q̃ · Ctrap · �q̃

)]

∝ exp

[
− 1

2kBT
(�q̃ − ρ) · (Ctrap + C) · (�q̃ − ρ)

]
, (C1)

where N is the normalization factor and ρ ≡ (Ctrap + C)−1 · F. Since Eq. (C1) is a Gaussian distribution, the normalization
factor can be calculated straightforwardly. The normalized distribution function is

�eq(q̃) ≈
√

det

(
Ctrap + C
2πkBT

)
exp

[
− 1

2kBT
(�q̃ − ρ) · (Ctrap + C) · (�q̃ − ρ)

]
. (C2)

In the same way, we have the equilibrium probability distribution for the hypothetical transient potential:

�eq(q̃) ≈
√

det

(
Ctrap + Č
2πkBT

)
exp

[
− 1

2kBT
(�q̃ − ρ̌) · (Ctrap + Č) · (�q̃ − ρ̌)

]
, (C3)

with ρ̌ ≡ (Ctrap + Č)−1 · F̌.
We calculate the Kullback-Leibler divergence with these approximate equilibrium probability distributions. By substituting

Eqs. (C2) and (C3) into Eq. (76), we have

K(ã) ≈
∫

d q̃ �̌eq(q̃, ã)

[
1

2
ln

det(Ctrap + Č)

det(Ctrap + C)
− 1

2kBT
(�q̃ − ρ̌) · (Ctrap + Č) · (�q̃ − ρ̌)

+ 1

2kBT
(�q̃ − ρ) · (Ctrap + C) · (�q̃ − ρ)

]

= 1

2
ln det[(Ctrap + C)−1 · (Ctrap + Č)] − 1

2kBT
tr[(Ctrap + Č) · (Ctrap + Č)−1]

+ 1

2kBT

[
tr[(Ctrap + C) · (Ctrap + Č)−1] + (ρ̌ − ρ) · (Ctrap + C) · (ρ̌ − ρ)

]
. (C4)

Equation (C4) can be simplified by introducing G ≡ (Ctrap + C)−1, �Č ≡ Č − C, and �ρ̌ ≡ ρ̌ − ρ:

K(ã) ≈ 1

2
ln det(1 + G · �Č) − 1

2kBT
tr[�Č · (1 + G · �Č)−1 · G] + 1

2kBT
�ρ̌ · G−1�ρ̌. (C5)

If the hypothetical transient potential is relatively close to the original transient potential, we expect that �Č is small. Therefore,
we expand terms into the power series of �Č and retain only the leading-order terms. For a second-order tensor B and a small
parameter ε, det(1 + εB) and (1 + εB)−1 can be expanded as det(1 + εB) = 1 + ε tr B + (ε2/2)[(tr B)2 + tr B2] + O(ε3) and
(1 + εB)−1 = 1 − εB + O(ε2), respectively. With these expansion forms, Eq. (C5) can be approximated as follows, up to the
second order in �Č:

K(ã) ≈ 1

4
tr(G · �Č)2 + 1

2kBT
�ρ̌ · G−1�ρ̌. (C6)

In addition, �ρ̌ can be approximated as

�ρ̌ = (1 + G · �Č)−1 · G · F̌ − G · F ≈ G · [�F̌ − �Č · G · F], (C7)

where �F̌ ≡ F̌ − F. By substituting Eq. (C7) into Eq. (C6), we have Eq. (80) in the main text.
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