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We numerically study, from first principles, the temperature TQSS and duration tQSS of the longstanding
initial quasi-stationary state of the isolated d-dimensional classical inertial α-XY ferromagnet with two-body
interactions decaying as 1/rα

i j (α � 0). It is shown that this temperature TQSS (defined proportional to the
kinetic energy per particle) depends, for the long-range regime 0 � α/d � 1, on (α, d,U, N ) with numerically
negligible changes for dimensions d = 1, 2, 3, with U the energy per particle and N the number of particles.
We verify the finite-size scaling TQSS − T∞ ∝ 1/Nβ where T∞ ≡ 2U − 1 for U � Uc, and β appears to depend
sensibly only on α/d . Our numerical results indicate that neither the scaling with N of TQSS nor that of tQSS

depend on U .
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I. INTRODUCTION

Nonequilibrium regimes appear frequently in nature,
mostly in systems characterized by many-interacting particles,
and are usually investigated through the tools of nonequilib-
rium statistical mechanics [1–4]. In some cases these regimes
present intriguing behavior, such as a lifetime that increases
with the total number of particles N , dependence on the ini-
tial conditions, irreversibility, and breakdown of ergodicity,
the latter being associated with a noncommutative property
involving two relevant limits, namely, the long-time (t → ∞)
and thermodynamic (N → ∞) limits. Ergodicity represents
a basic pillar for the application of Boltzmann-Gibbs (BG)
statistical mechanics, supporting the use of standard equations
describing the time evolution of these systems, and particu-
larly, their approach to an equilibrium state; its breakdown
indicates that some such equations may need modifications
[5,6].

A model that exhibits some of the above-mentioned fea-
tures is the so-called Hamiltonian mean-field (HMF) model
[7], characterized by classical XY rotators coupled through
infinite-range interactions, i.e., a limit where the mean-
field approach becomes exact. The HMF model has been
largely investigated in the literature (see, e.g., Refs. [7–18]),
yielding many anomalous properties, such as long-living
quasi-stationary states (QSSs), negative specific heat, and
non-Maxwellian velocity probability distributions. Studying
numerically the time evolution of the average kinetic tem-
perature T (t ), one usually finds that this model exhibits
two distinct states: a QSS, characterized by a kinetic tem-
perature TQSS, followed by a later state whose temperature
TBG (TBG > TQSS) coincides with the one predicted by BG

statistical mechanics. Intriguingly, the duration tQSS of the first
state increases with the total number of rotators N , so that
considering the limit N → ∞ first, the system would remain
in the QSS, never reaching the later state with temperature
TBG, reflecting the above-mentioned ergodicity breakdown.

The QSSs that appear in the HMF model manifest another
peculiarity, concerning the fact that they appear in a ferromag-
netic phase, for values of the energy per particle below (but
close) to the critical value (U � Uc), as a low-temperature
extension of the high-temperature (paramagnetic) branch of
the caloric curve. This curious phenomenon may be compared
to metastable states commonly observed in supercooled liq-
uids [19,20]. Moreover, these states correspond to a vanishing
magnetization, independently from the initial conditions con-
sidered for the orientations of the rotators, which are observed
for both maximal and minimal initial magnetizations. In the
limit N → ∞, one has that the associated kinetic tempera-
ture T∞ is related to the energy per particle in a simple way
[13–15],

T∞ ≡ lim
N→∞

TQSS(N ) = 2U − 1. (1.1)

In the present work we carry a detailed analysis of the
above limit, extending the investigation to the whole long-
range regime (0 � α/d � 1) of the d-dimensional classical
inertial α-XY ferromagnet with two-body interactions decay-
ing as 1/rα

i j (α � 0). In such a case, Eq. (1.1) will be shown to
apply to typical values of (α, d,U ), and that the temperature
T∞ is approached through the following scaling with N :

TQSS(N ) − T∞ ∝ N−β. (1.2)
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Our numerical study suggests that the exponent β does not
depend on d for fixed α/d , presenting imperceptible changes
(within the error bars) for lattice dimensions d = 1, 2, 3; on
the other hand, its dependence on both α and U is analyzed in
detail. In the next section we define the α-XY model, review-
ing some results of previous works. In Sec. III we present our
numerical analysis, carried through molecular-dynamics sim-
ulations, leading to the scaling in Eq. (1.2). Then, in Sec. IV,
we summarize our conclusions.

II. THE INERTIAL α-XY MODEL: SOME PROPERTIES
OF QUASI-STATIONARY STATES

The fully coupled HMF model has been extended to a long-
range-interaction model, where two-body interactions decay
with the distance ri j as 1/rα

i j (α � 0), the so-called α-XY
inertial model, defined by the Hamiltonian [21]

H = K + Vα =
N∑

i=1

Ei,

Ei = p2
i

2
+ 1

2Ñ

N∑
j �=i

1 − cos (θi − θ j )

rα
i j

. (2.1)

From now on, without loss of generality, we set moments
of inertia, coupling constants, as well as kB, equal to unity. The
two time-dependent contributions, K ≡ K (t ) and Vα ≡ Vα (t ),
represent the kinetic and potential energies at time t , whereas
Ei ≡ Ei(t ) stand for one-particle energies; these quantities fol-
low the conservation of total energy, i.e., H = K (t ) + Vα (t ) =∑

i Ei(t ) = const (∀t ). Hence, the model consists of N two-
component rotators (with length normalized to unity), located
at the sites of a d-dimensional hypercubic lattice of linear size
L (N ≡ Ld ) and the ferromagnetic interactions between pairs
decay with their respective distance ri j = |ri − r j | (measured
in lattice units and defined as the minimal one, since periodic
conditions are used). The interaction range is controlled by
the parameter α � 0, which allows an interpolation between
two special limits, namely, α = 0 (HMF model) and α → ∞
(ferromagnetic nearest-neighbor-interaction model in d di-
mensions). Furthermore, the prefactor in the potential energy
of Hamiltonian (2.1) yields an “extensive” energy for all val-
ues of α/d , where [22,23]

Ñ = 1

N

N∑
i=1

N∑
j �=i

1

rα
i j

=
N∑

j=2

1

rα
1 j

, (2.2)

recovering the expected quantities in the two special limits,
i.e., Ñ = N − 1 ∼ N (α = 0) and Ñ = 2d (α → ∞).

A relevant characteristic of the model defined in Eq. (2.1)
concerns the fact that its time evolution can be followed nu-
merically through molecular-dynamics simulations, i.e., by a
direct integration of the equations of motion,

θ̇i = ∂H
∂ pi

= pi, ṗi = −∂H
∂θi

= − 1

Ñ

N∑
j �=i

sin (θi − θ j )

rα
i j

,

(2.3)

where the angle θi(t ), together with its conjugated angular mo-
mentum pi(t ), describe the state of rotator i (i = 1, 2, . . . , N)
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FIG. 1. The caloric curve of the α-XY model [cf. Eq. (2.6)] ap-
plies to the whole long-range-interaction regime (0 � α/d � 1), and
exhibits a ferromagnetic-paramagnetic continuous phase transition
at the critical values Tc = 1/2 and Uc = 3/4. The blue dashed line
in the ferromagnetic phase (U � Uc) represents the set of kinetic
temperatures T∞, associated with the QSSs in the limit N → ∞
[cf. Eq. (1.1)]. By monitoring numerically the time evolution of the
average kinetic temperature T (t ), one finds a plateau associated with
T∞, followed by a later state whose temperature TBG (TBG > T∞)
coincides with the one predicted by BG statistical mechanics; these
two temperatures are illustrated for an energy per particle U = 0.69.

at time t . Two important quantities, namely, the kinetic tem-
perature and internal energy per particle, can be defined in the
usual way,

T (t ) ≡ 2

N
〈K (t )〉, U ≡ 〈H〉

N
= 1

N

∑
i

〈Ei(t )〉, (2.4)

whereas a ferromagnetic order (whenever present) is charac-
terized by the norm of the magnetization vector,

�M(t ) = 1

N

N∑
i=1

�Si(t ), (2.5)

with �Si(t ) ≡ [cos θi(t ), sin θi(t )]. In the HMF limit (α = 0)
one gets from Eq. (2.1),

U = T

2
+ 1

2
(1 − M2), (2.6)

leading to a ferromagnetic-paramagnetic continuous phase
transition at the critical values Tc = 1/2 and Uc = 3/4 (see
Fig. 1).

The α-XY model has been studied either on a ring
(dimension d = 1) (see, e.g., Refs. [21,24–26]), or on d-
dimensional lattices (d = 1, 2, 3) [27–30]. By monitoring
the range of the interactions, these analyses identified two
distinct regimes, namely, a long-range- (0 � α/d � 1) and
short-range-interaction (α/d > 1) one, as described next.
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Throughout the long-range regime, most properties of the
HMF limit continue to be valid, e.g., the expression for
the internal energy in Eq. (2.6), and consequently, the
ferromagnetic-paramagnetic phase transition at the critical
values Tc = 1/2 and Uc = 3/4 [24,25]. The caloric curve of
the α-XY model is shown in Fig. 1, where the blue dashed line
represents a low-temperature extension of the paramagnetic
branch, similar to what is observed in supercooled liquids
[19,20]. For values of the energy per particle below (but
close) to the critical value (U � Uc), numerical analyses of
the time evolution of the average kinetic temperature T (t )
usually find a QSS, characterized by a kinetic temperature T∞
[cf. Eq. (1.1)], followed by a later state with a temperature
TBG (TBG > T∞). These two distinct kinetic temperatures that
occur in the ferromagnetic phase (as illustrated in Fig. 1 for an
energy per particle U = 0.69) appear as a consequence of the
QSS, which is expected to be influenced by strong correlations
near criticality. Indeed, the QSS disappears at the critical
point, so that one finds that (TBG − T∞) → 0 as U → Uc,
leading to TBG = T∞ = 1/2 at U = Uc . Moreover, throughout
the whole paramagnetic phase, i.e., for U > Uc, there is no
difference between these two temperatures, and consequently,
no QSS. On the other hand, along the short-range regime there
is no QSS, and the dimension d starts playing a significant
role, as expected, leading to distinct properties for various
d [27–30]. Particularly, it was shown that the largest Lya-
punov exponent scales with the total number of rotators as
N−κ , where κ depends on (α, d ) only through the ratio α/d ,
leading to κ > 0 in the long-range regime, whereas κ → 0 in
the short-range regime, corresponding to positive Lyapunov
exponents.

Many features of the α-XY model, in its long-range-
interaction regime, have been appropriately described within
nonextensive statistical mechanics [5,6]. This framework
emerged through the proposal of a generalized entropic form
[31],

Sq = k
W∑

i=1

pi

(
lnq

1

pi

)
, (2.7)

where

lnq u ≡ (u1−q − 1)/(1 − q) (ln1 u = ln u), (2.8)

which is characterized by an index q (q ∈ R), recovering
BG entropy in the limit q → 1, i.e., S1 ≡ SBG. Consequently,
the distributions that optimize the entropy Sq generalize the
Gaussian into the usually referred to as q-Gaussian proba-
bility distributions [5,6]. These probability distributions have
been obtained for the time-averaged momenta distributions,
both before and after the transition to the long-standing
state whose kinetic temperature TBG coincides with that of
the BG equilibrium state, with a value of the entropic in-
dex q = qp(α/d ) within the long-range regime [28]. On the
other hand, Maxwellian distributions were found in the lim-
iting short-range regime, as well as for ensemble-averaged
momenta probability distributions. Deviations from BG pre-
dictions have also been observed for time-averaged energy
probability distributions, where instead of the BG exponen-
tial, q-exponential probability distributions emerged from the
simulations in the long-range regime, with q = qE (α/d ) [28].

Similar results have been obtained in a long-range-
interaction Fermi-Pasta-Ulam model [32–36], as well as for
a model analogous to the one in Eq. (2.1), defined in terms of
Heisenberg (three-component) classical rotators [37–39]. This
latter system, usually called the inertial α-Heisenberg model,
exhibits QSSs throughout its whole long-range-interaction
regime (0 � α/d � 1), for U � Uc (where Uc = 5/6 for
Heisenberg rotators). Recent detailed numerical analyses fo-
cused on the duration tQSS of these QSSs, for both α-XY
[29,30] and α-Heisenberg [39] inertial models. It was shown
that tQSS presents qualitatively similar behavior for these two
models, i.e., it depends on N , α, and d , although the depen-
dence on α appears only through the ratio α/d . In fact, tQSS

decreases with α/d and increases with both N and d [29,39].
Numerical data are displayed in Fig. 2, for the α-XY model
in dimensions d = 1, 2, 3 and typical values of the energy
per particle, where we exhibit the growth of tQSS with N for
α/d = 0.9 [Fig. 2(a)], as well as its decrease with α/d for
N = 46 656 [Fig. 2(b)]. The plots of Fig. 2(a) indicate that
[29]

tQSS = dρμ(α/d )NA(α/d ), (2.9)

whereas those of Fig. 2(b) yield

tQSS = dρν(N ) exp[−B(N )(α/d )2], (2.10)

with the exponent A(α/d ) [A(α/d )  1.77 − 0.73(α/d )2 −
1.02(α/d )4], as well as the coefficient B(N ) [B(N )  N0.21],
remaining independent of U (within error bars), i.e., A(0.9) =
0.52 ± 0.02 and B(46 656) = 9.40 ± 0.12. It should be men-
tioned that the data presented in Fig. 2 lead to Eqs. (2.9) and
(2.10) independent of a particular choice for the total energy
per particle (within error bars), extending the results of of
Ref. [29], which focused on U = 0.69; this remains valid as
far as the values of U are sufficiently below the critical value
Uc. Indeed, an investigation of the limit U → Uc for the α-XY
model [30] showed that the duration tQSS goes through a criti-
cal phenomenon, namely tQSS ∝ (Uc − U )−ξ , and universality
was found for the critical exponent ξ  5/3, throughout the
whole long-range-interaction regime.

Besides the duration tQSS, another important quantity
characterizes these QSSs, namely, its kinetic temperature
TQSS(N, α, d ). In the next section we will give special atten-
tion to this latter quantity for the α-XY model, approaching
the limit N → ∞ [cf. Eq. (1.1)] through the scaling proposed
in Eq. (1.2).

III. NUMERICAL RESULTS FOR TQSS

We are going to probe values of U < Uc, although avoid-
ing the limit U → Uc, since one expects that the critical
phenomenon related to the duration tQSS [30] may influ-
ence the behavior of TQSS. Therefore, we will consider three
values for the total energy per particle, more specifically,
U = 0.69 (which has been widely used in the literature for
the HMF and α-XY models), in addition to U = 0.65 and
U = 0.72. The results that follow were obtained by apply-
ing the same numerical procedure used in Refs. [29,30],
i.e., the 2N equations in (2.3) were integrated by means
of a fourth-order symplectic algorithm [40], considering
an integration step h = 0.2, yielding conservation of the
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FIG. 2. (a) The durations of the QSSs for the α-XY model α/d = 0.9] are represented conveniently vs the total number of rotators in a
log-log scale, showing numerical data for N = l6 (l = 5, 6, 7, 8, 9, 10), dimensions d = 1, 2, 3, and typical values of the energy per particle
(decreasing values of U from top to bottom). Straight-line fittings lead to the scaling of Eq. (2.9), where A(0.9) = 0.52 ± 0.02. (b) The
durations of the QSSs for the α-XY model (N = 66 = 46 656) are exhibited vs (α/d )2 (0 � α/d � 0.9) in a log-linear scale, for d = 1, 2, 3,
and two typical values of the energy per particle: U = 0.69 (upper straight line) and U = 0.65 (lower straight line); the straight-line fittings
follow the scaling of Eq. (2.10), where B(46 656) = 9.40 ± 0.12. In both panels, data were obtained considering the initial condition M(0)  0;
the factor dρ becomes important as one approaches the short-range-interaction threshold, so that ρ = 0 (α/d � 0.7) and ρ = 0.31 (α/d =
0.8, 0.9), and one expects that ρ → 0 in the thermodynamic limit, for all 0 � α/d � 1 [29]. For the values of U considered, the exponent
A(α/d ) [Eq. (2.9)], as well as the coefficient B(N ) [Eq. (2.10)], are essentially independent of U , within error bars.

energy per particle within a relative precision of 10−4 (at
least) throughout all our calculations. Moreover, we applied
periodic boundary conditions and a fast-Fourier-transform al-
gorithm, for which the total number of rotators were chosen
as N = l6 = (l3)2 = (l2)3 (l = 5, 6, 7, 8, 9, 10), all of them
being expressed in the form N = Ld (d = 1, 2, 3). Hence,
we used N = 15 625 = (125)2 = (25)3, 46 656 = (216)2 =
(36)3, 117 649 = (343)2 = (49)3, 262 144 = (512)2 = (64)3,
531 441 = (729)2 = (81)3, and 106 = (1000)2 = (100)3. At
the initial time, the angular momenta {pi} were drawn from
a uniform distribution, pi ∈ [−1, 1], then rescaled to achieve
the desired value for U and

∑
i pi = 0. For the angles, we

chose θi from a uniform distribution θi ∈ [0, 2π ], correspond-
ing to minimum [M(0)  0] total magnetization. As the
analyses of Refs. [29,30] concerning the duration tQSS, sim-
ulations using the initial condition θi = 0 (∀i), corresponding
to maximum [M(0) = 1] total magnetization, are expected to
yield similar results (within error bars).

In Fig. 3 we present numerical results obtained from sim-
ulations of the inertial α-XY model in a closed ring (d = 1),
α = 0.9, and total energy per rotator U = 0.69. In Fig. 3(a)
we exhibit the time evolution of the total magnetization
squared M2(t ), together with the difference T (t ) − T∞, in a
linear-log plot for a total number of rotators N = 66 = 46 656.
Although the data shown for the QSS present essentially
M(t )  0, the equation of state [cf. Eq. (2.6)] does not agree
with Eq. (1.1), namely, T∞ ≡ 2U − 1. These results indicate
that finite-size effects are clearly playing a significant role
in such a violation, indicating that the paramagnetic branch
of Eq. (2.6) should converge to Eq. (1.1) only in the limit
N → ∞. This result is reinforced in Fig. 3(b), where we

show the time evolution of the kinetic temperature T (t ) for an
increasing number of rotators, N = l6 (l = 5, 6, 7, 8, 9, 10),
and one notices a clear convergence to the limit of Eq. (1.1) in
the respective inset.

The kinetic temperatures T (t ) of the inertial α-XY model
(total energy per rotator U = 0.69) are exhibited versus time
in Fig. 4, for typical values of (N, α, d ). In Fig. 4(a) we plot
data for a total number of rotators N = 66 = 46 656 along
a closed ring (d = 1) and several values of α (0 � α � 1),
showing that TQSS grows with α, as illustrated in the lower
inset, where the associated differences TQSS − T∞ are repre-
sented versus α. The results of Fig. 4(b) [total number of
rotators N = 106, α/d = 0.9, and dimensions d = 1, 2, 3] re-
inforce that the duration tQSS grows with d , as already shown
in Ref. [29]. Moreover, one notices that the associated tem-
peratures TQSS are slightly dependent on d , decreasing as d
increases. Comparing the results of Figs. 4(a) and 4(b), one
obtains that TQSS is more sensible to changes in α, than to
those in d . In fact, by estimating the relative discrepancy,
(TQSS − T∞)/T∞, one concludes that such a quantity may be
of the order 6–8 times larger in cases of Fig. 4(a), when
compared to those of Fig. 4(b).

In Fig. 5 we analyze the scaling proposed in Eq. (1.2)
by plotting the difference TQSS − T∞ vs N in log-linear rep-
resentations. This is carried for typical values of α (0 �
α � 1), dimensions d = 1, 2, 3, and three different values of
the energy per particle [cf. Figs. 5(a)–5(c)]. As discussed in
Fig. 4, the values of TQSS are more sensible to changes in α

than to those in d; consistently, in Fig. 5(d) similar studies
are restricted to dimension d = 1. In all cases considered,
the scaling proposed in Eq. (1.2) is verified, allowing us to
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FIG. 3. Numerical data obtained from simulations of the inertial α-XY model in a closed ring (d = 1), α = 0.9, total energy per rotator
U = 0.69, and an initial total magnetization M(0)  0, are represented vs time in linear-log scales. (a) The total magnetization squared M2(t )
(lower black line), as well as the difference of the kinetic temperature with respect to its value in the limit N → ∞, T (t ) − T∞ (upper red
line), are plotted for a total number of rotators N = 66 = 46 656. The results show that the agreement of the equation of state [cf. Eq. (2.6)]
along its paramagnetic branch (M = 0), with T∞ ≡ 2U − 1 [Eq. (1.1)], is strictly valid throughout the QSS only for N → ∞, but it is slightly
violated for finite N . (b) The kinetic temperature T (t ) is plotted for different number of rotators, N = l6 (l = 5, 6, 7, 8, 9, 10); the inset on the
left displays an enlargement of a time window illustrating the limit of Eq. (1.1). According to Fig. 1, the associated characteristic temperatures
are T∞ = 0.38 and TBG = 0.475.

compute the exponent β, and the results are plotted in the
lower insets (β vs α); as expected, the estimates do not vary
(within error bars) for different dimensions. These plots in-
dicate that β remains essentially unchanged (close to unity)
for smaller values of α, i.e., β = 0.94 ± 0.07 (0 � α � 0.5),
whereas it typically decays linearly for α > 0.5. One ex-
pects that β → 0 as α/d → 1, remaining zero throughout the

whole short-range regime (α/d > 1), since the QSS should
disappear for α/d � 1. However, as verified in previous in-
vestigations (see, e.g., Refs. [28–30]), the crossover from
the long-range-interaction regime (0 � α/d � 1) to the short-
range one (α/d > 1) is characterized by strong finite-size
effects, which are also expected to play an important role in
the present analysis. This explains the numerical results for

FIG. 4. The kinetic temperature T (t ) is represented vs time in linear-log plots, for the inertial α-XY model with an energy per rotator
U = 0.69 and initial magnetization M(0)  0. (a) Data for a total number of rotators N = 66 = 46 656 along a closed ring (d = 1) and several
values of α (0 � α � 1). In the upper inset we show a time window highlighting the changes from the QSSs to the second plateau in linear-log
plots, emphasizing the increase of TQSS with α; the corresponding differences TQSS − T∞ are represented vs α in the lower inset. (b) Data for a
total number of rotators N = 106, α/d = 0.9, and dimensions d = 1, 2, 3, showing that the duration tQSS increases with d [29]. The changes
from the QSSs to the second plateau are highlighted in the inset in a linear-log plot, showing that TQSS presents a slight dependence on d ,
i.e., decreasing as d increases. Throughout the whole long-range regime (0 � α/d � 1), the corresponding characteristic temperatures are
T∞ = 0.38 and TBG = 0.475.
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FIG. 5. The differences TQSS − T∞ are represented vs N (log-log scales) for the inertial α-XY model, considering typical values of α

(0 � α � 1), dimensions d = 1 (circles), d = 2 (squares), and d = 3 (triangles), initial magnetization M(0)  0, and different values of the
total energy per particle: (a) U = 0.65; (b) U = 0.69; (c) U = 0.72. Let us emphasize that the data for TQSS are more sensible to changes in
α, than to those in d , as pointed out in Fig. 4; due to this, in (d) similar analyses are carried only for d = 1. By considering the scaling of
Eq. (1.2), the corresponding values for the exponent β are estimated in each case, and the results are plotted in the lower insets (β vs α). In
all cases considered, one notices that TQSS → T∞ as N → ∞ [following Eq. (1.2)], and the exponent β essentially remains unchanged (within
numerical error bars) for (0 � α � 0.5) and appears to decay linearly for 0.5 < α � 1.0.

α = 1 (in all cases shown in Fig. 5), where small positive
values of β are found.

The data for the temperature TQSS presented herein can also
be treated appropriately to produce collapsed curves for each
energy value, dimensions d = 1, 2, 3, and different values of
α, similarly to what was done for the duration tQSS [29]. This is
illustrated in Fig. 6, where we present data from Fig. 5(b) (to-
tal energy per particle U = 0.69 and dimensions d = 1, 2, 3);
these data are collapsed for each value of α by introducing
a multiplicative factor f (α, d ) in the ordinate (see inset).
As one approaches the short-range-interaction threshold (e.g.,
α/d = 0.9) this factor recovers f (d ) = d−ρ , used in Ref. [29]
for the analyses of the duration tQSS, where ρ = 0.35 ± 0.04
is in agreement with the previous results within error bars.

IV. CONCLUSIONS

The longstanding quasi-stationary states of the d-
dimensional classical inertial α-XY ferromagnet, with two-

body interactions decaying as 1/rα
i j (α � 0), were inves-

tigated numerically through first-principles microcanonical
molecular-dynamics simulations. This model consists of
N two-component rotators, located at the sites of a d-
dimensional hypercubic lattice of linear size L (N ≡ Ld ),
which are characterized by two distinct regimes, namely,
a long-range- (0 � α/d � 1) and a short-range-interaction
(α/d > 1) one. Throughout the first regime, most properties
of the α = 0 limit continue to be valid, e.g., a ferromagnetic-
paramagnetic phase transition at the critical values for the
total energy per particle and associated temperature (Uc =
3/4, Tc = 1/2). Along the paramagnetic phase these thermo-
dynamic quantities follow a simple linear relation, i.e., T =
2U − 1.

Two important quantities characterize these quasi-
stationary states, namely, their duration tQSS(N, α, d )
and kinetic temperature TQSS(N, α, d ). The first one was
investigated in detail in previous works: (i) In Ref. [29], by
concentrating on a particular value of total energy per particle
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FIG. 6. Data from Fig. 5(b) (total energy per particle U = 0.69
and dimensions d = 1, 2, 3) are collapsed for each value of α (α =
0.6, 0.7, 0.8, 0.9 from bottom to top) by introducing a factor f (α, d )
in the ordinate (see inset). As one approaches the short-range-
interaction threshold (e.g., α/d = 0.9) this factor recovers f (d ) =
d−ρ , used in Ref. [29] for the analyses of the duration tQSS.

(U = 0.69), it was shown that tQSS(N, α, d ) depends on α

only through the ratio α/d . In fact, tQSS decreases with α/d
and increases with both N and d . (ii) By focusing on the
limit U → Uc, it was verified that tQSS goes through a critical
phenomenon, namely tQSS ∝ (Uc − U )−ξ , and universality
was found for the critical exponent ξ  5/3, throughout
the whole long-range-interaction regime [30]. Herein, we
extended the results of Ref. [29], by showing that the general
behavior of tQSS essentially does not depend on U , for
values of U sufficiently below the critical value Uc = 3/4,

i.e., relatively far from the criticality associated with
tQSS.

It is known that these quasi-stationary states appear
for U � Uc, as a low-temperature extension of the high-
temperature (paramagnetic) branch of the caloric curve,
although TQSS(N, α, d ) does not match precisely with such
an expectation for finite N . Accordingly, the kinetic temper-
ature TQSS(N, α, d ) should approach the limit T∞ ≡ 2U − 1,
as N → ∞, for different values of (α, d ) throughout the
long-range-interaction regime. Therefore, in the present in-
vestigation we focused on TQSS, by proposing (and verifying
numerically) the scaling TQSS − T∞ ∝ N−β . It was shown that
the exponent β essentially does not depend on the choices
for U and d (d = 1, 2, 3) for fixed α/d; moreover, it varies
with α/d in a simple way, remaining essentially unchanged,
i.e., β(α/d )  1 for 0 � α/d � 0.5, decaying linearly for
α/d > 0.5, suggesting that β(α/d ) → 0 as α/d → 1.

The present results should be useful for other long-range-
interaction systems, such as the inertial α-Heisenberg model,
defined in terms of three-component rotators, as well as to
some of the most intriguing systems of nature, such as those
characterized by gravitational and Coulomb forces. Moreover,
since these curious states present similarities with metastable
states commonly observed in supercooled liquids, the under-
standing of their relevant properties, such as their duration and
associated temperature, should be relevant also to supercool-
ing phenomena.
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