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Modeling the diffusion-erosion crossover dynamics in drug release
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A computational model is proposed to investigate drug delivery systems in which erosion and diffusion
mechanisms are participating in the drug release process. Our approach allowed us to analytically estimate
the crossover point between those mechanisms through the value of the parameter b (bc = 1) and the scaling
behavior of parameter τ on the Weibull function, exp[−(t/τ )b], used to adjust drug release data in pharmaceutical
literature. Numerical investigations on the size dependence of the characteristic release time τ found it to
satisfy either linear or quadratic scaling relations on either erosive or diffusive regimes. Along the crossover,
the characteristic time scales with the average coefficient observed on the extreme regimes (i.e., τ ∼ L3/2), and
we show that this result can be derived analytically by assuming an Arrhenius relation for the diffusion coefficient
inside the capsule. Based on these relations, a phenomenological expression for the characteristic release in terms
of size L and erosion rate κ is proposed, which can be useful for predicting the crossover erosion rate κc. We
applied this relation to the experimental literature data for the release of acetaminophen immersed in a wax
matrix and found them to be consistent with our numerical results.
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I. INTRODUCTION

Bioerodible polymers play an important role in the de-
sign of pharmaceutical devices in which the drug release
mechanism is also determined by polymer erosion in addi-
tion to diffusion [1–8]. Biopolymers are commonly used to
deliver many kinds of pharmaceutical compounds including
as anticancer drugs, contraceptive steroids, antibiotics, and
biomolecules such as proteins and DNA [6,7,9–12]. In ad-
dition, advances in biodegradable devices with applications
for ocular drug delivery systems [8,13] and cancer therapies
[2,4,5] have been reported in the literature. In these cases,
bioerodible polymers are used for two main purposes: to
control the drug release time and to improve biocompatibil-
ity. The latter requirement is of greater importance since in
certain therapeutic treatments, as in the case of implantable
systems, once the biopolymer has completely eroded and
its fragments absorbed by the body, surgical removal of the
implant can be avoided [9,10,13]. Thus, a better understand-
ing of the characteristic release times as well as the erosion
mechanism are essential for the development of more effective
therapies.

Drug delivery systems based on polymeric materials can
control the release rates by diffusion, erosion, and swelling
and the prevalence of one of these processes depends on
the interactions between polymer and the environmental fluid
(water or biological fluid), in the sense that the polymeric
device may have its physical structure unchanged during
the release process or may be subject to a process of
swelling or erosion. When the physical structure of the device

remains unchanged, the release is basically controlled by sim-
ple diffusion and while erosion (or chemical reactions) of the
polymer is taking place release rates can be controlled by
the interaction between polymer and fluid molecules. For the
case in which the release is controlled by the ability of the
polymer to swell, that is, when a fluid penetrates the polymer,
it promotes a volume variation in the polymeric matrix, thus
generating a strain induced breaking [14–18]. In this latter
case, drug release is controlled by the polymer chain relax-
ation rate (polymer swelling). In addition, release rates can
be controlled by a combination of more than one mechanism
and the predominance of one or other depends essentially on
the characteristics of the polymer, fluid, and physicochemical
properties of the drug [1,19]. Many other physical and chem-
ical factors can also play an important role in this process, for
example, microparticle size, device geometry, and drug disso-
lution (change of phase), among others [6,7,10,11,20–23].

In this scenario, the use of computational or mathematical
models to describe the release kinetics plays a fundamen-
tal role in the development of new pharmaceutical devices.
Among some of the benefits, modeling allows one to obtain
physical insights into the release mechanism and to optimize
an existing drug delivery system, eventually reducing the
number of experimental tests and the average time and costs
for the production of a new drug release device [24–30].

Erosion dynamics of polymeric materials and its effects on
release kinetics have been the subject of many studies; for
reviews, see [6,11,31]. Despite all the complexity involved in
the release process, theories based on the classical diffusion
equation give reasonable results when the main mechanism of
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drug transport is diffusion. To include the effect of polymer
erosion dynamics, it is common to consider the diffusion
coefficient as a function of time, position, concentration, and,
eventually, porosity, and in some cases it is possible to de-
velop theoretical frameworks that are well in agreement with
experimental results [20–22,32–36]. There are also sophisti-
cated theoretical models that account for diffusion, erosion
theories, and many other factors, based on partial differential
equations or even coupled models between partial differen-
tial equations and Monte Carlo (MC) simulations [36,37]. In
contrast, only a few microscopic models based on cellular
automata or Monte Carlo approaches have been developed
to investigate the effects of the polymer erosion and drug
diffusion on the context of the drug release process [38–43].

In previous works from our group, a lattice gas model was
used to simulate drug delivery devices and the effects of the
membrane porosity on the drug release process were investi-
gated using the MC approach for capsules in two and three
dimensions with different sizes. Scaling relations between
release parameters and porosity were obtained that could be
used to fit up to 90% of the membrane content covering
the capsule [44,45]. Considering the relevance of bioerodible
membranes for the development of new pharmaceutical de-
vices, in this work we generalize our previous model including
the membrane erosion dynamics (or pore formation). For the
purpose of implementing the erosion dynamics, we assume
that on each MC step, there is a probability that a pore (leaking
site) will be formed due to a possible reaction between the
membrane and the fluid environment particles (e.g., water
molecules).

The first step in achieving the description of any dynami-
cal system is to understand its relaxation mechanism which,
for many processes, is related to a nonexponential behavior
[46–51]. In the case of drug release patterns, the nonexponen-
tial relaxation processes can be inferred by the fact that the
Weibull distribution function is commonly used to adjust, both
in experimental setups and Monte Carlo simulations, release
data. Based on previous work, we adopt this distribution in the
form [52–55]

N (t )

N0
= exp

[
−

(
t

τ

)b]
, (1)

where N (t ) is the amount of drug particles inside the capsule
as a function of time t , while N0 = N (0) is the initial number
of particles; the characteristic release time τ is associated with
the time in which ≈63% of the drug is delivered, whereas
the release parameter b, in the pharmaceutical literature, is
associated with the physical mechanisms that control the re-
lease process (for more details, see [44,45] and references
therein), which has been successfully applied in different stud-
ies [56–58]. It is important to mention that Ignacio and Slater
proposed a new semiempirical function based on diffusion
theory that for a purely diffusive drug release problem, out-
performs the Weibull function and, recently, they proposed an
alternative way to obtain the diffusion constant from the drug
release data [59,60].

In our simulations, the Weibull distribution function was
found to reasonably adjust the release curve for different
erosion rates and we were able to perform a scaling analy-

sis on the parameters b and τ as a function of the erosion
rate and the capsule size. By comparing the Weibull param-
eter b against the erosion rate it was possible to identify a
crossover region where the effects of membrane erosion and
drug diffusion were contributing with the same weight to the
release mechanism. This crossover was identified to occur
at b = bc ≈ 1, corroborating the discernment of the drug re-
lease mechanism proposed by Papadopoulou et al. [61]. A
simple mathematical argument was presented to explain this
behavior, favoring the usage of the Weibull parameter b to
distinguish between the major drug release mechanisms [61].

In addition, the characteristic release time τ was found to
satisfy a power law dependence in terms of the membrane
erosion rate and this allowed us to build an analytical expres-
sion relating those two quantities. This relation was found
to be consistent with experimental data for the release of
acetaminophen immersed in a wax matrix [33].

The remainder of this paper is organized as follows: in
Sec. II, we introduce our lattice model and the simulation
methods used to investigate the influence of the membrane
erosion dynamics on the drug release mechanism. Results and
discussions are presented in Sec. III, while our conclusions
are summarized in Sec. IV.

II. MODEL AND SIMULATION DETAILS

To investigate how the membrane erosion influences the
release kinetics, we modified the two-dimensional (2D) lat-
tice model of drug release [44,45]. Instead of presenting a
rigid membrane with fixed porosity, with the random porous
sites distributed along the membrane at the beginning of the
simulation, we encapsulated the device with a bioerodible
membrane, whose dynamics is defined along the simulation,
as described below.

In our model, the drug device is represented by a lattice
and each site can be occupied by a single drug particle or
be empty. Drug dynamics occurs in a random way, but drug
molecules are not allowed to jump into other sites occupied
by either drug or membrane particles, i.e., the main effect
of the membrane is to block drug molecules from leaking
to the outside environment. Except for membrane dynamics,
simulations are similar to our previous work and we refer to
it for further details [45]. We start all simulations by consid-
ering 2D square lattices with size L, maximum initial drug
concentration (N0 = L2), and membrane coverage (M0 = 4L).
A pictorial representation of our 2D device model is presented
in Fig. 1 for a given time step.

The membrane erosion dynamics (or pore formation) is
introduced in our lattice model as simply as possible with
membrane and drug dynamics being independent of each
other along a Monte Carlo step. Between MC steps, there is
a constant probability that δM pore sites (leaking site) will
be formed due to a possible reaction between a membrane
site and an environment fluid particle (it is assumed that the
system is immersed in an implicit aqueous medium).

Before proceeding, let us represent the erosion rate con-
stant as k = PδMl0/�t , where P is the probability of erosion,
l0 is the pore length, �t is the unit of time assumed for a MC
step, and δM is the number of pores eroded along the �t time
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FIG. 1. Schematic representation of our two-dimensional device
model with size L = 10, N0 = L2, and M0 = 4L for a given time step.
The lattice is not represented, for more clarity. Nonetheless, each
site has area of l2

0 and can be occupied by a single particle or be
empty. The erosion constant dictates the formation of pores, with six
membrane sites (black) eroded (red) and some of the drug particles
(blue) released.

interval. After each MC step, a random number x uniformly
distributed between 0 and 1 is generated and, if x � P, δM
new pores are created in random membrane sites.

For each configuration, i.e., different sizes L and erosion
rates k, the final drug release profile and membrane coverage
are obtained by averaging the particle number and membrane
sites, as a function of the time, over 103 simulations. Each
individual release curve is then adjusted to the Weibull distri-
bution function using standard routines for nonlinear square
fitting [62].

In Fig. 1, we show, for example, a possible obtained config-
uration for a given time step. As the final results are obtained
as an average over different realizations, and the constant ero-
sion probability is assumed, the average number of membrane
sites decays linearly with time,

M(t ) = M0 − kt . (2)

Generalizations of our microscopic probabilistic approach are
straightforward to produce different decay profiles, M(t ), but
here we are interesting in the process where the polymer
membrane erosion follows a linear relation with time [28,33].
Furthermore, the erosion constant k is similar to the experi-
mental erosion constants described in the cellular automaton
model for the corrosion of a metal in an environment [63]
and also in a model for swelling-controlled drug release [64].
Furthermore, it is important to mention that we are interested
in the erosion of polymeric membranes, and other methods
can be applied to investigate the erosion of polymeric matrices
[38,65,66].

For simplicity, let us define the dimensionless erosion con-
stant κ = k�t/l0 and consider δM = 1. As an illustration, for
κ = 1.0, all attempts are accepted and 100 membrane sites
will erode after 100 MC steps, for a large enough membrane,
whereas for κ = 0.01, on average only one membrane site is
converted into a pore site after 100 MC steps.
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FIG. 2. Fraction of drug released, R(t ), as a function of the time
t , in Monte Carlo steps, for different drug initial concentrations C0

and for erosion constant (a) κ = 1 and (b) 0.01.

III. RESULTS AND DISCUSSION

We start presenting in Fig. 2 the release fraction R(t ) =
1 − N (t )/N0 resulting from the Monte Carlo simulation of
drug device models with size L = 200 and the erosion con-
stant, (a) κ = 1.00 and (b) 0.01, for different drug initial
concentration, C0 = N0/L2, where N0 drug particles are ini-
tially placed randomly along the lattice. In this way, these
figures indicate that the obtained results are universal since
drug release data presents the same functional form dependent
only on the erosion constant. On the other hand, this universal-
ity is expected to be broken for different devices geometries,
for example, for rectangular lattices. Hereafter, we choose the
initial concentration equal to one, as it seems to be closer to
real cases in the sense that the drug device is completely filled
with particles.

In Fig. 3, we show that the Weibull function provided accu-
rate fits for release curves for different erosion constant values
κ = 0.01 and 1.00, which illustrate the cases where either
erosion or diffusion is the main mechanism dominating the
drug release pattern. In both cases, the numerical data could
be reasonably well adjusted to Weibull functions (continuous
lines), as measured by R2 ≈ 1 and also through an analysis of
its residuals [45].
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FIG. 3. Fraction of drug released as a function of the time t ,
in Monte Carlo steps, for device models with size L = 200 and
different erosion rates κ . Simulation data points were adjusted to
Weibull distribution functions (lines), with fitting parameters b and
τ indicated along each curve.

For κ = 1.00, the membrane erosion happens so fast that it
is almost instantaneous in the time frame presented in Fig. 3.
In this case, the Weibull adjusted parameters [67] were found
as τ = 5123(2) MC steps and b = 0.78, with the latter being
used in the literature [61] to associate the drug release mech-
anism with drug diffusion in a regular, Euclidean lattice, but
with contributions from another mechanism which, in the case
of current model, is immediately recognized as the membrane
erosion. The presence of the membrane with a fast erosion
dynamics also introduces numerically significant effects on
the behavior of the characteristic release time τ , as will be
discussed below.

For the slow erosion rate case [68], κ = 0.01, the mem-
brane degradation takes about twice as much time as what is
needed to release 99% of the initial drug load, and the drug
release kinetics is mostly limited by the membrane erosion
rate. For this case, Weibull adjusted parameters were found as
τ = 12521(5) MC steps and b = 1.22, which could be used to
classify this system as belonging to devices with a “complex
release mechanism” [61], which evidently corresponds to a
dominance of the membrane erosion dynamics on the drug
release profile.

As discussed above, the presence of an erodible membrane
covering the pharmaceutical device introduces an additional
level of complexity on drug release patterns, presenting more
important effects than would be presumed by simply not-
ing that the membrane decreases the probability for drug
molecules to escape the capsule. By comparing the cases of
a simple device without a membrane to a series of systems
covered with sequentially stiffer membranes, the characteris-
tic times would increase but, also, the shape of the release
curve would be radically changed, crossing drug release
mechanisms from simple diffusion (0.69 < b < 0.75), normal
diffusion with contribution from another mechanism (0.75 <

b < 1.0), first order release (b = 1), and, finally, to complex
release (b > 1). Since the Weibull distribution function pro-
vides a reasonably good approximation to release curves in

3/4
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3/2

 0.01  0.1  1

b

κ

b0κ-δ

b1κ-ν

FIG. 4. Log-log plot of the release parameter b as a function of
erosion rate κ for capsules with size L = 200. The lines are the fitted
curves (see text). Note that there is a subtle deviation from the fitted
curves when κ → 1 and κ → 0.

the cases illustrated in Fig. 3, it should be interesting to per-
form a detailed scaling analysis on the dependence of release
parameters b and τ with respect the capsule sizes L and the
erosion rate κ within this interval. The following sections will
be devoted to this task.

A. Relation between release parameter b and erosion rate κ

To investigate the interplay between membrane erosion and
drug diffusion in the drug release, let us express the membrane
fraction at short times (t � τ ) from Eq. (2) as

λM (t ) = M(t )

M0
= M0 − kt

M0
≈ exp

(
− kt

M0

)
, (3)

and compare it to the drug fraction inside the device by as-
suming that it can be approximated by the Weibull distribution
function in Eq. (1),

λN (t ) = N (t )

N0
= exp

[
−

(
t

τ

)b]
. (4)

Although the membrane kinetics is decoupled from the
drug diffusion, both mechanisms are acting together in a non-
trivial way to generate the final drug release profile. Under the
condition that both mechanisms are contributing in a propor-
tional way to the system dynamics (crossover), we shall have
a very special case, such that the ratio λM (t )

λN (t ) is constant and
equal to one, which holds true only if b = 1 and τ = M0/k,
implying that in the crossover region, the drug release is
described by an exponential decay. This is in accordance with
the experimental classification scheme discussed above [61]
and it is investigated with more numerical detail in Fig. 4,
which presents the Weibull release parameter b for a capsule
with size L = 200 by varying κ from 0.01 to 1.00. In this fig-
ure, presented in log-log scale, two different behaviors seem
to occur for the data below and above κc ≈ 0.1. In both cases,
the data are well adjusted by power law scaling relations, but
with different coefficients. For κ < κc, one can adjust the b
data to b = b0κ

−δ , while in the other limit κ > κc, it can be
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adjusted to b = b1κ
−ν , where b0, b1, ν, and δ are adjustable

parameters [69]. It is important to mention that these scaling
relations only allow us to find the crossover, when both are
equal (see in Fig. 4), which means

bc(κc) = b1

b0
κ δ−ν

c , (5)

and, thus, when κc = 0.1, one obtains bc ≈ 1.0, which
deviates by about 8% from the exact numerical value,
bc = 0.92(1).

Therefore, it is possible to infer that the prevalence of
the membrane erosion or diffusion mechanism on the release
process determines the values observed on b. When the mem-
brane erosion rate is fast (e.g., κ = 1), the drug diffusion is
the dominant mechanism determining drug release.

As the erosion rate κ decreases towards the critical value,
κ → κc, there is a corresponding increase in the values of b,
indicating a greater contribution from the erosion mechanism
itself, and the two mechanisms occur in a proportional way at
κ = κc, where we found b = bc ≈ 1.0, in accordance with the
phenomenological description presented above. For κ values
smaller than κc, the membrane erosion becomes a limiting step
for the process of drug release and, in this regime, the mem-
brane erosion dynamics becomes the dominant mechanism for
controlled drug release.

In Fig. 5(a), the release parameter b is shown as a func-
tion of size L for different erosion rates κ . At fixed values
of κ , the values of b decrease with increasing size L in a
behavior which can be approximately described by a power
law, b = bκL−ακ , where the adjusted parameters bκ and ακ

also depend on the erosion rate. Furthermore, the observed
size dependence of b allows us to question what the crossover
size Lc would be for each κ , as depicted in Fig. 5(b). From
these two figures, it is evident that there is a threshold size
Lc below which membrane erosion starts to be the dominant
effect, for each κ , while above this size the drug diffusion
becomes more relevant. These results reinforce the idea that
the release parameter b could be used to discern the drug
release mechanism, in the sense that for values b > 1, the
system is controlled by the erosion mechanism.

B. Relation between characteristic time τ and erosion rate κ

Next we investigate the size contribution of the capsule to
the release parameter τ for different erosion rates. In particu-
lar, this information is useful for understanding the interplay
role of membrane erosion and drug diffusion on the drug
release process, and its role in creating a crossover region.
Before starting, it should be stressed that we are dealing with
an out-of-equilibrium mesoscopic system and that, consid-
ering this, the observed crossover regions are not expected
to occur concomitantly for the b and τ release parameters.
Nevertheless, while increasing the system size, it should be
reasonable to expect that the crossover signature in τ becomes
closer to the those obtained for b.

Insights on the scaling behavior of τ with the capsule
length can be obtained if one notes that the stochastic diffusion
of the drug molecules inside the capsule satisfies

〈r2〉 ∼ 2dD0t (6)
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FIG. 5. (a) Release parameter b as a function of the capsule size L
for different membrane erosion rates κ , with the points obtained from
the simulation results whereas the lines represent the adjusted curves
(see text). (b) The points represent the crossover size Lc against the
erosion rate κ , whereas the line represents the fitted function.

for long times, with 〈r2〉 the drug mean square displacement,
d the system dimension, D0 the diffusion coefficient of the
drug inside the capsule, and t the time [48,70].

For a diffusion controlled devices, where erosion is faster
than diffusion (κ � κc), the characteristic time τ will be
mostly determined by the previous equation, scaling with
the capsule size L as τ = aL2, with a = 1/(2dD0). On the
other hand, for erosion controlled devices, where erosion is
much slower than diffusion (κ � κc), becoming a limiting
step for drug release, the characteristic time for drug release
τ is expected to follow the trend presented by the membrane
behavior and is expected to scale linearly with the size of the
device L(τ ∼ aL).

This pattern is verified numerically in Fig. 6, where τ val-
ues are shown for sizes between L = 50 and 200 and erosion
rates κ between 0.01 and 1.00. It is possible to anticipate
how the characteristic time will scale with L in the crossover
region by making a simple average of the exponent μ in the
expression τ ∼ L2−μ, considering the extreme cases, resulting
in μc = (0 + 1)/2 = 1/2, i.e., τ ∼ L3/2. Appendix A shows
that this scaling relation can be calculated with the assumption
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FIG. 6. Log-log plot of the characteristic release time τ as a
function of the capsule size L for different membrane erosion rates
κ with sizes L varying from 50 to 200; simulation data marked as
points and adjusted curves with lines (see text).

that the generalized diffusion exponent for drug molecules
inside the capsule satisfies an Arrhenius relation.

As shown in Fig. 6, our simulations do indicate that for
large enough L, the crossover occurs at some critical erosion
rate κc and its signature will be observed both through the
scaling relation on τc ∼ L3/2 and on the observed value of the
Weibull parameter b, which will be bc ≈ 1. In other words,
for large enough L, the crossover signatures in both b and
τ happen for the same erosion rate κc. Also note that τc ∼
Lz with z = 3/2 shows a possible connection with universal
growth phenomena [71], which deserves further investigation.
It also makes the electrochemical model [63] similar to the
etching model [72], which belongs to the Kardar-Parisi-Zhang
universality class.

C. An expression for τ(L, κ)

Let us now introduce an expression for τ (L, κ ) which ad-
justs our numerical data and could be useful for extrapolating
experimental data and predicting crossover erosion rates κc.
Despite being phenomenological by construction, the advan-
tage of the current approach is that it is inspired by reasonable
physical arguments regarding the crossover between the two
mechanisms present in the current model, and also is consis-
tent with current simulations. Later, we will apply it for the
release of acetaminophen from the erosive wax matrix [33].

Considering that in a pure diffusive system τ ∼ aL2, we
choose to associate an effective diffusion coefficient of drug
molecules inside the device by defining a(κ ) = 1

2dD(κ ) . Fur-
ther analysis of the characteristic time presented in Fig. 6
suggests a dependence on the erosion rate κ for both the size
dependence exponent μ ≡ μ(κ ) and the effective diffusion
D ≡ D(κ ). In this way, we choose to represent

τ ≡ τ (L, κ ) ≈ l2
0 L2

2dD(κ )
L−μ(κ ). (7)

Guided by the discussion in the previous section, we can
approximate the numerical values for μ(κ ) with reasonable
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FIG. 7. The effective diffusion, D(k) = D0F (κ ), plotted against
the erosion rate constant κ . Data points correspond to values adjusted
from the simulations presented in Fig. 6 and a continuous line cor-
responds to the function adjusted from (9). Inset: Similar results for
the exponent μ(κ ) from (8).

precision by the function

μ(κ ) = 1

1 + κ/κc
, (8)

which makes τ satisfy the expected linear (quadratic) behavior
in the small (large) erosion limit, with κc being the size depen-
dent crossover erosion rate, for which μ(κc) = 1/2 (e.g., see
Fig. 7). The effective diffusion D(κ ) is given by

D(κ ) = D0F (κ ), (9)

with F (κ ) a function that switches off the diffusion coefficient
D0 as the membrane covering the device becomes stiffer. The
limiting behavior of F (κ ) must satisfy

lim
κ→0

F (κ ) = 0,

since drug molecules cannot escape from the device without
erosion, and

lim
κ→∞ F (κ ) = 1,

for recovering the limit of simple diffusion. With these defini-
tions, we were able to use the simulations results presented in
Fig. 6 to fit Eq. (9) with F (κ ) given by the function

F (κ ) = 1 − exp(−γ κ ), (10)

where γ = 2.36(5) and D0 = 0.81(1) are model dependent
constants, as shown in Fig. 7 for the numerical values from
simulations and the best fitted functions for both D(κ ) and
μ(κ ) (inset). By using expressions (8)–(10) on definition (7),
we obtain

τ (L, κ ) = τD
(l/l0)−(1+κ/κc )−1

1 − exp(−γ κ )
, (11)

where l = Ll0 is the experimental capsule size and τD is a
characteristic time that is independent of erosion or other
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membrane properties, given by

τD = l2

2dD0
. (12)

It should be noted that the product γ κ is dimensionless and
the physical dimension of the diffusion coefficient, D0, is
[length]2/[time], which imposes the correct unit of time in the
expression (11).

While expression (11) was devised in a phenomenological
approach to resemble the behavior observed in our model, we
note that the main assumptions used in deriving it were related
to the comprehension that there is an interplay between two
release mechanisms: the erosive mechanism whose dynam-
ics introduces a linear relation between characteristic time
and characteristic length, and the random diffusion that drug
particles perform inside the capsule device, which connects
characteristic times and length in a quadratic way. In this way,
we expect that expression (11) could be useful in situations
that despite being different from the statistical model used to
deduce it, also present those two release mechanisms. This is
done in the following section, where we discuss the possibility
of applying our approach to the release of acetaminophen
(paracetamol) immersed in a wax matrix [33].

A low erosion rate limit expression for (11) can be easily
calculated, which in turn allows the major physical quantities
to be obtained from a simple linear fit. This could be useful for
determining both κc and γ , but demands data about devices
with small erosion rate κ , as compared to the yet unknown
κc, and also small variations in the characteristic time τ while
changing κ . Due to this requirement, this approach cannot be
used with the experimental data discussed in the next section,
but we keep the low-κ limit calculation in Appendix B as it
can be useful in other contexts.

D. Acetaminophen release from a wax matrix

Agata et al. [33] developed a theoretical model based on the
solution of the diffusion equation for three-dimensional cap-
sules, in which the capsule radius changed with time, a(t ) =
a0 − kt , with a0 being the initial value of the capsule radius
and κ the erosion rate of the eroding front. The model was
successfully applied to adjust the release of acetaminophen
in a wax matrix in which the erosion was increased with the
addition of a pH-dependent functional polymer aminoalkyl
methacrylate copolymer E (AMCE) and, besides accurately
adjusting release curves, they also obtained values of erosion
and drug diffusion rates for 30 experimental batches with dif-
ferent concentrations of acetaminophen and AMCE, as well
as different capsule sizes and pH values. The fact that in
this work both erosion and diffusion rates can be calculated
makes it possible to use those data as input in Eq. (11) in
order to calculate the main feature pointed by our model: the
crossover erosion rate κc. Nevertheless, predicting kc from
the data available on [33] is challenging because, even after
using k and D0 from this paper, Eq. (11) is still left with three
quantities to be determined: kc, γ , and l0, but for this work,
at most, two batches were prepared with equivalent sizes and
fraction of acetaminophen.

To overcome this difficultly, we first estimate the pore size
l0 using the diameter of the acetaminophen molecule in a

FIG. 8. Characteristic release time of acetaminophen from the
erosive wax matrix as a function of the (undetermined) parameter
γ , obtained from Eq. (11), with experimental values of capsule size,
erosion rate, and diffusion constant from [33].

spherical molecular approximation, l0 ∼ V 1/3, which can be
calculated as l0 = 5.7805 × 10−4 μm (C8H9NO2) by using its
molecular weight and density values, which are 151.16 g/mol
and 1.3 g/cm3, respectively [73]. With this value, Eq. (11)
is undetermined by two parameters, κc and γ , but it is still
necessary to investigate the meaning of characteristic time τ

in the experimental setup [74].
Within this context, we devised two criteria for selecting

a batch: (i) the capsules should be big enough in order to
reduce small size effects and, particularly, considering that
we observed that different signatures for the crossover be-
tween the erosive and diffusive regimes converge to the same
values of erosion for bigger systems, and (ii) the capsule
should be eroding as slowly as possible in order to distin-
guish it properly from the diffusive regime, which is well
described by the diffusion equation without erosion. In this
way, we choose to apply Eq. (11) to batch 5 at pH 6.5, as
indicated in Table 2 of Ref. [33], and we use their estimates
for the erosion rate, k = 6.37 × 10−2 μm/min, diffusion co-
efficient, 8.07 × 10−2 (μm)2/min, and mean particle radius
size, l = 234.1 ± 6.9 μm. We extracted the drug release data
for this batch from Fig. 1 of Ref. [33] and adjusted it to the
Weibull distribution function, having found b = 1.12(4) and
τ = 1149(23) minutes which, in our proposition, indicates
that the erosion mechanism controls the release dynamics.

Next, we show that by choosing some kc (values around
the experimental erosion constant) as a function of γ , we are
able to find the drug release time which, for some {kc, γ }, falls
in the experimental range. Although this process seems naive,
it can be used by an experimental researcher to make some
predictions about the drug release mechanism and/or improve
a particular drug device in order to obtain a desired drug
delivery (weeks, months, etc.), which is extremely difficult to
achieve by knowing only the type of the polymer matrix and
the diffusion coefficient of the pharmaceutical component.

In this way, in Fig. 8, the characteristic release time τ

is shown as a function of γ (μm/min), using five different
values of kc. The filled area between the vertical lines corre-
sponds to the reasonable experimental range values expected
for τ , ranging from around 63% to 100% of the release of ac-
etaminophen from the wax matrix in batch 5 [33]. Five values

044110-7



GOMES-FILHO, OLIVEIRA, AND BARBOSA PHYSICAL REVIEW E 105, 044110 (2022)

of kc were chosen, {4.5, 6.05, 6.37, 8.8, 9.5 } × 10−2 μm/min,
corresponding to the cases where the erosion rate is slightly
lower, slightly higher, and equal to the crossover erosion rate,
as well as much lower and much higher than the erosion rate
of the setup (6.37 × 10−2 μm/min).

For kc = k ( dashed line in Fig. 8), the values of τ obtained
from Eq. (11) are within the experimental range and its value
is close to 63% of release when γ ≈ 8 μm/min. In order
to compare this value of γ to our computational model, we
consider the product γ kc which was found to be γ kc ≈ 0.24
in our model and approximately 0.5 for the experimental batch
considered here.

The same figure also shows curves of τ in terms of γ for
kc < k and kc > k, where we choose κc as being displaced 5%
below or above κ in each case. These curves behave similarly,
showing that within the current approach, batch 5 is close
to the crossover erosion rate. In the cases where either kc �
k (diffusion dominant, kc = 4.5 × 10−2 μm/min) or kc � k
(erosion dominant, kc = 9.5 × 10−2 μm/min), τ is out of
the experimental range, as shown in Fig. 8. This is another
evidence indicating that the release process is not determined
by only one mechanism (either erosion or diffusion), and that
even without the AMCE compound, erosion is relevant to the
drug release mechanism.

IV. CONCLUSION

In this work, we have extended the stochastic lattice model
implemented in previous work from our group [44,45] to
investigate the effects of membrane polymer erosion on the
drug release mechanism. The Weibull function was found to
describe with good approximation the entire release curve in
our model, for different erosion rates. By comparing the time
evolution of the membrane content and the amount of drug
within the capsule, we found that at bc ≈ 1, there is crossover
between the dominant mechanisms: for b values bigger than
bc, erosion is the predominant mechanism controlling the drug
release, while for b < 1, diffusion is governing the release. As
shown in Fig. 4, within each of this two regions, the values of
b can be approximated by scaling laws of erosion rates with
different exponents.

We have also identified that within the crossover, the
characteristic time satisfies τc ≈ L3/2, which can be justified
through the Arrhenius relation for diffusion (see Appendix A).
The arguments used to demonstrate the size dependence on
the characteristic time τ allowed us to propose the phe-
nomenological function in (11), which nicely adjusted the
drug release from the Monte Carlo simulations of the model
proposed in this work. Experimental data for the release of
acetaminophen from the wax matrix were investigated using
the expression for τ ≡ τ (L, κ ) and it was shown that erosion
rates of the investigated devices (batch 5 of paper [33]) were
close to the crossover erosion rate, with the parameter γ

compatible with those obtained in our simulations.
The computational results and the analysis of the experi-

mental data for acetaminophen release with Eq. (11) suggest
that it should be possible to use scaling laws to improve our
comprehension of the competition between different mech-
anisms governing the drug release dynamics. In particular,
for the case of acetaminophen in a wax matrix, in which the

FIG. 9. Plots of the Weibull probability density distribution P(t )
against time t for different values of b (y-axis values in Fig. 4). The
time t and τ = 10 are in arbitrary units.

erosion can be controlled with the addition of AMCE, our
work indicates that through controlled increase of erosive
agents, it should be possible to test the hypothesis in our mod-
els as well as the usage of Eq. (11), or the small-κ expression
in (B5), to obtain the crossover erosion rate κc.

Although the results presented in the current work started
assuming linearly decaying membranes, it could also be
generalized to exponentially decaying membranes with dis-
tribution probabilities satisfying a Poisson process [3]. Even
though it is outside the scope of the current work, these mod-
ifications should be straightforward to be performed, and we
expect it should be compatible with most of our results, as can
be readily inferred from Eq. (3).

It is important to stress that our model does not address
the issue of indicating what drives the molecular relation
between erosion and capsule size, geometry, drug load, and
concentration of erosive compounds. Further theoretical or
experimental data are needed for determining κ and other pa-
rameters needed to calculate κc. Nevertheless, the proposition
in our work is that in regimes where different mechanisms
are controlling the drug release, different scaling laws should
be used to describe the relevant parameters describing the
release process and that by knowing the release behavior in
those extreme regimes, it should be possible to predict scaling
behavior in the crossover. We expect that these ideas could
be useful in providing some guidance to select the most use-
ful properties and characteristics of capsules and devices for
testing drug delivery systems.

Last remarks. Finally, we would like to provide some ar-
guments for why the Weibull distribution seems to correctly
describe the drug release process. First, let us consider the
drug release fraction R(t ) (e.g., see Fig. 3), which can be
recognized as the cumulative probability distribution (CPD),
while P(t ) = dR(t )

dt corresponds to the Weibull probability
density distribution function (PDF) with t > 0, b � 0, and
τ > 0, which is also called “failure density” and gives the
chance that a unit (drug particle) will fail (release) at time t
[57,75]. For example, in Fig. 9, we show P(t ) against t for
different values of b. As we can see, small deviations in b,
such as those presented in Fig. 4, change the shape of the PDF,
essentially altering the characteristic release times, e.g., the
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first moment of P(t ) (average time), 〈t〉 = ∫ ∞
0 tP(t )dt , with

P(t ) normalized.
There is also a microscopic time associated with the par-

ticle trajectories [the time which the drug particle takes to be
released (fail)], which can be shorter or longer due to many
factors, for example, excluded volume interactions and initial
position of the particles (whether or not it is closer to a leaking
site; see Fig. 1). For different realizations and particles, we
must have different trajectories; for a capsule with mesoscopic
size, we expect that the particle takes a very long time to reach
a pore and be released. In other words, the microscopic release
time is a rare event and should satisfy the principles of the
extreme value distribution [76], being directed related to the
mean-first-passage time of a Brownian particle [77], which
may be the reasons for the Weibull distribution to describe the
drug release processes correctly, and it will be investigated
further in our future works.
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APPENDIX A: DERIVATION OF CROSSOVER
EXPONENT μc

Let us start by assuming that drug particles are leaving the
capsule through an Arrhenius process in which the diffusion
coefficient satisfies

D ∝ exp (−β�E ), (A1)

where β = 1/kBT , with kB being the Boltzmann constant and
�E the activation energy for the process of a drug particle to
leave the capsule. For a purely diffusive system, dimensional
analysis can be used to express the D as

D = const × l2

τ
, (A2)

where l is the capsule size, τ is the characteristic release
time defined above, and const is a constant which is possibly
dependent on the system dimension and geometry. With these
definitions, τ can be written as

τ = Aeβ�E , (A3)

where A is a constant dependent on the system details. In
order to consider the effect of erosion, we will introduce a
dependence on the erosion constant on all major functions,
redefining (A3) as

τκ = Aκeβ�Eκ . (A4)

In addition, we use the fact that τκ ≡ τ (κ ) depends on κ

through the scaling law given by Eq. (7), and by using (A4)
back in this expression, one obtains the activation free energy
for the drug release process for a certain erosion rate κ as

β�Ek = [2 − μκ ] ln L − ln

[
2dDκAκ

l2
0

]
, (A5)

where Dκ = D(κ ) and μκ = μ(κ ).
From this latter expression, the simplest assumption about

the value of crossover activation energy is that it could be
the average between the two independent processes, �Ec =
(�ED + �EE )/2, where subindexes c, E , and D denote the
erosion constant values corresponding to crossover, erosion
control, and diffusion controlled systems. Through this latter
assumption, it is possible to calculate

β�Ec = [2 − μc] ln L − ln

(
2dDcAc

l2
0

)
, (A6)

where

μc = μ(κc) = μE + μD

2
= 1

2
, (A7)

Dc = √
DE DD, (A8)

Ac = √
AE AD, (A9)

which provides a stronger derivation for the phenomenologi-
cal value of the crossover scaling exponent μc, as discussed
on more phenomenological grounds in Sec. III B. It is also
interesting to note that the diffusion (A8) and the coefficient
Ac (A9) at the crossover satisfy a combination rule similar to
that of Lorentz and Berthelot [78,79] for the Lennard-Jones
interaction coefficients between atoms of different species.

APPENDIX B: LOW-κ EXPRESSION FOR τ

Before proceeding, let us define x = κ/κc, which will be
used to express the characteristic time in Eq. (11), as

τ (L, x)

τD
= (l/l0)−(1+x)−1

1 − exp(−γ κcx)
. (B1)

If the erosion mechanism is dominant, the system will be
far from the crossover, i.e., x � 1. Within this limit, Taylor
expansions can be used to write

(
l

l0

)− 1
1+x

≈
(

l

l0

)−1( l

l0

)x

(B2)

and

1 − exp(−γ κcx) ≈ γ κcx, (B3)

where it was implicit that γ κc is a small number, as in our
simulations. By using (B2) and (B3) in (B1), one gets

τ (L, x)

τD
≈

(
l

l0

)−1 Lx

γ κcx
=

(
l

l0

)−1 exp(x ln L)

γ κcx
. (B4)

If one assumes that the capsule is small, in the sense that x <

x ln L � 1, it is possible to simplify this equation even further
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by writing it as

τ (L, x) ≈
(

τD

γ κc

)(
l

l0

)−1(1

x
+ ln

l

l0

)
. (B5)

Note that the right-hand side of this expression was rear-
ranged to emphasize that the contributions to τ are coming
from three different terms. The characteristic release time τD

is modulated by γ κc because this is the low limit of function
F (κ ) defined in (10) to reduce the diffusion constant inside the
capsule as an effect of the presence of the erosive membrane
covering it. The term (l/l0)−1 appears due to the choice made

in Eq. (7), which is associated to the linear scaling linear law
dependence of τ with size in the slow erosive regime, while
the last term expresses that τ increases with 1/x and that there
is a logarithmic correction with the capsule size, which is
independent of κ .

It is interesting to rewrite Eq. (B5) as

L
τ

τD
= A

1

κ
+ B, (B6)

where A = 1/γ and B = ln L/(γ κc), which is amenable to
simple linear interpolation in terms of 1/κ . In this way, exper-
imental values of γ and κc could be obtained through γ = A−1

and κc = ln LA/B.
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