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Work and heat distributions of an inertial Brownian particle
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The work and heat distribution densities of a classical Brownian particle immersed in a heat bath and
interacting with an external field have been extensively analyzed from different approaches. In this article,
a previous method based on basic principles of stochastic dynamics is extended to derive these functions.
The starting point is the inertial Langevin equation and the external field is an off-center harmonic potential
driven by an external protocol. Unlike previous works where the driving is arbitrary, the so-called optimal
protocol that minimizes the mechanical work is used instead. The corresponding work and heat distributions
are derived through a procedure based on getting a generic Fokker-Planck equation indistinctly of the variable
under consideration. The work distribution is calculated for different initial conditions and values of the friction
coefficient of the thermal fluid ranging from the periodic or very low-underdamped mode up to the overdamped
regime. It is a Gaussian as that of previous experiments of a particle trapped in an optical tweezers moved at
constant velocity. Some aspects about the heat distribution is analyzed in terms of the statistical features of the
non-Gaussian noise accompanying its dynamics to give an account of experimental results. It is concluded that
the easiness in calculating the work distribution cannot be applied to heat. It requires numerical calculations.
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I. INTRODUCTION

There have been important advances in the determination
of the distributions of work (Wd) and heat (Qd) of a classical
Brownian particle in a thermal bath and interacting with an ex-
ternal field. They are characterized by the different approaches
used in the calculations. Chronologically, a brief review about
the development of the different researches on this topic is as
follows.

Back in 1999, Mazonka and Jarzynski [1] coupled the
overdamped Langevin equation (LE) with a moving harmonic
potential and an arbitrary driving force λ(t ) with the stochastic
differential equations of the work W along a trajectory. The
Fokker-Planck equation (FPE) associated to the combined
pair {W, y}, where y = q − λ(t ), with q being the instanta-
neous position, was deducted from their two first moments by
supposing that if at one instant in time the distribution happens
to be Gaussian, then it will remain Gaussian for all subsequent
times. The Wd was obtained as the marginal distribution of the
combined Fokker-Planck density.

This was later confirmed in several works, namely by
Speck and Seifert [2] using a projection operator method on
the underdamped LE for low but finite driving, by van Zon
and Cohen [3] for the two distributions with an approach
based on Fourier analysis, and by Imparato and Peliti [4]
through path. integrals. Additionally, the Gaussian character
of this distribution was later obtained in the overdamped mode
for a quadratic potential by Speck and Seifert [5] using the
Jarzynski relation [6] and by Taganuchi and Cohen [7] for
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both distributions in the framework the inertial LE using the
more rigorous path integral approach.

Experimental and excellent theoretical prediction on an
inertial particle trapped in a laser tweezers moved at constant
velocity were done by Imparato et al. [8]. They used the
method of Ref. [1] for the work and heat distribution and
found out that the latter has the form of a Schrödinger-like
equation. The former is a Gaussian, while the heat distribu-
tion in the long-time limit and a static trap is logarithmic
divergent at Q = 0 agreeing with van Zon and Cohen [3,9]
while is a Gaussian for a finite trap velocity. The experimental
Wd and Qd were obtained as histograms from their discrete
defining equations in terms of the trajectories. It was found a
perfect match with the theoretical prediction. Subsequently,
Fogedby and Imparato [10] obtained exact results for the
overdamped Qd in a double-well potential. Exact path-integral
evaluation of Wd were carried out by Chatterjee et al. [11]
in the overdamped regime with a harmonic potential finding
an exponential distribution. They were unable to determine
it for the moving potential. Finally, numerical results for the
Wd of a harmonic oscillator with time-dependent strength was
analyzed by Speck [12].

An experimental confirmation of the exponential Qd was
done by Ciliberto [13] using the torsion pendulum as the
experimental set up. Among the different results, he found that
in a first approximation Qd is exponential and given by the
convolution of the Gaussian Wd and the exponential density
of the energy change, observation previously made by Van
Zon and Cohen [9] where the latter far outweighs the Gaussian
distributed Wd.

Very recently, Paraguassú et al. [14] worked out the
inertial LE through the path-integral approach. Their distri-
bution agrees with that of Ref. [7] and Ciliberto’s [13] for
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the harmonic potential. Recently, Fogedby [15] accounts for
the energy exponential density by a heuristic derivation of the
previous result found in Ref. [10].

The aim of this research is to determine the heat and
work distributions using basic textbook methods of stochas-
tic dynamics [16–18]. To do this, the formalism developed
in a previous work [19] and applied elsewhere [20–22] is
extended to obtain a FPE associated to a classical Brownian
particle immersed in a thermal bath and trapped in a moving
harmonic potential. It is done for both probability density
functions (pdf). The proposal differs mainly from those cur-
rently known, particularly that of Ref. [8] in two aspects.
First, the optical trap is moved at an optimal offset velocity in
order to minimize the mechanical work [22] and, second, the
distributions are determined in terms of the initial parameters
of the dynamics. The main result is a generic FPE given
by Eq. (27) with time-dependent drift and diffusion terms
depending on the variable under consideration. The solutions
for the mechanical work is the Gaussian described by Eq. (36).
It is solved for all the regimes defined by the coefficient of
friction of the thermal fluid and several initial parameters.
The heat distribution is formally derived although its solution
can only be attainable by numerical methods. In spite of this
circumstance, it is done a statistical analysis of the noise ac-
companying the heat stochastic differential equation to show
the complexity of such a distribution.

The paper is structured so that the basic equations on which
the distributions densities of work and heat are built is covered
in Sec. II. In Sec. III is discussed the numerical results for
the work distribution and it is provided an analysis about the
outstandingl statistical characteristics of the heat distribution.
The paper concludes in Sec. III with some final remarks.

II. BASIC FORMALISM

This section will show the main equations. First, the system
is described and the solution of the equation of motion is
succinctly shown due to it was deducted in a previous work
[22]. Next, the derivation of the Fokker-Planck equations for
the work and heat distributions are shown in detail in two
separate sections.

A. Equation of motion

The dynamics for the position q(t ) of a Brownian particle
of mass M submerged in a heat bath of quantum harmonic
oscillators at a temperature T with friction damping γ and in-
teracting with a conservative external field V (q, t ) = ω2

0[q −
λ(t )]2/2 with stiffness ω2

0, was analyzed in Ref. [22]. It is gov-
erned by the semiclassical inertial Ohmic Langevin equation

q̈(t ) = −γ q̇(t ) − ω2
0 (q(t ) − λ(t )) + 1

M
ξ (t ), (1)

where the dot above a function denotes its time derivative,
λ(t ) is an external driving or protocol and noise ξ (t ) is col-
ored and Gaussian with zero mean and two-time correlation
< ξ (t )ξ (s) > given by [23]

〈ξ (t ) ξ (t ′)〉 = −
(

γ M

2 β

)
ν sinh−2

[
1

2
ν(t − t ′)

]
+ i γ M h̄ δ̇(t − t ′), (2)

where h̄ is the Planck constant, β = (kB T )−1, kB is the
Boltzmann constant, and ν = 2 π (h̄ β )−1. Additionally, the
quantum origin of this equation requires including an extra
correlation between the noise and the initial position due to
the initial preparation procedure of the system prior to the
switching on the external protocol, i.e.,

〈ξ (t )q0〉 = −2 γ

β

∞∑
n=1

νn

(νn +κ1 )(νn +κ2 )
e−νn t , (3)

where frequencies κ1,2 = [γ ± (γ 2 − 4 ω2
0/M )1/2 ]/2, νn =

nν, and q0 = q(0) [23].
An important feature of this equation is its reduction to the

ordinary classical Langevin equation in the continuum limit.
There, the initial position-noise correlation is zero and the
noise correlation reduces to the delta correlated 2 γ T δ(t − s)
of classical systems. Thus, working on Eq. (1) and scaling
time and length by the factors ω0 and (Mω0/h̄)1/2, respec-
tively, the semiclassical equation in the continuum limit
reduces to the following dimensionless classical expression
[22]

q̈(t ) = −γ q̇(t ) − (q(t ) − λ(t )) + ξ (t ), (4)

where the overdamped limit (strong friction) is obtained by
setting to zero the acceleration term. It leads to

q̇ov(t ) = 1

γ
{−[qov(t ) − λ(t )] + ξ (t )}. (5)

A direct numerical comparison of these two last equa-
tions is easier to achieve by writing them in the same
timescale. Since that of the overdamped is 1/γ , then the
classical Langevin equation can be written as

1

γ 2
q̈(t ) = −q̇(t ) − (q(t ) − λ(t )) + ξ (t ), (6)

where the high-friction limit follows as it is usually used in
the literature [24].

Some remarks have to be settled about the correctness of
the semiclassical equation. First, it is assumed a large bath
so that the interaction coupling between the external field and
the Hamiltonian of the reservoir is small. It can be justified
by acknowledging the inverse proportionality of the coupling
with the volume of the thermal bath [25], which in turn is
proportional to the friction coefficient. Second, the interaction
and bath Hamiltonians are independent of time and, finally,
Kubo’s second fluctuation-dissipation theorem is fullfilled.
The latter is an approximation because the work by Daldrop,
Kowalik, and Netz [26] showed that a molecular dynamics
simulation of a harmonic Brownian particle shows a noise
correlation depending on the strength of the field. Similarly,
Olivares and Colmenares [20] and Lisý and Tóthová [27]
also showed that the theorem shows a dependence on this
field parameter. These results require reformulating the whole
theory to include the effect of the field on the bath degrees
of freedom and the Hamiltonian interaction. Despite these
considerations and as it was referred before, the classical
equation showed a great degree of prediction in its comparison
with the experiments of Imparato et al. [8] of a overdamped
particle in an optical trap. Furthermore, the review of the
different theoretical approaches mentioned in the Introduction
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for a particle in the harmonic potential are based on Eq. (4)
setting γ = 1 in order to recover its natural timescale.

The solution of the inertial Langevin equation is solved in
detail in Ref. [22] and reads as:

q(t ) = q(t ) + ϕq(t ), (7)

q(t ) = q0 χq(t ) + v0 χ
v
(t ) + γ 2

∫ t

0
dy χ

v
(t − y) λ(y), (8)

v(t ) = v(t ) + ϕ
v
(s), (9)

v(t ) = q0 χ̇q(t ) + v0 χ̇
v
(t )+γ 2

∫ t

0
dy χ̇

v
(t − y) λ(y), (10)

ϕq(t ) = γ 2
∫ t

0
dy χ

v
(t − y) ξ (y), (11)

ϕ
v
(t ) = γ 2

∫ t

0
dy χ̇

v
(t − y) ξ (y), (12)

χq(t ) = e−γ 2t/2
[
cosh

(ω γ t

2

)
+ γ

ω
sinh

(ω γ t

2

)]
, (13)

χ
v
(t ) = 2

ω γ
e−γ 2t/2 sinh

(ω γ t

2

)
, (14)

where q0 and v0 are the initial position and velocity, respec-
tively, and frequency ω =

√
γ 2 − 4.

The chosen driving protocol is one that minimizes me-
chanical work. It was determined in a previous work [22] and
given by:

λ(t ) =
⎧⎨⎩0, t � 0,

f (t ), 0 < t < t f ,

λ f , t � t f ,

(15)

where λ f is the ad hoc final protocol value, t f the fi-
nal time application of the driving force, and f (t ) = A1 +
A2 t + A3 δ(t ) + A4 δ̇(t ) with constants Ai’s depending on
{γ , q0 , λ f , t f }. A distinctive feature of this optimal protocol
is its offset linear dependency on time with initial and final
jumps in the velocity and acceleration of the particle. They
are given by the Dirac delta function and its derivative, respec-
tively. It differs from the nonoptimum experimental protocols
where the optical trap is moved at constant velocity.

Since ϕq(t ) and ϕ
v
(t ) are Gaussians, any of the two-time

correlation functions appearing in the equations shown below
are given by:

〈ϕi(t ) ϕ j (s)〉 = 2 T γ 5
∫ Min{t,s}

0
dy fi(t − y) f j (s − y), (16)

because the noises are delta correlated [18]. The notation {i, j}
refers to either q or v. Whenever i or j is q then { fi, f j} = χ

v

and χ̇
v
for v. It emphasizes that the integral of the product of

noises has been interpreted as a normal Riemann-Stieljes one.

B. Generic Fokker-Planck equation

The procedure to find the distribution of work and heat
shown below is an adaptation of a general functional method

derived primarily by Hänggi [28] to find master equations of
properties driven by general colored noises. It is based on
expanding the system characteristic functional in terms of its
cumulants. It has been applied by many authors. A good re-
view can be found in an article by Venturi et al. [29]. It should
be mentioned that the extended article by Sancho et al. [30]
for multiplicative noise and by Colmenares in the analysis in
of ionic channels [19] inspired the objective of this article.

Without loss of generality let us define the following
stochastic differential equation:

ḟ (t ) = a(t ) + φ(t ), (17)

f (t ) = f (t ) +
∫ t

0
ds φ(s), (18)

f (t ) = f0 +
∫ t

0
ds a(s), (19)

where a(t ) = ḟ (t ) is the average of ḟ (t ) over the distribution
of the non-Gaussian noise φ(t ) and f0 = f (0). The benefits
of this definition will be important in the determination of the
work and heat distribution functions as we will see in the next
section.

For now, let ρ( f , t ) be the density distribution for a given
realization of the general function f (t ) under the colored noise
φ(t ) which in turn is a functional of ξ (t ). According to Kubo
[31], the flow of this distribution in f space is given by the
stochastic Liouville equation

∂ρ( f , t )

∂t
= −

n∑
j=1

∂

∂ f
ρ ( f , t ) ḟ (t ). (20)

Since for a fixed f , ρ( f , t ) = δ[ f (t ) − f ] is a formal solution,
then, from the van Kampen lemma [16], the distribution of
f is equivalent to take the average of δ[ f (t ) − f ] over the
distribution density of all outcomes of φ(t ), that is,

P( f , t ) = 〈δ( f (t ) − f )〉. (21)

Making the substitution of ḟ (t ),

∂P( f , t )

∂t
= −a(t )

∂P( f , t )

∂ f
− ∂

∂ f
〈δ( f (t ) − f ) φ(t )〉. (22)

The bracket seems intimidating at first glance because f (t )
is itself a function of the noise φ(t ). However, it can be
made even more explicit through the generalized Furutzu-
Novikov-Donsker (GFND) formula. It was originally derived
by Dubkov and Malakhov [32] and found explicitly in
Ref. [33]. It was rederived in a better readable form by Hänggi
[28] while Venturi et al. [29] applied it to a model implying
additive and multiplicative noises. It is given by

〈 δ( f (t ) − f ) φ(t ) 〉 = 〈 δ( f (t ) − f ) 〉〈φ(t )〉 − ∂

∂ f

∞∑
n=1

1

n!

∫ t

0
dt1 · · ·

∫ t

0
dtn

〈
δnδ( f (t ) − f )

δφ(t1) · · · δφ(tn)

〉
Cn+1(t, t1, · · · , tn), (23)
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where Cn+1(t, t1, · · · , tn) is the multiple-time cumulant of φ(t, ti, · · · , tn) [18]. Using ∂δ(x − y)/∂x = −∂δ(x − y)/∂y and
noticing that δ f (t )/δφ(ti ) = 1, the internal average reduces to〈

δnδ( f (t ) − f )

δφ(t1) · · · δφ(tn)

〉
= (−1)n

〈
δn

δ f n
δ( f (t ) − f )

〉
= (−1)n ∂nP( f , t )

∂ f n
. (24)

Therefore, the second term of the right-hand side of Eq. (22) is

− ∂

∂ f
〈 δ( f (t ) − f ) φ(t ) 〉 = −〈φ(t )〉∂P

∂ f
−

∞∑
n=1

(−1)n

n!

∂n+1P( f , t )

∂ f n+1

∫ t

0
dt1 · · ·

∫ t

0
dtn Cn+1(t, t1, . . . , tn). (25)

Defining D(n)
φ

(t ) as a generalized time-dependent diffusion term according to:

D(n)
φ

(t ) = 2
∫ t

0
dt1 · · ·

∫ t

0
dtn Cn+1(t, t1, . . . , tn), (26)

we finally get the FPE,

∂P( f , t )

∂t
= −[ a(t ) + 〈φ(t )〉 ]

∂P

∂ f
− 1

2

∞∑
n=1

(−1)n

n!
D(n)

φ
(t )

∂n+1P( f , t )

∂ f n+1
. (27)

Thus, the approximate solution of the partial differential
equation depend on the number of cumulants to be included
in the solution. It requires to solve a highly nonlinear PDE.

The generic FPE will be applied next for the work and heat
stochastic differential equations.

C. FPE for work

The dynamical equations for the thermodynamic work in-
volved along a single trajectory is [1,34,35]

Ẇ (t ) = λ̇(t )[ q(t ) − λ(t ) ]. (28)

There is an important issue to take into account. It is con-
cerned on the dependence of the expressions over v0 . Since
the system started from equilibrium, then averaging the equa-
tions over the v0 -Maxwell distribution will allow us to get rid
of of this initial value.

Working on Eq. (28), we have that after making the appro-
priate substitutions and proceeding to average over the initial
velocity v0 ,

Ẇ (t ) = Ẇ (t ) − λ̇(t ) ϕq(t ), (29)

W (t ) = W̃ (t ) −
∫ t

0
ds λ̇(s) ϕq(s), (30)

W̃ (t ) = W0 +
∫ t

0
ds q̃(s) λ(s), (31)

where q̃(t ) is given by Eq. (8) without the v0 term.
The resemblance of Eq. (29) with Eq. (17) allows us to

make the identifications

f (t ) = W (t ); a(t ) = Ẇ (t ),

φ(t ) = λ̇(t ) ϕq(t ).

Since ϕq(t ) is Gaussian only the first cumulant is enough in the
expansion, the GFND formula reduces to the original FND
given by [36–38]

〈δ( f (t ) − f ) ϕq(t )〉 =
∫ t

0
ds

〈
δ

δϕq(t )
δ( f (t ) − f )

〉
〈ϕq(t ) ϕq(s)〉

= −∂P(W, t )

∂W

∫ t

0
ds 〈ϕq(t ) ϕq(s)〉. (32)

Therefore, Eqs. (26) and (27) reduces to

DW(t ) = 2 λ̇(t )
∫ t

0
ds λ̇(s) 〈ϕq(t ) ϕq(s)〉, (33)

∂P(W, t )

∂t
= −Ẇ (t )

∂P

∂W
+ 1

2
DW(t )

∂2P

∂W 2
, (34)

Applying the linear transformation r(t ) = ∫ t
0 ds DW (s) and

y(t ) = W − ∫ t
0 dsẆ (s) gives [39]

∂P(y, r)

∂r
= 1

2

∂2P

∂y2
, (35)

which is the standard diffusion equation. Its solution with an
initial condition δ(y − y0) is a Gaussian centered at y0 = 0. In
terms of the original variables, the conditional pdf for a given
realization W , starting from W0, is then

P(W, t |W0) = 1√
2 π σ 2

w(t )
exp

{
−

[
W −W̃ (t )

]2

2 σ 2
w(t )

}
, (36)

with the mean W̃ (t ) given by Eq. (31) and standard deviation

σ 2
w(t ) =

∫ t

0
ds DW (s). (37)

Having found the Gaussian distribution, then it is pertinent
to ask about the FPE associated to it. The procedure was
already shown in the Appendix of Ref. [40], which, fitted to
Eq. (36), gives the following result:

∂P(W, t )

∂t
= −�(t )

∂

∂W
[W P ] + 1

2
D(t )

∂2P

∂W 2
, (38)

�(t ) =
˙̃W (t )

W̃ (t )
, (39)

D(t ) = σ̇w
2(t ) − 2 σw(t ) �(t ). (40)

Equation (36) will be solved in Sec. III for different initial
parameter sets and values of the damping constant character-
izing the regimens ranging from the very low-underdamped
up to the noninertial or overdamped. The protocols to be used
in the determination of W̃ (t ) are those of Ref. [22].
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D. About the heat distribution

The stochastic differential equation for heat is [1,34,35]

Q̇(t ) = v(t ) ◦ [ q(t ) − λ(t ) ], (41)

where the symbol “◦” denotes the Stratonovich-type product,
meaning that its integral converges to that of a Reimann-
Stieljes kind [41].

Proceeding as before on Eq. (41), its average over the initial
velocity gives

〈Q̇(t )〉v0
= 〈v(t ) ◦ [ q(t ) − λ(t ) ]〉v0

. (42)

Making the substitutions of q(t ) and v(t ), taking into ac-
count that from the equipartition theorem 〈v2

0
〉 = T and that

to simplify the writing of the equations the index v0 is sup-
pressed, we have

Q̇(t ) = H (t ) + ϕQ(t ), (43)

H (t ) = T χ̇
v
(t ) χ

v
(t ) + ṽ(t ) G(t ), (44)

ϕQ(t ) = ṽ(t ) ϕq(t ) + G(t ) ϕ
v
(t ) + ϕq(t ) ◦ ϕ

v
(t ), (45)

G(t ) = q̃(t ) − λ(t ), (46)

where ṽ(t ) is obtained setting v0 = 0 in Eq. (10). The in-
tegration of Eq. (43) with Q(0) = 0 gives its mean value
< Q(t ) >= ∫ t

0 ds H (s).
As before, we make the identifications f (t ) = Q(t ),

φ(t ) = ϕQ(t ), and a(t ) = H (t ).
In order to determine the Q distribution, it is imperative to

characterize the statistical properties of the noise ϕQ(t ) defined
by Eq. (45). Letting

ϕQ(t ) = ϕ(t ) + χ (t ),

ϕ(t ) = ϕ̃q(t ) + ϕ̃
v
(t ); χ (t ) = ϕq(t ) ϕ

v
(t ),

ϕ̃q(t ) = ṽ(t ) ϕq(t ); ϕ̃
v
(t ) = G(t ) ϕ

v
(t ),

σq
2(t ) = ṽ 2(t )

〈
ϕq

2(t )
〉
; σ

v

2(t ) = G2(t )
〈
ϕ

v

2(t )
〉
,

the distribution of each noise term appearing in φ(t ) can be
analytically deducted. For instance, the joint distribution of
the correlated noises ϕ̃q(t ) and ϕ̃

v
(t ) is [42]

P(̃ϕq , ϕ̃v
, t ) = 1

2 π σq (t ) σ
v
(t )

√
1 − ρ2(t )

exp

[
− 1

2 [ 1 − ρ2(t ) ]

[
ϕ̃q

2

σq
2(t )

+ ϕ̃
v

2

σ
v
2(t )

− 2 ρ(t ) ϕ̃q ϕ̃v

σq (t ) σ
v
(t )

]]
, (47)

ρ(t ) = 〈ϕq(t ) ϕ
v
(t )]〉

σq (t ) σ
v
(t )

. (48)

Therefore, the distribution of ϕ(t ) will be

P(ϕ, t ) =
∫ ∞

−∞
dϕ̃q

∫ ∞

−∞
dϕ̃

v
P(̃ϕq , ϕ̃v

, t ) δ (̃ϕq + ϕ̃
v
− ϕ),

= ρ(t )√
[ 1 − ρ2(t ) ] [ σq

2(t ) + σ
v
2(t ) + 2 ρ(t ) σq (t ) σ

v
(t ) ]

exp

[
− ϕ2

2 [ σq
2(t ) + σ

v
2(t ) + 2 ρ(t ) σq (t ) σ

v
(t ) ]

]
. (49)

Likewise, the pdf of the correlated product described by χ (t ) is given by [43,44]:

P(χ, t ) = 1

π σq (t ) σ
v
(t )

√
1 − ρ2(t )

exp

[
ρ(t ) χ

σq (t ) σ
v
(t ) [ 1 − ρ2(t ) ]

]
K0

( |χ |
σq (t ) σ

v
(t ) [ 1 − ρ2(t ) ]

)
, (50)

where K0(·) is the modified Bessel function of the second kind
of order zero. Unlike the case for uncorrelated variables, the χ

distribution is asymmetrical because of the exponential term.
From the definitions of ϕq(t ) and ϕ

v
(t ) then ϕ(t ) and χ (t ) are

distributed about zero.
The final task is to find the pdf for ϕQ(t ) which requires

using the statistical method of copula, latin for “link” or “tie,”
which captures the dependence structure of the distribution of
random variables through Sklar’s theorem [45]. The article by
Zeng et al. [46] shows the method to determine it for different
marginal distributions.

There is not a route to get the analytical formula for the
joint distribution of the random pair {ϕ, χ}, but numerical, un-
like the analytical result for the copula of the sum of correlated
Gaussian random variables given by Eq. (47). This is outside

the scope of this research, which leads us to conclude that the
proposed method fails to find the analytical heat distribution.
However, its associated FPE, substituting f by Q in Eq. (27),
is mathematically well defined.

Therefore, without resorting to procedures based on the
characteristic function as in previous works, a careful han-
dling à la van Kampen [16] of the different noises appearing
in the equation that define the heat along the trajectory gives
a rather complicated FPE. The key points in the derivation is
to recognize that ṽ(t ) and G(t ) are nonanticipating functions
of the Gaussian ϕq(t ) and ϕ

v
(t ) noises, respectively, whose sum

along with their product ϕq(t ) ◦ ϕ
v
(t ) is non-Gaussian. There-

fore, the procedure shown above and based on finding the
FPE for heat is mathematically justified although its solution
cannot be obtained but only numerically.
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III. DISCUSSION OF THE RESULTS

This section analyzes the results for the work distribution
and an analysis about the complexity of the heat distri-
bution. For presentation, the work distributions for all the
regimens defined by γ at specific times and different initial
set of parameters are shown in the first subsection. There,
the correlation functions were normalized to get manageable
magnitudes and calculated assuming t > s. Subsequently, the
heat distribution is generally discussed and the average heat is
calculated at the temperature set to T = 10.

A. Work distribution

To numerically calculate the distribution of work, it is
essential to know its evolution over time. This requires the
knowledge of the external protocol, in which case it could be
arbitrary. However, there is no a guaranty that its arbitrariness
leads to, for instance, the particle doing work against the
external field. This is a crucial property for understanding a
Maxwell’s demon or the transformation of information into
work without violating the second law. We enforce the con-
straint where the protocol must minimize the mechanical work
to check the appearance of the demon. This is the objective of
the calculations presented in this proposal.

It was proved in Ref. [22] that the overdamped optimal
protocol and work agrees with the calculated from the iner-
tial LE for sufficiently large values of both the friction and
final time t f . For times greater that the chosen t f , the an-
alytical disagrees with that from the inertial LE because
the numerical high-friction limit is not completely achieved.
Thus, up to t f the numerical is consistent with the known
analytical overdamped; hence, the two W distributions will be
equal.

Calculations were done for all regimens [47]. They are
the periodic when γ = 1 because frequency ω is imaginary,
the critical γ = 2 since ω = 0, the aperiodic for γ � 2 or
ω real, and the overdamped where γ = 275. The latter is
sufficiently large to assure that numerical inertial effects are
sufficiently small up to the chosen final time, such that the
agreement is total with the analytical overdamped. In order
to check the dependence on the initial condition, only three
sets {q0 , v0} compile all possible combinations of q0 and λ f

because of the potential symmetry [22]. The average work at
t = 0 for each set is represented by a black vertical line. It
corresponds to the adiabatic work calculated in Ref. [22] when
the trap is instantaneous moved to the position λ f and put back
to q0 . It is important to mention that in the critical mode,
the susceptibilities χq(t ) and χ

v
(t ) must be obtained in the

limit of ω = 0.
The calculation requires knowing the optimal average

work. Since they were performed in a previous work [22], they
were recalculated for all the cases considered in this article. It
is shown in Fig. 1. The results are for the sets {1,−1}, {1, 0},
and {0, 1} and friction coefficients of 1, 2, 3, and 275 such
as indicated. Note that the system behaves like a Maxwell’s
demon for a specific set of conditions, as seen in the bottom
plot of Fig. 1.

FIG. 1. Effect of the damping constant and initial conditions on
the average work. The parameter sets are {1, −1} (solid), {0, 1} (dot-
ted), and {1, 0} (dashed), respectively. The plots were recalculated
from Ref. [22].
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FIG. 2. Effect of the damping constant and initial conditions on
the work distribution. The parameter sets are {1,−1} (solid), {0, 1}
(dotted), and {1, 0} (dashed). The black vertical lines denote the
initial condition W0. Each curve corresponds to times of 3 (black)
and 12 (red).

Figure 2 shows the effect of the friction coefficient and
initial conditions on the Wd using the mean work shown in
Fig. 1. The initial parameter sets are shown by solid curves
for {q0 , λ f } = {1,−1}, dashed for {1, 0}, and dotted for {0, 1}
corresponding to times of 3 (black) and 12 (red).

The dynamics of the periodic regimen presents serious
anomalies [22]. In particular, the appearance of concentra-
tion and diffusion processes acting together in the dynamics
[48,49] and a local heating of the Brownian particle [50],
among others. This is the reason why the average work shows
two discontinuities at two specific times near to the beginning
of the protocol application as shown in Fig. 1. Despite this, the
work distribution in this regimen appears as a smooth function
of W .

As it should be, the distributions for γ of 1, 2, and 3
are centered around their average while in the overdamped
is around the center of the trap because the mean work
reaches the asymptotic value of −q2

0
/2 [22]. For any given

γ , the standard deviation and the time-dependent diffusion
term are invariants regardless the initial parameter set. Thus,
the differences in the distributions are adjudicated to the time-
dependent mean work W̃ (t ).

B. Heat: Statistical analysis

As we mentioned before, unfortunately there is no analyti-
cal but numerical solution for P(Q, t ) given by Eq. (27).

There is no reason to exclude the Gaussian solution that
would correspond to n = 1 such that the higher-order terms in
the summation can be discarded. This will require knowing
the joint probability of χ (t ) to asses the magnitude of the
cumulants of order greater than two.

In the case that terms involving the distribution of χ (t )
exceed those of ϕ(t ), it could happen that the distribu-
tion had an important exponential behavior because of the
Bessel function. It can be verified if the external field is
off. In this case, the particle would be subjected to the
potential of an immobile trap, that is, of a simple har-
monic potential. Since ṽ(t ) = G(t ) = 0 because q0 = 0, then
ϕQ(t ) = ϕq(t ) ϕ

v
(t ) for which its statistics is complete if it

is known its joint P(χ1, . . . , χn). Furthermore, 〈Q(t )〉 =
T e−γ 2t [ cosh( ω γ t ) − 1 ]/( γ 2 ω2 ) resulting to be indepen-
dent of the initial condition and being a truly exponential for γ

sufficiently high. Despite this simplification, it is not possible
to delve into more details due to the lack of knowledge of the
joint probability, which can only be determined through its
copula. As far as is known, there is no explicit literature about
this distribution.

Assuming that these two mathematical arguments would
be correct, then it would be theoretically reproduced the
experimental result of Imparato et al. [8], mentioned in
the Introduction. Briefly, the set-up consisted of polystyrene
microspheres centered in the bottom of an optical tweez-
ers moved at a constant velocity. Their diameter was 2.0 ±
0.05 μm immersed in distilled water at T = 295 K. Mea-
suring the trajectories after the equilibration, Wd and Qd
were determined. Repeating this process for about 600 runs,
the histograms of the two properties were two genuine
Gaussians. Furthermore, the heat distribution is a symmet-
rical exponential for an immobile trap suggesting that the
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FIG. 3. Effect of the friction coefficient on the mean heat
Q(t ) =< Q(t ) > for parameters set {1, −1} (solid) and {1, 0}
(dashed). The set {0, 1} superimposed the latter. The inset of the first
two panels amplifies the region after t = 4.5; T = 10.

noise is uncorrelated under the experimental conditions. It
will correspond to suppress the exponential term and to let
ρ(t ) = 0 in Eq. (50).

Nevertheless, the mean value 〈Q(t )〉 = ∫ t
0 ds H (s) when

the field is on can be calculated. It is shown in Fig. 3 for
the four values of γ and the initial condition sets [47]. It is
noticeable that at the beginning there is a brief absorption of
heat, being more pronounced in the periodic regime and the

critical for the {1, 0} set. They last for a brief time and it
is when heat is released to the thermal reservoir. Looking at
Fig. 2, the particle, except the overdamped one, does mainly
adiabatic work at large times. In the latter and in order to
keep a constant temperature, the reservoir continually releases
heat to the overdamped particle to compensate that from the
dissipated by the high value of γ .

IV. FINAL REMARKS

Summarizing, a simple method based on basic stochastic
dynamics tools was implemented to determine the Fokker-
Planck equation for the optimal work and heat distributions
of an inertial Brownian particle interacting with an MHP and
a thermal bath.

The work distribution was determined for a variety of ini-
tial conditions and friction coefficient values. The resulting
equations are easy to manipulate as their numerical implemen-
tation. The optimal protocol that minimizes the mechanical
work was used instead of the frequently used in the literature
involving the displacement of the potential center at a constant
velocity. The effect of the latter does not affect the bell shape
of the distributions. However, they do not include the effect of
the thermodynamic restriction of an optimal protocol on the
dynamics.

It should be emphasized that the proposal presented in this
article for the moving harmonic potential predicts Gaussian
distributions for work and heat without conditions of any kind
and based on basic stochastic principles. Unfortunately, the
FPE for heat is so complicated that its solution can only be
obtained by numerical methods.

The stochastic differential equations describing work and
heat averaged over the initial velocity prior to the derivation
of their distributions is natural for physical systems starting
from equilibrium. Furthermore, keeping the initial position in
the final formulas has sense from the mathematical point of
view or for comparing the results with simulations.

All the theoretical approaches mentioned in the Intro-
duction are based on considering the external potential as
harmonic. The reason is that the experimental potential to
optically trap the particle and measure its position and, from
it, determine the heat and work distributions by moving it at
a constant speed or modifying its intensity for a fixed posi-
tion, is also of a harmonic type. In this sense, the results of
any theoretical scheme used to describe this experiment can
be considered general since they describe the same physical
phenomenon. They are also singulars depending on the ac-
curacy of the description. This categorization holds for any
experimental configuration, such as two traps acting in unison
to capture the particle where, in general, the potential loses
its harmonic character. Here, the mathematical techniques
for obtaining easy-to-compute analytic expressions are more
complicated due to underlying nonlinearities. This has already
been addressed in a previous work [51] for nonlinear po-
tentials where the response function of the system was the
property to be evaluated.

Referring to Ref. [8], the MHP leads to an exponential
heat distribution if Eq. (41) is discretized. This is typical for
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one-step processes [16–18]. Therefore, instead of addressing
heat flux as a result of particle diffusion, a potential future
investigation would be to use the formalism of the master
equation.
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