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We propose a simple percolation criterion for arbitrary percolation problems. The basic idea is to decompose
the system of interest into a hierarchy of neighborhoods, such that the percolation problem can be expressed as
a branching process. The criterion provides the exact percolation thresholds for a large number of exactly solved
percolation problems, including random graphs, small-world networks, bond percolation on two-dimensional
lattices with a triangular hypergraph, and site percolation on two-dimensional lattices with a generalized
triangular hypergraph, as well as specific continuum percolation problems. The fact that the range of applicability
of the criterion is so large bears the remarkable implication that all the listed problems are effectively treelike.
With this in mind, we transfer the exact solutions known from duality to random lattices and site-bond percolation
problems and introduce a method to generate simple planar lattices with a prescribed percolation threshold.
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I. INTRODUCTION

Since its introduction in the late 1950s [1], the critical
phenomenon of percolation has been examined extensively
by both physicists (see [2] for a review) and mathematicians
(see [3] for a review). Its practical relevance spans from net-
work theory describing, e.g., the spreading of diseases [4,5]
or the design of infrastructure [6] to material science, where,
e.g., flow through porous media [7] and the conductivity
of filler networks dispersed in insulators [8,9] are analyzed.
Through the years a rich variety of theoretical tools have been
developed and refined to tackle percolation in those diverse
contexts, and even the problem statement itself has been mod-
ified and extended in several different ways [10,11]. In two
dimensions conformal field theory [12,13] has enabled the cal-
culation of critical exponents, and lattice duality has been used
to determine the critical point of the square lattice [3,14]. Due
to the advance of computer power within the last half century,
numerical methods and algorithmic optimization have gained
increasing attention [15–18].

In the first part of this article we introduce an alternative
characterization of percolation. Then we recall exact solutions
to various structurally different percolation problems and the
methods originally used to solve them, and we discuss their
common denominator: the treelike structure, which allows for
the application of our method. Then we show that the method
can be used to design networks of a prescribed percolation
threshold, and we extend the spectrum of exactly solvable
percolation problems.

II. MEAN FIELD PERCOLATION

The idea of the approach we present in the following is
based on an alternative characterization of percolation thresh-
old which we will first derive and then apply to the full
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range of exactly solved percolation problems. For the sake of
readability, we initially define the required quantities only for
homogeneous bond percolation in a discrete system. However,
the generalization to site percolation, site-bond percolation,
and also continuum problems is straightforward and will be
exercised as the article progresses.

On a connected graph G(V, E ) with vertices V and edges E
a bond percolation model is defined by assigning a probability
p to each edge of being open. Two vertices are connected
if there is an open path between them, i.e., a sequence of
open edges linking one vertex to the other. (Note that in the
literature the term occupied is often used in place of open,
in particular, in the context of site percolation rather than
bond percolation problems. The meaning of the terms is the
same. Here, we follow the nomenclature of the textbook by
Grimmett [3].)

The percolation probability �(p) is defined as the probabil-
ity that an arbitrarily assigned vertex, which we call the origin
O, is part of an infinite connected component. The percolation
threshold pc demarcates the edge probability for which the
percolation probability ceases to be zero,

�(p) > 0 for p > pc, (1)

�(p) = 0 for p < pc, (2)

formally defined by [3]

pc := sup{p : �(p) = 0}. (3)

For all systems we treat here, we can define a metric that
characterizes the distance between two sites or particles. For
G(V, E ) specifically we can take the number of edges visited
on the shortest path between two given vertices as metric.
Given a vertex A, all the edges incident to A together with the
vertices linked by those edges form a subgraph we label the
1-neighborhood N1(A) of A. (See the top left panel of Fig. 1
for an illustration. The 1-neighborhood of the circle with the
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FIG. 1. Depiction of the vertex decomposition (Vk )k∈N . All pan-
els illustrate the 3-neighborhood of the origin; the top panels show
the square lattice, and the bottom panels show the triangular lattice.
In the left panels all edges are drawn, while the right panels show a
specific configuration of the lattice displaying only open edges. The
numbers on the vertices correspond to the index k of the associated
vertex set Vk . On the right only vertices contributing to the surface
activity are given a number.

number 0 is formed by the circles with the number 1 and
the lines connecting them to the circle with the number 0.)
Recursively, we then define the k-neighborhood of a vertex A
as the union of 1-neighborhoods of all vertices in the (k − 1)-
neighborhood,

Nk (A) =
⋃

X∈V (Nk−1(A))

N1(X ), (4)

where the union of graphs is simply the union of the cor-
responding vertex and edge sets. Specifying a vertex of the
lattice as the origin O naturally decomposes the vertices into
mutually disjoint vertex sets,

Vk := V (Nk (O)) \ V (Nk−1(O)). (5)

That is, the vertex set Vk represents the surface of the neigh-
borhood Nk . With V0 = {O} each vertex of G is uniquely
sorted into one Vi. Figure 1 illustrates the topology of the
vertex sets Vk for the square and triangular lattices.

If, for a given configuration of the system, there is a k̂ ∈ N
so that none of the vertices in Vk̂ are connected to the origin,
the same holds by construction for any Vk with k > k̂. As a
consequence, in this case there cannot be an infinite cluster
containing the origin. An infinite cluster needs to intersect
each surface Vk in at least one place. Importantly, we have to
specify only the degrees of freedom of the subgraph Nk̂+1(O)
to realize that the cluster around the origin is finite.

We call a vertex active if it is connected to the origin
by a sequence of open edges. Accordingly, we define the

surface activity o(Vk ) as the number of active vertices in Vk

with the graph restricted to the k-neighborhood of the ori-
gin. Therefore, for a given configuration of the full graph,
o(Vk ) comprises only those active vertices in Vk for which
the connection to the origin does not rely on any vertex of
Vk+1. (See the top right panel of Fig. 1 for an illustration.
In this specific realization some of the vertices which are not
labeled by numbers are connected to the origin by open bonds,
but they cannot be reached from the origin by a sequence of
vertices with strictly increasing label k. Hence, they do not
contribute to the surface activity.)

If �(p) > 0, with probability p, there is at least one active
vertex in any Vk so that the average activity of any Vk is larger
than p. Therefore,

lim
k→∞

E[o(Vk )] � �(p) > 0. (6)

(We use the notation E here for the expected value rather than
angle brackets, which are common in the statistical physics
literature, because the angle brackets might be misunderstood
as thermal expectation values. The discussion we present here
is not limited to thermal ensembles.) Conversely, if the growth
of the size of the vertex sets Vk is controlled |Vk| � Ckm for a
fixed m, then �(p) = 0 implies

lim
k→∞

E[o(Vk )] = 0. (7)

This equality is far from trivial; however, if the average sur-
face activity is asymptotically nonzero, the mean cluster size
χ is necessarily infinite. Especially in the mathematical lit-
erature (e.g., [3]), the divergence of the mean cluster size is
associated with its own threshold,

pT := sup{p : χ (p) < ∞}. (8)

We now define an alternative percolation threshold,

ps := sup{p : lim
k→∞

E[o(Vk )] = 0}, (9)

which evidently satisfies

pT � ps � pc. (10)

For a square lattice of arbitrary dimension it has been shown
that pT equals pc [3,19]. The proof relies on the controlled
growth of the number of sites in a ball around the origin,
which is straightforwardly generalized to more complicated
finite-dimensional lattices. Thus, pT = ps = pc for this class
of lattices; that is, our criterion will correctly reproduce the
percolation threshold. General graphs require more care, but
the Bethe lattice, as we will show below, is an example satisfy-
ing ps = pc even though the surface grows exponentially with
the layer. It stands to reason that a nonzero asymptotic average
surface activity is, indeed, an equivalent defining character-
istic of percolation for all problems we are concerned with
within this article.

We can hence deduce whether the system is percolating
from the average surface activity E[o(Vk )]. Notice that o(Vk )
is always the activity with only Nk being integrated out so
that the average surface activity is different from the pair con-
nectedness analyzed in the connectedness percolation theory
introduced by Coniglio et al. [20], as vertices in Vk that are ac-
tivated through higher order neighborhoods are not taken into
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account. Since all k-neighborhoods contain only finitely many
degrees of freedom, there is always an active vertex in every
Vk with finite probability. Clearly, the system is percolating if
for some ε > 0

∃ K ∈ N : ∀k > K E[o(Vk )|o(VK ) = 1] � ε. (11)

The slash in the expectation indicates the conditional average.
For treelike graphs the average activity of a layer depends ex-
clusively on the activity of the previous layer and, importantly,
not on its microscopic configuration. In this case we need to
describe only the transition between o(Vk+1) and o(Vk ) in order
to estimate limk→∞ E[o(Vk )], leading to the stronger condition
for percolation

E[o(Vk+1)|o(Vk ) = 1] = 1. (12)

In essence the above criterion demands that the system per-
colates if a single active vertex on the surface of the cluster
containing the origin on average induces another active vertex
on the subsequent surface. Equation (12) can be interpreted
as a different way of writing the survival condition of a
Galton-Watson branching process. Intuitively, one might ex-
pect treelike systems to be the only systems for which the
above criterion yields the correct critical parameters as loops
would cause correlations disturbing the artificial hierarchy.
The central insight of this article is that there are more treelike
systems than one might think. But before we show this we
briefly describe percolation on a tree with our formalism.

A. Bethe lattice

We assign the origin to an arbitrary vertex. Then O has z
neighbors, with z being the coordination number. Each vertex
in Vk , however, has z − 1 neighbors in Vk+1 for k = 1, 2, . . . .
The average number of active nodes in Vk can be expressed in
a simple recurrence. Every active node in Vk induces (z − 1)p
active nodes in Vk+1. Thus,

E[o(Vk+1)] = (z − 1)p o(Vk ). (13)

Averaging on both sides yields

E[o(Vk+1)] = (z − 1)pE[o(Vk )]. (14)

In combination with E[o(V1)] = zp, the explicit average ac-
tivity is apparently

E[o(Vk )] = zp((z − 1)p)k−1. (15)

Accordingly, the asymptotic activity is given by

lim
k→∞

E[o(Vk )] =

⎧⎪⎨
⎪⎩

0 p < 1
z−1 ,

z
z−1 p = 1

z−1 ,

∞ p > 1
z−1 .

(16)

That is, we find the percolation threshold at pc = 1
z−1 , as

expected. In the original derivation of this result [21] gener-
ating functions were used. However, in the same publication
the idea that a vertex needs, on average, one neighbor for a
“cascade process” to build an infinite cluster is mentioned as
a plausibility check.

This reasoning can be applied to any system with a self-
similar structure because the average activity depends only on
the average activity on the previous layer. Therefore, we can

coarse grain the entire subgraph Nk (O) into one number—the
average cluster surface activity. The map

E[o(Vk )] �→ E[o(Vk+1)], x �→ (z − 1)px, (17)

can hence be interpreted as a renormalization transformation
with the cluster surface activity o(Vk ) as the scaling variable
that becomes marginal at the percolation threshold. For the
regular Bethe lattice this map is particularly simple, but the
model can be extended to different degree distributions and
probability distributions; the critical manifold is always given
by a variation of condition (12). As an immediate conse-
quence, we recover, for instance, the strict lower bound of
long range percolation in one dimension [22] because we can
construct a Bethe lattice containing that problem as a sub-
graph. Random graphs provide another example of systems
that require a little effort to discover their tree nature.

B. Random graphs

We consider the Erdős-Rényi G(N, p) model, i.e., unla-
beled graphs with N nodes and a constant probability p =
1 − q for an edge between any two nodes to be open. In the
initial publication [23], Erdős and Rényi already discussed
a variety of properties, including the emergence of a giant
component if N p = 1, containing O(n

2
3 ) nodes almost surely

in the thermodynamic limit N → ∞. For N p = 1 + ε with
an arbitrarily small positive ε, a positive fraction of nodes
is part of the giant component, so as N goes to infinity, the
graph contains an infinite cluster almost surely, i.e., N pc �
1. Conversely, for N p = 1 − ε the cluster size distribution
decays at least exponentially fast, so that the mean cluster
size remains finite almost surely, N pT � 1, and with Eq. (10)
N pT = N ps = N pc = 1. We will show that random graphs in
the thermodynamic limit are effectively trees when it comes
to percolation.

We again declare an arbitrary node the origin; however,
the vertex sets (Vk )k>0 need to be defined differently as the
1-neighborhood of the origin already contains all vertices of
G(N, p). The activity of V1 is distributed according to the
binomial distribution B(N − 1, p), so that the average activity
is simply

E[o(V1)] = (N − 1)p. (18)

If we now demand E[o(V1)] = 1, we effectively treat the
system as a Bethe lattice with coordination number N . In-
terestingly, we obtain the correct percolation threshold in the
limit N → ∞, already indicating that clusters on G(N, p)
remain treelike in the subcritical regime. For a given config-
uration of the 1-neighborhood N1(O), we can coarse grain
all active vertices of V1 into a new macrovertex O′. Since
each of the coarse-grained vertices has an individual potential
connection to each vertex in the remainder of the graph, O′
is connected to any other vertex in the graph through a k-
multiedge. As a connection requires only one of these k edges
to be open, the multiedge can be interpreted as single edge
with probability p′ = 1 − qk . We define o(V2) as the number
of active neighbors of the macrovertex O′. Continuing this
procedure indefinitely gives rise to a stochastic process,

Xn+1 = ξn(Xn), (19)
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with X0 = 1, where ξn(Xn) is a random variable drawn from
the binomial distribution

B

(
N −

n∑
i=0

Xi, 1 − qXn

)
. (20)

Each trajectory of this process is a sequence of surface ac-
tivities (o(V1), o(V2), . . . ), so that the average surface activity
E[o(Vk )] is well defined as the average value of Xk . Accord-
ingly, we can solve the percolation problem by studying the
limit of the sequence (E[Xk])k∈N . In the thermodynamic limit
either the sum

∑n
i=0 Xi is small compared to N , or the cluster

containing the origin already encompasses a positive fraction
of the system corresponding to percolation. Hence, the simpli-
fication N − ∑n

i=0 Xi ≈ N is well controlled in the subcritical
regime. The simplified stochastic process is Markovian, and
we swiftly find for N p = 1 − ε

E[Xn+1] =
N∑

j=0

N (1 − q j )P (Xn = j)

=
N∑

j=0

N

[
1 −

(
1 − 1 − ε

N

) j]
P (Xn = j)

<

N∑
j=0

(1 − ε) j P (Xn = j) = (1 − ε)E[Xn], (21)

which implies limk→∞ E[o(Vk )] = 0. The P denotes the prob-
ability of the event given as argument. Conversely, for N p =
1 + ε we can use the same reasoning to show that if Xn <

2ε
(1+ε)2 =: Pε, the expectation E[Xn+1] > Xn, which requires
the process to reach Pε, i.e., a finite fraction of the vertices
of the system, with finite probability. In sum we obtain ps = 1
as expected.

This analysis of percolation on Erdős-Rényi random
graphs illustrates how percolation on graphs containing loops
can still be mapped onto a branching process and analyzed in
the corresponding framework.

Small world networks provide a generalization of this
model which also allows for an exact solution and can be
treated in a similar way [4]. The local clusters of a small
world network can each be coarse grained into a single ver-
tex of a random graph. The connection probability between
two vertices in the random graph depends on the sizes of
the corresponding coarse-grained clusters. As all the local
clusters are finite, percolation requires a giant component of
connected coarse-grained clusters in the thermodynamic limit.
This implies that a vertex of the coarse-grained graph has to
have at least one neighbor on average, resulting again in the
exact threshold.

Notice that coarse graining an ensemble of graph configu-
rations into an averaged observable is inherently a mean field
approach. Correlations between different layers of the con-
struction are neglected. For random graphs we can get away
with that because in the thermodynamic limit the probability
of revisiting a vertex in the hierarchic formation of the per-
colating cluster is negligible. A critical graph is essentially a
forest of trees; that is, the number of vertices contained in tree
components is N + O(1) [24]. Naturally, we would expect the
method to fail once the graph topology imposes correlations,

FIG. 2. The transition from Vk (circles and triangles) to Vk+1

(squares) on the square lattice. There are two different types of local
environments depicted by different shapes: Circles have two shared
neighbors on the subsequent layer, while triangles have an additional
exclusive neighbor.

and the clusters would contain cycles. Nevertheless, the same
mean field approach also provides all exact bond percolation
thresholds on two-dimensional (2D) lattices, as we are going
to demonstrate in the next section.

C. Percolation on 2D lattices

Much work has been and still is dedicated to the
percolation problem on planar lattices. In contrast to higher-
dimensional problems the topology of the plane provides a
rigorous characterization of the critical manifold by use of
the dual lattice (bond percolation) or the matching lattice (site
percolation). In recent years, the usage of this additional bit
of information has become more and more refined, resulting
in a couple of exact solutions [25–28] as well as new ap-
proximation or simulation techniques [18,29,30] which allow
for extremely precise determination of percolation thresholds
on general planar lattices. We do not want to engage in this
pursuit for precision but rather provide a different perspective
upon the problems which have been solved exactly.

Historically, the solution of bond percolation on the square
lattice was, at least to mathematicians, the first “milestone”
towards today’s understanding of 2D lattice percolation. Fol-
lowing this protocol, we motivate our approach by analyzing
the square lattice first.

1. Bond percolation on the square lattice

All vertices on the square lattice are equivalent. Thus,
we chose an arbitrary vertex as the origin and, in complete
analogy to the previous analysis of random graphs, construct
the hierarchy of neighborhoods with corresponding mutually
exclusive vertex sets (Vk )k∈N . The topology of these vertex
sets is illustrated in Fig. 2. For each k there are two types
of local environments (circles and triangles), but as k grows
large, the contribution of the “triangle environment” will be-
come negligible. Thus, asymptotically, each node in Vk has
two potential neighbors in Vk+1, and “adjacent” nodes in Vk

have a common potential neighbor. Percolation requires the
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FIG. 3. Left: Asymptotic substitute lattice for the square lattice.
Right: Bethe lattice with identical average surface (gray shading)
activity at the percolation threshold.

average activity in the infinite annulus to be bounded away
from zero. This property trivially applies for all finite annuli
Vk as the event of an activity depends only on finitely many
degrees of freedom. So we can always assume the existence
of an active vertex in Vk which becomes the starting point of
our analysis. We can now construct the hierarchic substitute
lattice Q ⊂ Z2 depicted in Fig. 3 based on this asymptotic
neighbor relationship where

Q = {(m, n) ∈ Z2 | m, n � 0}. (22)

Clearly, this sublattice corresponds to a quadrant of the
square lattice. For this sublattice, it was shown that the critical
parameters coincide with those of the half plane [31], and the
equality of the percolation threshold to the complete lattice
has been conjectured but has yet to be shown. In what fol-
lows, we provide a potential first step towards proving this
conjecture by providing evidence that on Q the mean cluster
size of the component containing the origin diverges at p = 1

2 .
Q inherits the hierarchic decomposition of Z2 via

V ′
k = Q ∩ Vk . (23)

As for the Bethe lattice we suggest that percolation requires an
active node to, on average, induce at least one of its neighbors
on the subsequent layer to be active as well. Importantly, this
is independent of all layers prior to the chosen vertex; that is,
we neglect in-layer correlations. The average activity of V ′

1 is
swiftly computed, resulting in

E[o(V ′
1 )] = 2p2 + 2p(1 − p) = 1, (24)

which has the unique solution p = 1
2 in the interval [0,1]; that

is, we obtain the correct percolation threshold for the square
lattice.

p = 1
2 is also the percolation threshold of the Bethe lattice

with coordination number z = 3. Indeed, powers of the poly-
nomial in (24) correspond to the average activity of higher
layers of a symmetric tree with two branches emanating from
each vertex (see Fig. 3). However, the partial lattices

Qk = {(m, n) ∈ Q | m + n � k} (25)

for k > 1 contain loops, so we cannot extrapolate in the same
way for the square lattice. Yet, surprisingly, the sequence of
lattices Q′

k seems to have a most remarkable property:

p = 1
2 ⇒ E[o(V ′

k )] = 1 ∀ k ∈ N. (26)

Proving this property proved cumbersome as paths can con-
tain “upward” passages (i.e., passages which return towards

FIG. 4. The average activity of the kth layer of the asymptotic
substitute of the square lattice. Lines represent analytic results, while
the symbols are simulation results.

the origin), which do not allow for a straightforward proof
by induction. Thus, here we refer to only the analytic ex-
pressions of E[o(V ′

k )] for k � 5 and Monte Carlo simulations
of E[o(V ′

k )] for k as large as 1000 (see Fig. 4), all being
consistent with (26), which we shall treat as a combinatorial
curiosity. Thus, at the critical point, E[o(V ′

k )] = E[o(V ′
1 )]k =

1, so the square lattice behaves like the Bethe lattice, despite
manifestly containing loops. Naturally, the polynomials char-
acterizing the average activity in each layer have nothing to
do with their counterpart for the Bethe lattice except for their
value at the critical point. At the critical point the loss in
average activity due to loop formation on the square lattice
is exactly canceled by the additional paths between different
branches of the associated Bethe lattice. Figure 5 illustrates
that relationship. As each configuration is equally likely at
p = q = 1

2 , the sum of the number of paths connecting the
root node to any of its leaf nodes in Vk is 2k . In this sense,
the square lattice acts as a tree, and hence, the percolation
threshold depends only on the transition to the next layer
which is governed by the single unit cell. Akin to percolation
on the Bethe lattice, the edge probabilities can be different
from one another and even correlated to each other; the critical
manifold still satisfies

E[o(V ′
1 )] = 2P (o(V ′

1 ) = 2) + P (o(V ′
2 ) = 1) = 1. (27)

FIG. 5. Q1 with the square lattice unit cell attached to each vertex
in V ′

1 . In order to recover Q2 the white vertices have to be contracted.
The sum of paths connecting the root node to each of the leaf nodes
individually is invariant under this vertex contraction.
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FIG. 6. Left: Asymptotic substitute lattice for the triangular
lattice. Right: Triangular tree lattice; its percolation threshold cor-
responds to a correlated triangular lattice.

Notice that also the average surface activity is exactly
conserved at the percolation threshold if the connection prob-
abilities of the two edges in the unit cell are different.
Therefore, each loop is countered by a “horizontal transfer”
with the same number of open edges of each type. However,
this relationship breaks down once the two leaf nodes of the
unit cell can be connected by paths that do not pass the root
node as, for instance, in the triangular lattice.

2. Bond percolation on triangular-type lattices

As the three terminal vertices of the triangular unit cell are
equivalent, the connection probabilities have to enter symmet-
rically in an expression describing the percolation properties
of the entire lattice. Yet if we consider the average surface
activity in the above construction of the asymptotic substitute
of the square lattice with added horizontal bonds between
vertices on the same layer (see Fig. 6), the assignment of the
root vertex artificially breaks this symmetry. The percolation
threshold of the triangular tree lattice, i.e., the straightforward
analog to our treatment of the square lattice depicted on the
right-hand side of Fig. 6, can easily be computed following
our consideration of the Bethe lattice. Denoting the three indi-
vidual edge probabilities of the triangular unit cell by p1, p2,
and p3, with the latter one not being connected to the root
node, the critical manifold reads

p1 + p2 + p1 p3 + p2 p3 − 2p1 p2 p3 = 1. (28)

In the homogeneous case pi = p the percolation threshold
is roughly pc ≈ 0.403, which is the percolation threshold of
the triangular lattice where edge 3 cannot be open without
one of the other bonds being open as well. Since the con-
figuration with only edge 3 present does not contribute to
E(o(V ′

1 )) the corresponding mean field prediction does not
account for any system configurations featuring unit cells in
this macrostate. Instead, we have again computed the per-
colation threshold for a square lattice with the probabilities
P (o(V ′

1 ) = 1) and P (o(V ′
1 ) = 2) being only slightly varied.

Clearly, the critical manifold of the triangular lattice should
be symmetric in p1, p2, and p3. Moreover, if one of these
probabilities vanishes, the critical manifold should reduce to
the one corresponding to the square lattice. There is only one
polynomial linear in all edge probabilities that meets these
constraints:

p1 + p2 + p3 + p1 p3 + p2 p3 + p1 p2 − 2p1 p2 p3 = 1, (29)

which provides the correct critical manifold of the triangular
lattice. Formally, this line of argumentation is known as the

contraction-deletion method [18,32]: Starting from the most
general polynomial linear in all edge probabilities

f (p1, p2, p3) =
∑

i, j,k∈{0,1}
ai jk

(
p1−k

1

)
qk

1

(
p1−k

2

)
qk

2

(
p1−k

3

)
qk

3,

(30)

where f (p1, p2, p3) has eight parameters (each configuration
initially has its own weight ai jk), we use symmetry in all
three arguments, reducing the number of parameters to four,
and demand that we recover the solution of the square lattice
when one of the arguments vanishes. This uniquely defines
all remaining parameters except for a111, corresponding to
the configuration with all bonds open. However, this config-
uration is equivalent to configurations with only two edges
present because the missing bond connects two vertices that
are already in the same cluster. So the parameters associated
with both configurations are equal. The resulting polynomial
describes the maximum number of leaf nodes connected to a
root node in the unit cell given that any node is a root and a
leaf at the same time averaged over all configurations of the
unit cell. This symmetrized surface activity provides the exact
percolation threshold for the triangular lattice as the solution
of

f (p1, p2, p3) = 1, (31)

which coincides with Eq. (29).
For any three-terminal with terminal nodes A, B, and C, f

is always obtained from E[o(V1)] by adding the probability of
the two leaf nodes, say, B and C, being in a cluster without the
root node, say, A, resulting in the simple criterion

f (pc) = 2Ppc
(A, B,C)

+ Ppc
(A, B,C) + Ppc

(A, B,C) + Ppc
(A, B,C) = 1, (32)

where pc comprises the critical manifold and Pp(A, B,C) is
the probability that A and B are in a cluster without C. Hence,
the system is percolating if, on average, two terminals of a
unit cell are connected to each other. This is equivalent to the
criterion derived from duality, which is readily obtained from
Eq. (32) by using the normalization of P, leading to

Ppc
(A, B,C) − Ppc

(A, B,C) = 0. (33)

Hence, Eq. (32) provides the exact bond percolation thresh-
olds for all lattices created from a triangular hypergraph by use
of the generalized star-triangle transformation [25,26,28,32–
34]. Notice that we do not provide an independent proof that
these percolation thresholds are exact but rather acknowledge
that all exactly known percolation thresholds satisfy the cri-
terion (32). As all these solutions depend only on an average
over a microscopic fragment of the lattice, correlations be-
tween adjacent unit cells, i.e., different layers, necessarily
average out. In that sense the square lattice effectively does not
contain any loops, which is the consequence of the additional
structure provided by duality.

The decorrelation of unit cells has a couple of interesting
implications. For example, the vertex degree and the edge
probabilities of the Bethe lattice, the generator, i.e., the spe-
cific unit cell embedded in a triangular hypergraph, can be
entirely arbitrary and does not even have to be unique through-
out the lattice as long as the unit cells are drawn randomly
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FIG. 7. Top: A pseudorandom network created from a triangular
hypergraph filled with unit cells of square, triangular, and hexagonal
lattices with equal probability. Bottom: Simulation results for lattices
of the kind above with periodic boundary conditions sampling the
graph polynomial, with �2 and �0 being the probabilities of ob-
taining a two-dimensional wrapping cluster or no wrapping cluster,
respectively.

from a common distribution. This is an important generaliza-
tion of the class of exactly solvable percolation problems, as
it allows us to determine the percolation threshold of random
networks. Figure 7 displays an instance of a pseudorandom
network constructed of triangular, square, and hexagonal unit
cells. The microscopic arrangement of the individual pieces
is irrelevant as long as it is not correlated. In the decorrelated
case the lattice can be interpreted as being created by only a
single generator comprising all connection probabilities be-
tween the terminal vertices. The symmetrized average activity
is straightforwardly computed as a linear combination of the
polynomials describing the different unit cells. The critical
values derived from the composite polynomial describe an
ensemble of lattices which is dominated by the maximum
entropy states. So if you pick a random infinite representative
of this ensemble, its percolation threshold is equal to the
ensemble average. It does even allow us to design lattices with
a prescribed percolation threshold built from simple building
blocks. The quasirandom lattice in Fig. 7, for example, con-
tains triangular, square, and hexagonal unit cells with equal
frequency. The linear combination of their symmetrized sur-
face activity results in the percolation threshold pc = 1

2 , in
perfect agreement with the simulation results. Varying the
relative frequency of the unit cells allows for an adjustment of
the percolation threshold to any value between the minimum
and maximum thresholds achievable with only one cell type.
As the unit cells can, in principle, be arbitrarily connective or

FIG. 8. Snippets of lattices created from triangular and square
unit cells in equal proportion: elongated triangular lattice, pc ≈
0.4196 (nonexact; left), bow-tie lattice, pc ≈ 0.4045 (exact; middle),
and random alignment, pc = √

2 − 1 ≈ 0.4142 (exact; right).

scarce, this method admits the construction of a planar lattice
with a prescribed homogeneous bond percolation threshold
pc ∈ (0, 1). As long as the distribution of unit cells is uncor-
related, the mean field theory remains exact.

The impact of correlations between the types of unit cells
is displayed in a comparison of different lattices generated
from the same set of unit cells (see Fig. 8). The long range
periodicity causes small deviations, but the mean field pre-
diction remains fairly accurate. In that sense, an analysis
of the distribution of unit cells can provide a simple mean
field guess to a given network. For instance, the snub square
lattice is built from the same number of triangles and squares
as the lattices depicted in Fig. 8 but is not arranged accord-
ing to the triangular hypergraph. Regardless, the percolation
threshold pc ≈ 0.4141 (nonexact) is very well approximated
by the mean field prediction. Curiously, we would expect the
approximation to become even better once random defects
destroy the long range periodicity of the lattice.

Since the generator is arbitrary, the lattice likewise does
not have to be planar anymore as long as it is built from
a self-dual hypergraph. The prime examples of nonplanarity
and their corresponding percolation thresholds are depicted
in Fig. 9. We can even decorate each individual cell with an
Erdős-Rényi random graph G(N, p), with N and p drawn from
an arbitrary distribution, and the percolation threshold can be
computed exactly in the aforementioned way.

We proceed by transferring the treelikeness to site percola-
tion problems.

3. Site percolation

For site percolation two vertices linked by an edge are
considered connected when both vertices are open. Accord-
ingly, probabilities to be open are assigned to vertices rather
than edges. A vertex A is active if it is open and there is a
sequence of mutually adjacent open vertices linking A to the

FIG. 9. Nonplanar unit cells embedded in the triangular hyper-
graph at the black vertices are exactly solvable: K5: pc ≈ 0.2528;
K3,3: pc ≈ 0.3903.
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FIG. 10. Our exactly solvable site percolation problems. Left:
Elongated kagome, p2 + 2p3 − p4 = 1 → pc ≈ 0.7213. Right:
Clinched 3-12, 2p3 + p4 − p5 = 1 → pc ≈ 0.7717.

origin. Thus, each active vertex is open but not the other way
around. Each bond percolation problem can be transformed
into a site percolation problem by placing a site on each bond
and connecting them if the underlying bond share a common
vertex, i.e., constructing the covering lattice. So each exactly
solved bond problem automatically provides the solution to a
site problem (Fig. 10). The prime example is the equivalence
of bond percolation on the hexagonal lattice and site percola-
tion on the kagome lattice first acknowledged in [33]. In the
previous section we obtained exact percolation thresholds due
to decorrelation of unit cells. For bond percolation the fact
that two unit cells share a vertex does not induce correlation
between the unit cells. For site percolation, in analogy, we
have to separate unit cells by bonds. For all representatives of
the triangular hypergraph this means we have to replace each
terminal (which is part of three unit cells at once) by a triangle
formed by the three individual terminals of the corresponding
unit cells. This site-to-bond transformation was applied by
Scullard [25] to obtain the exact thresholds for the Martini
lattices. However, the Martini lattices are exactly solvable as
bond problems as well so that we can reiterate the transfor-
mation obtaining the lattices depicted in Fig. 10 which extend
the set of exactly solvable site percolation problems. With the
exception of the class of fully triangulated lattices, all known
exactly solvable site percolation problems can be associated
with an exactly solvable bond problem in this way. Table I

TABLE I. The bond percolation problems in the left column
correspond to site percolation problems on a lifted lattice. If you
apply Eq. (32) to the unit cell of the lattice in the left column with
sites instead of bonds being the degree of freedom, you obtain the
critical polynomial for site percolation of the lattice in the right
column.

Bond problem Site problem

Triangular Kagome
Triangular with one fixed bond Martini B
Triangular with two fixed bonds Triangular
Square Martini A
Hexagonal Martini
Martini 3-12
Martini A Clinched 3-12
Martini B Elongated kagome

FIG. 11. Left: Kagome lattice with fixed edges (dashed red
lines). Right: Critical manifold for site-bond percolation for the
lattice on the left. Symbols denote simulation results, the solid line
represents solutions to Eq. (34), and the dashed line is an approxima-
tion due to [36].

lists the correspondence between solvable bond problems and
the lifted lattice of the induced site solution. In this way any
of the above exact solutions for bond percolation translates to
exact solutions for site percolation on a modified lattice. The
generalizations in the previous sections can also be transferred
to the site percolation problem so that arbitrary probability
distributions are treatable and the assignment of unit cells may
be randomized.

The connection between site percolation and bond perco-
lation puts us in a position to find specific exact solutions for
site-bond percolation as well. We refer to site-bond percola-
tion as the model for which sites and bonds are independently
assigned probabilities to be open and a direct connection
between two sites is established only if both sites and the
bond between them are open. The key is the simultaneous
decoupling of the bond and site degrees of freedom for the
same unit cell. This can be realized, for example, for the
kagome lattice by fixing the bond probabilities of each triangle
pointing to the right to 1 (Fig. 11). The remaining edges
and all vertex degrees of freedom are now decoupled from
the neighboring unit cells, and we can compute the critical
manifold by computing connection probabilities in a single
triangular unit cell. For homogeneous bond probabilities pb

and site probabilities ps we find the critical manifold as

p3
s

(
3pb − p3

b

) + 3p2
s (1 − ps)pb = 1. (34)

As expected, this result interpolates between the percolation
threshold of the triangular lattice for ps = 1 and the site per-
colation threshold of the kagome lattice for pb = 1 and is in
perfect agreement with the simulation results (Fig. 11). Since
the precise shape of the three-terminal in between the fixed tri-
angles is entirely arbitrary, our perspective provides an entire
class of exactly solvable site-bond percolation problems.

Indeed, the only exact solution to a site-bond model on
a two-dimensional lattice that we know of [35] features the
other option of achieving decorrelation between unit cells, that
is, fixing the terminal sites of the unit cell. If the terminals
are fixed as open, the degrees of freedom of neighboring unit
cells are again independent. Clearly, the sites enclosed in the
unit cell just modify the connection probabilities between the
terminals in the same way that bonds do. Thus, we can make
straightforward use of Eq. (32) to compute the critical man-
ifold of site-bond percolation on the hexagonal lattice with
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every second site being fixed; the critical manifold is

ps
[
2p3

b + 3p2
b(1 − pb)

] = ps
(
3p2

b − p3
b

) = 1. (35)

The same result was obtained by Kondor [35] using duality
between this lattice and bond percolation on a triangular lat-
tice with added three-site bonds. Clearly, this result is again
just a representative for an entire class of exactly solvable
percolation problems because every lattice with a triangular
hypergraph can be lifted to an exactly solvable site-bond per-
colation problem by fixing only the terminal sites.

Since there are no exact solutions for three-dimensional
lattices, we finally have a look at the continuum.

III. CONTINUUM PERCOLATION

In continuum percolation, site positions are continuously
distributed, not necessarily homogeneously, in Rd and con-
nected according to a connectivity criterion which depends on
only the microscopic degrees of freedom of two sites. Strictly
proved exact results in continuum percolation are limited to
one dimension, but there are exact results valid in specific
limits for higher-dimensional problems as well. Both types of
exact results can be traced back to treelike structures; how-
ever, those trees have fundamentally different origins.

The central observable in continuum percolation is the
pair connectedness P(r1, r2), which in analogy to the total
correlation function in liquid state theory satisfies an Ornstein-
Zernike type equation,

P(r1, r2) = C†(r1, r2) +
∫

dr3 ρ(r3)C†(r1, r3)P(r3, r2),

(36)

with the direct connectedness C(r1, r2) and the one-particle
density ρ [20]. The pair connectedness is defined so that
P(r1, r2)dr1dr2 describes the probability of finding two par-
ticles in the respective volume elements dr1 and dr2, which
are also part of the same connected component. Typically,
particles are considered connected according to a short range
connectivity criterion. The partition sum can be expanded in
Mayer f bonds,

f (r1, r2) = exp[−βV (r1, r2)] − 1, (37)

with the thermal energy scale β = (kBT )−1 and the potential
V of the pair interaction between particles. The connectivity
Mayer f † bond

f †(r1, r2) =
{

exp[−βV (r1, r2)] if 1 and 2 are connected,
0 otherwise,

(38)

and f ∗ bond ( f ∗ ≡ f − f †) additionally distinguish between
connected and unconnected pairs of particles. The density
expansion of the pair connectedness features integrals over
f † and f ∗ which represent the cluster structure of a cluster
connecting r1 to r2. On a tree the connection between two
particles at r1 and r2 can be established in only one way;
hence, the only terms remaining in the expansion of P are
chains of f † bonds. Those chains are conveniently generated
by the integral equation (36) with C† ≡ f †, a closure relation
which is commonly referred to as the second virial approxima-
tion. Clearly, this approximation neglects any kind of thermal

correlation between three or more bodies. Nevertheless, as
it contains the leading order term in a density expansion,
the approximation becomes viable in the low density limit.
Consequently, the second virial approximation performs well
if the critical density is low because higher order thermal cor-
relations are suppressed. So an effectively treelike structure
can be induced by the specific interaction. The perhaps most
notable example of such a system is hard spherocylinders
in three dimensions. As the aspect ratio becomes large, the
percolation threshold goes to zero. Since the virial coeffi-
cients maintain their order of magnitude, the second virial
approximation becomes exact at the percolation threshold
in the Onsager limit of infinitely long and thin rods [8,37].
Conversely, for two-dimensional overlapping line segments
the second virial approximation fails as the critical density,
ρc ≈ 5.63 particles per line segment length squared, is large
and clusters in the barely subcritical regime are far from
treelike [38].

Another example of asymptotic exactness is the perco-
lation of fully penetrable hyperspheres in high-dimensional
spaces. The critical density of hyperspheres becomes smaller
as the dimension is increased, so that ultimately, the probabil-
ity of more than two spheres meeting becomes negligible. In
this case, the tree is generated purely by entropy. Clearly, the
only truly exact results are those of the associated limit, hence
featuring a vanishing percolation threshold.

Notice that the percolation threshold is computed from
Eq. (36) as the divergence of the mean cluster size. For the
simplest case of radial symmetry, the convolution can be re-
solved by Fourier transform, and the critical density satisfies

ρ lim
k→0

C†(k) = ρ

∫
dr C†(r) = 1. (39)

For a system without interaction, e.g., fully penetrable
spheres, the integral in (39) in the second virial approxima-
tion, C† ≡ f †, is simply the connected volume of a single
particle. Thus, Eq. (39) means percolation requires a particle
to have one neighbor on average, which is the notion that
led us to all the exact solutions before. This remains true
for interacting but very dilute systems as long as the total
correlation function is approximated well by the Mayer f
bond. Importantly, the accuracy breaks down beyond the low
density limit, so the structure of the percolating network can-
not be expected to be accurately depicted by the second virial
approximation.

The only systems in continuum percolation allowing for
a complete solution that is exact at all densities are one-
dimensional; see [39] for a comprehensive overview. For
one-dimensional systems with a short range connectivity
criterion, the line topology imposes a global ordering. A
connection to a distant particle requires a connection to its
nearest neighbor in that direction. Given nearest-neighbor
interactions, a connecting path is built as a chain of mu-
tually independent nearest neighbors. Knowing the density
distribution of the nearest neighbor, we can compute the pair-
connectedness functions P exactly. This leads to the only
exactly known pair-connectedness functions for ideal and hard
line segments. The percolation threshold in these cases, how-
ever, is infinity. Accordingly, all exactly known percolation
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thresholds in continuum percolation are trivial. This con-
cludes our overview of the range of exactly solved percolation
problems which all, in one way or another, contain a treelike
structure. For all other problems we need to resort to approx-
imations or brute force computational techniques. However,
the exact solutions derived by duality have inspired the most
accurate simulation techniques for a two-dimensional system.
Since the concept of an average activity is easily generalized
to three dimensions, the surface activity in an artificial hierar-
chy provides an interesting observable in a simulation. This,
however, shall be discussed elsewhere.

IV. CONCLUSION

We have presented an overview of and a perspective on
exactly solved percolation problems, illustrating that all these
problems share the property of treelikeness. The treelike

structure can be a matter of perspective (random graphs), an
“accidental” cancellation of loops (two-dimensional lattices),
or thermodynamically imposed (continuum percolation). As
a consequence, we proposed a simple percolation criterion
based on the Bethe lattice which correctly predicts the perco-
lation thresholds of those systems. In addition, we generalized
the relationship between known bond and site percolation
problems and found classes of exactly solvable site-bond
percolation models. Finally, we were able to extend the
duality-inspired solutions to nonperiodic lattices and devised
a method of generating a planar lattice with an arbitrary pre-
scribed percolation threshold.
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