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Measurement of irreversibility and entropy production via the tubular ensemble
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The appealing theoretical measure of irreversibility in a stochastic process, as the ratio of the probabilities
of a trajectory and its time reversal, cannot be accessed directly in experiments since the probability of a
single trajectory is zero. We regularize this definition by considering, instead, the limiting ratio of probabilities
for trajectories to remain in the tubular neighborhood of a smooth path and its time reversal. The resulting
pathwise medium entropy production agrees with the formal expression from stochastic thermodynamics and
can be obtained from measurable tube probabilities. Estimating the latter from numerically sampled trajectories
for Langevin dynamics yields excellent agreement with theory. By combining our measurement of pathwise
entropy production with a Markov chain Monte Carlo algorithm, we infer the entropy-production distribution
for a transition path ensemble directly from short recorded trajectories. Our work enables the measurement of
irreversibility along individual paths and path ensembles in a model-free manner.
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I. INTRODUCTION

Stochastic processes without memory have been used to
describe the dynamics of physical systems starting with the
pioneering work of Rayleigh, Einstein, and Smoluchoswki
[1]. The phenomenological observation that systems out of
equilibrium display irreversibility has prompted a search for
theoretical measures that enable its quantification. The first
of these measures was provided by Kolmogorov [2,3] by
considering the joint distribution of pairs of points along a
stochastic trajectory and its time reversal. This characteri-
zation was refined by Ikeda and Watanabe [4] by consid-
ering the probabilities for stochastic trajectories to remain
in the tubular neighborhood of a smooth path and its time
reversal. This line of thought reached its culmination in the
elementary definition of irreversibility as the ratio of proba-
bilities for a trajectory and its reverse in the work of Maes
and Netočny [5] and Seifert [6]. The latter provides the clear-
est derivation of the plethora of results know as fluctuation
theorems [7–13], yields a definition of the medium entropy
production as the logarithm of the ratio of the probability
of forward and backward paths [6], and has engendered the
thriving field of stochastic thermodynamics [13–15].

Despite the theoretical importance of the elementary defi-
nition of irreversibility, measurements, in both experiment and
simulation, have focused on ensembles of trajectories [16–19]
or systems with discrete state space [20], and the medium
entropy production along a single continuous trajectory has
not yet been measured directly. This is because the probabil-
ity of a trajectory (and of its reversal) is, strictly speaking,
zero, and it is therefore not obvious how to infer the ratio of
probabilities for a pair of forward and reverse paths. Hence,
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while theoretical expressions for this ratio can be evaluated
on observed trajectories, the result cannot be tested without
an independent, model-free method of inferring pathwise ir-
reversibility.

In this work, we provide a resolution to this impasse by
considering, instead of a single trajectory, the probability
of an ensemble of trajectories to remain within the tubu-
lar neighborhood of a smooth path [21,22]. We define the
logarithm of the probability ratio for forward and backward
tubes, as the tube radius goes to zero, as a measure of irre-
versibility. We show that this coincides with the stochastic
thermodynamic expression for the medium entropy produc-
tion when the latter is restricted to smooth paths. Since the
probability to remain within a finite-radius tube can be mea-
sured directly [22], we obtain the medium entropy production
by extrapolating ratios of measured finite-radius tube prob-
abilities to the limit of vanishing radius. This requires no
knowledge of the underlying process (other than that it is
memoryless), and our method, then, yields a model-free route
to obtaining the entropy production along individual paths.
This establishes a protocol for directly measuring irreversibil-
ity along individual pathways and allows us to investigate
this phenomenon, experimentally or numerically, in a man-
ner that is more refined than full ensemble averages. We
validate our method in an explicit numerical example. For
two-dimensional Langevin dynamics with a nonequilibrium
force, we directly infer the medium entropy production along
individual paths from simulated trajectories without using any
knowledge about the underlying dynamics beyond Marko-
vianity and we find excellent agreement with the theoretical
expectation [6]. Furthermore, by combining the direct mea-
surements of relative path probabilities [22], our approach to
the single-trajectory entropy production, and a Metropolis-
Hastings Markov chain Monte Carlo (MCMC) algorithm
[23], we infer the distribution of the entropy production for
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a transition path ensemble directly from measured sojourn
probabilities.

The remainder of this paper is organized as follows. In
Sec. II we define the medium entropy production as the lim-
iting ratio of tube probabilities and discuss analytically the
special case for overdamped Itô-Langevin dynamics. We sub-
sequently explain how we infer finite-radius tube probabilities
from recorded time series in practice [22]. In Sec. III we
then consider a two-dimensional example system. Using a
data set generated via numerical simulations, we first measure
the entropy production along individual paths and compare
the results to analytical predictions. We then go on to infer the
entropy production distribution for a transition path ensem-
ble, using only measured tube probabilities, and compare the
results to an independently generated transition path ensem-
ble based on direct Langevin simulations. We analyze these
transition path ensembles further, by considering both paths
with very small entropy production and paths with very large
entropy production. In Sec. IV we close by summarizing our
results and discussing further implications.

II. IRREVERSIBILITY VIA ASYMPTOTIC TUBE
PROBABILITIES

A. Entropy production as asymptotic ratio of tube probabilities

For a smooth reference path ϕt , t ∈ [0, t f ], we define the
sojourn probability that a stochastic trajectory xt remains
within a tube of radius R around ϕ as Pϕ

R (t ) ≡ P( ||xs −
ϕs|| < R ∀s ∈ [0, t] ), where ||v|| = (v2

1 + v2
2 + · · · + v2

N )1/2

denotes the standard Euclidean norm in RN , and where we
suppress the dependence on the initial condition of the tra-
jectory inside the tube [21]. Combining the approach to
irreversibility via tubes [4] with the single-trajectory medium
entropy production [6,13], we define the medium entropy
change along ϕ in terms of asymptotic tube probabilities as

�sm[ϕ] ≡ lim
R→0

ln
Pϕ

R (t f )

Pϕ̃
R (t f )

, (1)

with ϕ̃t ≡ ϕt f −t the time reversal of the path ϕ. In our defini-
tion Eq. (1) we assume that temperature T is measured in units
of energy, so that entropy is dimensionless [24]. Equation (1)
relates the medium entropy production along a single path to
observable sojourn probabilities. For finite radius R, the ratio
of sojourn probabilities for forward and backwards paths can
be measured without fitting a model to the data by simply
counting how many sample trajectories leave the tube along
forward and backward paths, respectively [21,22]. According
to Eq. (1), performing this measurement for several finite val-
ues of R, and extrapolating the resulting log ratios to R → 0,
the medium entropy production �sm is obtained.

The decay of the sojourn probability is described by α
ϕ
R (t ),

the instantaneous exit rate with which stochastic trajectories
first leave the tube, as [21]

α
ϕ
R (t ) ≡ −

(
∂t P

ϕ
R

)
(t )

Pϕ
R (t )

. (2)

Differentiating Eq. (1) with respect to t f , substituting t f with
t , and eliminating sojourn probabilities in favor of exit rates,

we obtain

d

dt
�sm[ϕ] = − lim

R→0
�α

ϕ
R (t ), (3)

where

�α
ϕ
R (t ) ≡ α

ϕ
R (t ) − α

ϕ̃
R (t f − t ). (4)

Equation (3) relates the change in medium entropy production
along a single path to the difference of instantaneous tubular
exit rates around forward and backward versions of the path.

B. Analytical results for Langevin dynamics

While Eqs. (1)–(4) do not assume a model for the stochas-
tic evolution of xt , for a given model the exit rate can be
calculated analytically. We now consider the overdamped
Itô-Langevin equation for an N-dimensional coordinate
xt ≡ (x1(t ), x2(t ), . . . , xN (t )), given by

dxt = μF(xt ) dt +
√

2μT dW t , (5)

where μ = D/T is the mobility with D the diffusion co-
efficient and T the absolute temperature measured in units
of energy, F is a deterministic force, and dW t denotes the
increment of the Wiener process. While we here consider only
forces that do not depend on time explicitly, our approach
remains valid for time-dependent forces as long as for time-
reversed paths the explicit time dependence of the force is
also reversed [13]. For Eq. (5), the leading-order expansion
of α

ϕ
R (t ) in the tube radius R is [21,25,26]

α
ϕ
R (t ) = CN

R2
+ Lϕ(t ) + O(R2), (6)

where CN is a constant which depends on only the dimension
N , and the Onsager-Machlup (OM) Lagrangian Lϕ is given by
[21,25–29]

Lϕ = 1

4D
[ϕ̇ − μF(ϕ)]2 + 1

2
div[μF(ϕ)]. (7)

Substituting Eq. (7) into the difference of exit rates Eq. (4) for
forward and reverse paths, the relation

lim
R→0

�α
ϕ
R (t ) = − 1

T
F(ϕt ) · ϕ̇t (8)

between the limit of exit-rate difference and work rate along ϕ

follows. In turn substituting this into Eq. (3), and integrating
with respect to time, yields the familiar formula [6,13]

�sm[ϕ] = 1

T

∫ t f

0
F(ϕt ) · ϕ̇t dt, (9)

which relates the medium entropy production and the work
performed along ϕ.

C. Measuring the exit rate from sample trajectories

To infer the entropy production from finite-radius exit
rates, the log ratio on the right-hand side of Eq. (1) needs to
be measured for small but finite radius R. In practice it can
be difficult to acquire sufficient data for this measurement,
because the number of trajectories which remain inside the
tube decreases exponentially with time t . To overcome this
problem, we employ a cloning algorithm, which is illustrated
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FIG. 1. The gray shaded area denotes a tube of radius R around
a reference path ϕ. From a given set of short sample trajectories,
we randomly draw M0 = 3 samples of duration �T (vertical dashed
lines), all of which start close to ϕ0. Trajectories which leave the
tube (dotted red lines) are discarded, and the final positions of the
trajectories that stay (solid green lines) are collected. We again draw
M1 = 3 sample trajectories, with initial conditions approximately
distributed as the previous final positions. We repeat the process of
drawing sample trajectories and tracking whether or not they leave
the tube, until we obtain the sojourn probability up to the desired final
time. For each interval [l�T , (l + 1)�T ], the sojourn probability is
estimated as the fraction of trajectories that leave the tube during
the time �T , divided by the initial number of trajectories Ml . We
choose the small value Mi = 3 here for illustration; to calculate
exit rates from simulations we use values of the order 105; see
Appendix B. For the data shown here we use the reference path
ϕ ≡ ϕ(1) = L(t/t f , t/t f ) and the force (10) with θ = 1, LF0/T = 5.
Furthermore, we use R = 0.3L, �T = 0.01 τ , and D = L2/τ .

in Fig. 1 and has previously been used to infer finite-radius
exit rates from one-dimensional experimental time series [22].
We here present a short summary of the algorithm and give
more details in Appendix B.

The cloning algorithm assumes that the underlying
stochastic dynamics is Markovian, and that an ensemble of
recorded short trajectories with initial conditions throughout
the domain of interest are available; these can originate either
from measurements [22] or, as in this work, from simulations.

For a given reference path ϕ and tube radius R, we initialize
the algorithm by drawing from the ensemble of recorded
trajectories a large number M0 of sample trajectories, with
initial conditions close to ϕ0. We then follow those sample
trajectories for a short time �T and discard each trajectory
once it leaves a moving ball of radius R and instantaneous
center ϕt for the first time. We then estimate the sojourn prob-
ability Pϕ

R (t ) at time t ∈ [0,�T ] by the fraction of sample
trajectories that have never left the tube until the time t .

To iteratively obtain the sojourn probability also for any
subsequent time interval [l�T , (l + 1)�T ], we in each itera-
tion step draw Ml sample trajectories with initial conditions
inside a ball of radius R and with center ϕ(l�T ). For the
initial distribution within the ball, we at each iteration use the
final spatial distribution of those trajectories that have never
left the tube in the previous iteration. We repeat this iteration
step until l�T = t f .

By periodically drawing new samples after a short time
�T , we overcome the exponential decay of the trajectories

that have never left the tube. For a given �T , we choose the
number of trajectories Ml dynamically based on the expected
decay of the sojourn probability during the time interval
[l�T , (l + 1)�T ], as we explain in detail in Appendix B. In
practice, one wants to choose the time �T so as to balance
the exponential decay of the sojourn probability with the
cost of redrawing sample trajectories: If �T is too large, a
large number of sample trajectories Ml is required to reliably
estimate the sojourn probability for the whole time interval
[l�T , (l + 1)�T ]. On the other hand, if �T is too small,
new trajectory samples have to be drawn very frequently.

III. TWO-DIMENSIONAL NONEQUILIBRIUM EXAMPLE

A. Model system

For a length scale L and a timescale τ , we consider Eq. (5)
for dimension N = 2 with diffusivity D = L2/τ , so that
τD ≡ L2/D = τ . We consider a shear force

F(x) = θF0

L

(
x2

0

)
, (10)

where we fix LF0/T = 5, so that the dimensionless param-
eter θ ∈ R controls the force amplitude. Equation (10) does
not admit a potential and is illustrated as a quiver plot in
Fig. 2(a). For each of the values θ = 0, 0.5, 1, 1.5, 2, we gen-
erate an independent set of short sample Langevin trajectories
with random initial conditions, as described in detail in Ap-
pendix A.

B. Entropy production along individual paths

We consider a family of paths

ϕ
(n)
t = L

(
t/t f

(t/t f )n

)
, (11)

where t ∈ [0, t f ] ≡ [0, τ ], the length scale L multiplies both
vector components, and n ∈ N enumerates the paths. For any
n, the path starts at x0 = (0, 0) and ends at x f = (L, L). Ex-
ample paths for n = 1 and n = 4 are shown in Fig. 2(a). For
this family of paths and the force (10), the analytical medium
entropy production (9) evaluates to

�sm[ϕ(n)] = LF0

T (n + 1)
θ. (12)

We now consider the case n = 1. We use the cloning
algorithm described in Sec. II C and Appendix B with
�T = 0.01τD to measure the finite-radius sojourn probabil-
ity for both ϕ(1) and its time reverse ϕ̃(1) for radius R/L =
0.3, 0.4, 0.5, 0.6, 0.7. We fit a quadratic function f (R) = a +
R2b to the resulting measured log ratios ln Pϕ

R (t f )/Pϕ̃
R (t f ), and

extrapolate to zero as limR→0 ln Pϕ
R (t f )/Pϕ̃

R (t f ) = a, where
here ϕ ≡ ϕ(1). The quadratic form of the fit function f (R)
is motivated by Eq. (6), according to which no terms linear
in R appear in the exit rate and hence in the log ratio of
sojourn probabilities. In Fig. 2(b) the extrapolated measured
log ratio is compared to the corresponding analytical expec-
tation, given by the right-hand side of Eq. (12). We observe
that the measurement agrees very well with the theoretical
prediction, which shows that Eq. (1) can be used to infer the
irreversibility along individual paths directly from data. This
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FIG. 2. (a) The shear force Eq. (10) is shown as black quiver plot. The path defined in Eq. (11) is shown for n = 1 (dashed blue line)
and n = 4 (dotted red line), with arrows indicating the forward direction. For ϕ(1) we include a snapshot of the instantaneous tube of radius
R/L = 0.3 around the path (blue circle). (b) The colored lines denote the theoretical entropy production, Eq. (12), as a function of θ for
n = 1 (solid blue line) and n = 4 (dotted red line). The colored symbols are obtained by extrapolating measured finite-radius log ratios of
sojourn probabilities to R = 0, to evaluate Eq. (1). (c) The colored solid lines denote the negative of the left-hand side of Eq. (8), obtained by
extrapolating measurements of Eq. (4), for the reference path ϕ(1), to R = 0. The colored broken lines denote the corresponding theoretical
predictions given by the negative of the right-hand side of Eq. (8), calculated using the force Eq. (10) with LF0/T = 5. Numerical data in
(c) are smoothed using a Hann window of width 0.015 τD.

is further confirmed by repeating the analysis protocol for a
second path, where n = 4. Figure 2(b) shows that also here
the extrapolated log ratio obtained from direct measurement
agrees very well with the theoretical prediction.

To see how the medium entropy production is partitioned
along the path, we evaluate the instantaneous exit rate for
forward and backward paths for the n = 1 path. For this we
discretize Eq. (2) using central finite differences and evalu-
ate the expression on the measured sojourn probability for
R/L = 0.3, 0.4, 0.5, 0.6, 0.7. To extrapolate the resulting
finite-radius measurements of Eq. (4) to the limit R → 0, we
at each recorded time t fit a quadratic function f (t ) = a(t ) +
R2b(t ) to the measured exit-rate difference �α

ϕ
R (t ). From this

fit, we obtain the extrapolated exit-rate difference at time t
as limR→0 �α

ϕ
R (t ) = a(t ) [22]. In Fig. 2(c) we compare the

resulting extrapolated exit-rate differences to the theoretical
Eq. (8). While overall the agreement between measurement
and theory is very good, there are deviations both in the begin-
ning, t � 0.05 τD and at the end of the trajectory, t � 0.95 τD.
This is because in our cloning algorithm all initially sampled
trajectories start close to the center of the tube, so that at the
beginning (end) we observe the initial relaxation of this initial
condition for the forward (reverse) path [21]. The agreement
in Fig. 2(b) shows that these transient effects are not important
for the integrated change in medium entropy production, i.e.,
for �sm.

In Appendix E we consider another two-dimensional ex-
ample system, comprising a circular double-well potential
superimposed with a circular nonequilibrium force; the exam-
ple again confirms the validity and practical applicability of
Eqs. (1) and (3).

C. Medium entropy production for transition-path ensemble

We now infer the entropy-production distribution for an
ensemble of transition paths, using only measured sojourn
probabilities. For this, we use the data set of Langevin
time series corresponding to the force (10), with LF0/T = 5,

θ = 1, and D = L2/τ . We consider continuous paths which
start at x0 = (0, 0) at time t = 0, and end at x f = (L, L) at
time t f = τD. We approximate the infinite-dimensional space
of all such paths by a path space of dimension d = NM,
where for our two-dimensional system N = 2. Our finite-
dimensional approximation of path space is parametrized
by a set of M N-dimensional expansion coefficients a ≡
(a1, . . . , aM ) ∈ RN×M . For any a, the corresponding path is
then given by

ϕt (a) = x f
t

τD
+

M∑
k=1

ak

k
sin

(
kπ

t

τD

)
. (13)

We use M = 15, so that for our N = 2 dimensional system we
have d = 30, and run a Metropolis-Hastings Markov chain
Monte Carlo (MCMC) algorithm [23] on the space Rd , to
infer the distribution of �sm; we explain the algorithm in
detail in Appendix C. Crucially, the algorithm uses only mea-
sured sojourn probabilities. First, to generate an ensemble
of transition paths, ratios of path probabilities need to be
evaluated; for this we use extrapolated log ratios of measured
finite-radius sojourn probabilities [22]. Second, we obtain
the medium entropy production along each path from mea-
sured finite-radius sojourn probabilities via Eq. (1). Using the
sojourn-probability MCMC algorithm, we generate a set of
57 448 ≈ 5.7 × 104 transition paths and accompanying values
for �sm.

For comparison, we additionally generate an independent
ensemble of transition paths. Using the Euler-Maruyama in-
tegration scheme with time step �t/τD = 10−4, we run a
large number of numerical simulations of Eq. (5), each of
duration τD and with initial condition x0 = (0, 0). We retain
only those trajectories that at the final time are within the rect-
angle [0.9L, 1.1L] × [0.9L, 1.1L] around x f = (L, L). Using
this protocol, we create an ensemble of 3 316 727 ≈ 3.3 × 106

Langevin transition paths. For each trajectory, we evaluate
Eq. (9) to obtain the corresponding analytical prediction for
�sm [30].
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FIG. 3. (a) Distribution of �sm for the ensemble of transition
paths that start at x0 = (0, 0) and are at x f = (L, L) a duration τD

later. The solid blue curve is obtained from approximately 5.7 × 104

samples generated via an MCMC algorithm, which uses only mea-
sured sojourn probabilities. Full details on the algorithm are given
in Appendix C. The dashed red line is obtained from evaluating
Eq. (9) on an independently generated ensemble of transition paths,
as explained in Sec. III C. The vertical dotted line denotes �sm = 0;
the colored shaded regions depict the ranges �sm < −2 (green) and
�sm � 20 (orange). (b) The broken lines depict the mean transition
paths inferred from the MCMC algorithm; the solid lines corre-
spond to the mean transition paths obtained from direct Langevin
simulations. While the dotted and solid blue lines correspond to the
mean over the whole ensemble, the green and orange lines depict the
mean over all sample paths with �sm � 20 (dashed-dotted and solid
orange lines) and �sm � −2 (dashed and solid green lines). For all
data shown, we fix a length scale L and a timescale τ and consider
the force (10), with θ = 1 and LF0/T = 5, as well as D = L2/τ .

In Fig. 3(a) we show the resulting distribution for �sm,
obtained from both the sojourn-probability MCMC and the
direct Langevin simulations. Our MCMC algorithm, which
uses only measured sojourn probabilities inferred from short
recorded time series, reproduces the distribution of the
medium entropy production for the ensemble very well; the
slight deviations between the two data sets can be explained
by our low-dimensional approximation Eq. (13) of path space,
as we discuss in Appendix D.

Both the sojourn-probability MCMC and the direct
Langevin simulations yield an ensemble of transition paths

with accompanying entropy production. We now analyze this
ensemble further, to gain insight into the mean behavior of
small- and large-entropy transition paths.

We first calculate the mean transition path from both en-
sembles by at each time t averaging over the current positions
of all trajectories in the respective ensemble. In Fig. 3(b) we
show the resulting mean transition paths as dotted and solid
blue lines, which agree very well.

We next consider the subensemble of paths with small
entropy production �sm � −2, as indicated by the green
shaded region on the left side of Fig. 3(a). Out of our data
set of 57 448 MCMC sample paths, 294 fulfill �sm � −2, so
that we estimate the probability to observe any such small-
entropy path as P(�sm � −2) ≈ 294/57 448 ≈ 5.1 × 10−3.
This is close to the corresponding value P(�sm � −2) ≈
15 697/3 316 727 ≈ 4.7 × 10−3 estimated from the direct
Langevin simulations. We calculate the mean small-entropy
path by at any time t averaging over all the positions of all
paths with �sm � −2 and show the corresponding results
in Fig. 3(b) as dashed and solid green curves. Again, the
MCMC result agrees well with the mean small-entropy path
obtained from direct Langevin simulations; we rationalize the
oscillatory behavior of the MCMC path by the small number
of samples. From Fig. 3(b) we observe that small-entropy
paths on average move to x1 ≈ L with a very small negative
value of x2 and move up to x f slightly against the shear
force. This motion against the deterministic force is how these
trajectories perform work, i.e., how they obtain a negative
medium entropy production.

We finally consider paths with large medium entropy
production �sm � 20, as indicated by the orange shaded
region on the right side of Fig. 3(a). In our MCMC ensem-
ble, there are 1335 MCMC sample paths with �sm � 20,
so that we estimate P(�sm � 20) ≈ 1335/57 448 ≈ 2.3 ×
10−2, which compares well with the corresponding ra-
tio P(�sm � 20) ≈ 71 588/3 316 727 ≈ 2.2 × 10−2 obtained
from the direct Langevin simulations. Also for all paths with
�sm � 20, we calculate the mean path from both the MCMC
sample paths and the direct Langevin trajectories. We show
the resulting mean paths in Fig. 3(b) as dash-dotted and solid
orange curves and again observe good agreement. As the
figure shows, paths that significantly dissipate energy into the
heat bath move along the shear force F most of the time: The
mean path first moves towards negative x1 values in the lower
half-plane, and then moves towards x f in the upper half-plane.

Overall, Fig. 3 shows that the tubular-ensemble approach to
the entropy production enables us to quantify and analyze the
irreversibility of a path ensemble using only directly measured
sojourn probabilities.

IV. DISCUSSION

We have shown that the pathwise medium entropy pro-
duction can be obtained from the ratio of probabilities for
trajectories to remain within a tube encircling a path in the
limit of the tube radius going to zero. As we demonstrate,
by analyzing ensembles of short simulated trajectories, the
entropy production along an individual path can be inferred
from data without any knowledge of the underlying dynamics
other than assuming it to be memoryless. By combining this
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measurement of irreversibility along individual paths with a
Markov chain Monte Carlo (MCMC) algorithm, we obtain
the irreversibility for path ensembles, using only measured
sojourn probabilities. The path ensemble we generate via our
MCMC algorithm allows us to probe the mean behavior of
small- and large-entropy paths.

Our work shows clearly that by considering individual
paths as limits of finite-radius tubes, which from an exper-
imental point of view is a natural perspective, both single-
trajectory and path-ensemble properties can be inferred from
recorded time series without the need to parametrize a model.
Our definition of the medium entropy production, Eq. (1),
does not involve nondifferentiable stochastic trajectories and
thus generalizes to processes with configuration-dependent
diffusivities in a manner that sidesteps delicate issues of
stochastic integration (i.e., the Itô-Stratonovic dilemma)
[31–33]. The exit rate provides information beyond the en-
tropy production, as Eq. (8), with the differential ϕ̇t dt chosen
along N linearly independent directions, can be used to mea-
sure the drift F of the process, without the need to estimate the
diffusivity. Our work raises the question of how the medium
entropy production could be generalized to tubes of finite
radius and what the relationship of such a definition would
be to the single-trajectory and full-ensemble measures of
entropy production. Finally, our work suggests a generaliza-
tion to stochastic field theories with broken detailed balance
that are used to describe the fluctuating dynamics of active
matter [34].
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APPENDIX A: SAMPLE DATA PREPARATION

We fix a length scale L and a timescale τ , and partition R2

into a regular grid

Si j ≡ [(i − 1/2)�x, (i + 1/2)�x]

× [( j − 1/2)�y, ( j + 1/2)�y], (A1)

where i, j ∈ Z. We use �x = �y = 0.05L and consider the
range −100 � i � 90, −60 � j � 70. The corresponding Si j

then cover the domain [−5.05L, 4.5L] × [−3L, 3.5L] ⊂ R2,
which is sufficient for our purposes, as we do not consider
any tubes that extend outside this domain.

For each tuple (i, j), we run 1500 independent simulations
of the overdamped Itô-Langevin Eq. (5). Each trajectory starts
in Si j , and we draw the initial condition from a uniform dis-
tribution on Si j . We then run the standard Euler-Maruyama
algorithm for a duration �T = 0.01τ using a time step
�t = 10−4τ . Every simulation thus consists of K =
�T /�t = 102 time steps. We use the shear force (10) with
LF0/T = 5 and diffusivity D = L2/τ . Using this protocol, we
generate one independent data set for each value θ = 0, 0.5,
1, 1.5, 2 of the dimensionless parameter from Eq. (10).

APPENDIX B: CLONING ALGORITHM FOR INFERRING
SOJOURN PROBABILITIES AND EXIT RATES FROM

RECORDED TIME SERIES

We now explain how we extract finite-radius sojourn
probabilities and their associated instantaneous exit rates
from a set of time series, such as the one described in
Appendix A. The algorithm described here is the two-
dimensional generalization of a similar algorithm previously
used on one-dimensional experimental time series [22] and is
illustrated in Fig. 1. We assume as given a path ϕ, defined
for time [0, t f ], and a tube radius R, as well as a data set as
described in Appendix A, with an associated time step �t and
trajectory length K�t = �T .

Initial distribution for the cloning algorithm. To begin,
we identify the cell in which the trajectory starts, i.e.,
we determine the indices (i0, j0) such that ϕ(0) ∈ Si0, j0 .
We then randomly choose M0 of the recorded trajecto-
ries from the cells Si, j with i ∈ {i0 − 2, i0 − 1, . . . , i0 + 2},
j ∈ { j0 − 2, j0 − 1, . . . , j0 + 2}; the trajectories are chosen
from a uniform distribution on all the trajectories that start
within these cells and with replacement. This initial condition
models a smeared-out delta peak at the initial tube center ϕ(0).

Iteration step of the cloning algorithm. To infer the decay
of the sojourn probability until the final time t f , the iteration
step described in the following is repeated N = t f /�T times.
In the lth repetition, the sojourn probability is obtained for
t ∈ [l�T , (l + 1)�T ]. For l = 0, M0 sample time series have
been selected as described above; for l � 1, Ml sample time
series have been selected as will be described further below.

In the lth iteration step, we follow the Ml sample time
series for the duration �T , and keep track of how many
sample time series have never left the instantaneous tube (i.e.,
the moving circle with radius R and center parametrized by
ϕ) between the initial time of the lth iteration, tl,0 ≡ l�T ,
and each later instant tl,k ≡ l�T + k�t , where 0 � k � K .
We denote by Ml,k the number of trajectories that have never
left the tube until time tl,k , so that Ml,0 ≡ Ml . For the time
interval [l�T , (l + 1)�T ], we then approximate the sojourn
probability as

Pϕ
R (tl,k ) =

(
l−1∏
m=0

Mm,K

Mm

)
Ml,k

Ml
, 0 � k � K, (B1)

where for l = 0 the product is defined as 1 (the product de-
scribes the overall decay of the sojourn probability until time
l�T , i.e., the sojourn probability until the beginning of the
current time interval [l�T , (l + 1)�T ]).

From the Ml,K sample trajectories that have remained
within the tube until time tl,K ≡ l�T + K�t = (l + 1)�T ,
we construct a normalized histogram using the bins Si j defined
in Eq. (A1). Using this histogram as probability distribution
on the cells Si j , and employing a uniform distribution for the
recorded time series within each cell Si j , we draw Ml+1 new
time series from the data set from Appendix A. In the (l+1)-th
iteration of the algorithm, we then follow these newly drawn
trajectories.

All trajectories in the algorithm are drawn with replace-
ment; if the initial position of a drawn trajectory is not within
the tube initially (which can occur if a cell only partly overlaps
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with the instantaneous tube), a new trajectory is drawn from
the same cell Si j until the initial condition of the sample is
within the instantaneous tube. As detailed at the end of the
present Appendix, we choose the values of Ml dynamically,
depending on the current trend of the sojourn probability.

Numerical calculation of exit rate from sojourn probability.
The decay of the sojourn probability is quantified by the
instantaneous exit rate at which trajectories first leave the tube,
as defined in Eq. (2). To calculate the exit rate numerically,
we discretize Eq. (2) using the central difference scheme with
the same time step �t as used for the sample data. We then
evaluate the time-discretized expression using the measured
sojourn probability (B1).

Estimating the number of samples. The algorithm we use
to measure sojourn probabilities from simulations relies on
repeated random sampling of recorded time series. To choose
the number of drawn samples Ml efficiently, we employ the
same algorithm as used in Ref. [22]. More explicitly, at the be-
ginning of the lth repetition (l > 1) of the cloning algorithm,
we fit a linear function

αfit (t ) = a(t − l�T ) + b, (B2)

to the measured exit rate in the time interval [l�T −
�tfit, l�T ], where �tfit/τD = min{ 0.05,�T /τD}. This fit
quantifies the trend of the sojourn probability in the recent
past. We use the fitted exit rate to estimate the expected decay
of the sojourn probability for the next iteration duration �T ,
and choose Ml such that at the end of the iteration step we
expect to have Nfinal trajectories remaining inside the tube.
This leads to

Nfinal = Ml exp

[
−

∫ (l+1)�T

l�T
αfit (s)ds

]
, (B3)

⇐⇒ Ml = Nfinal exp

[
a
�T 2

2
+ b�T

]
. (B4)

Unless noted otherwise, we use M0 = 5 × 104 and Nfinal =
2 × 104 for all data shown in the present work.

APPENDIX C: SOJOURN-PROBABILITY MCMC
ALGORITHM FOR MEDIUM ENTROPY PRODUCTION

We now summarize the Metropolis-Hastings algorithm
[23], which we use for our Markov chain Monte Carlo
(MCMC) sampling of the transition path ensemble. We ap-
proximate the space of transition paths from x0 = (0, 0)
to x f = (L, L) by Eq. (13). We consider M = 15 two-
dimensional mode vectors, so that we run the MCMC
algorithm on a space of dimension d = 30.

Initialization. As initial condition for the MCMC algo-
rithm, we draw a random state a(0) = κη, with η a sample
from a d-dimensional normal distribution with vanishing
mean and unit covariance matrix, and κ = 1/10 a scaling
factor that determines the covariance of the initial state a(0);
we comment on our choice for κ at the end of the present
Appendix.

Monte Carlo step. In the kth MCMC step, a candidate
a′ for the subsequent state a(k+1) is proposed from the cur-
rent state a(k) via a′ = a(k) + κη, where η is drawn from a
d-dimensional normal distribution with vanishing mean and

unit covariance matrix, and we use the same scaling factor
κ = 1/10 as for the initialization. We subsequently evaluate
the log ratio of path probabilities for the paths corresponding
to a′, a(k),

ξ ≡ ln
P(a′)

P(a(k) )
≡ lim

R→0
ln

Pϕ(a′ )
R

Pϕ(a(k) )
R

, (C1)

by extrapolating the log ratio of measured finite-radius so-
journ probabilities to the limit R = 0 [22]. More explicitly,
for the paths corresponding to a′, a(k), we use the cloning al-
gorithm from Appendix B to measure the finite-radius sojourn
probabilities for tube radius R/L = 0.3, 0.5, 0.7. This yields

three data points for the finite-radius log ratio ln Pϕ(a′ )
R /Pϕ(a(k) )

R ,
which we extrapolate to zero by fitting f (R) = a + R2b and

using limR→0 ln Pϕ(a′ )
R /Pϕ(a(k) )

R ≡ a [22]. To determine whether
the proposed state a′ is accepted, we draw a random num-
ber u from a uniform distribution on [0,1]. If u � eξ ≡
P(a′)/P(a(k) ), we set a(k+1) = a′ as the next MCMC state;
otherwise we use a(k+1) = a(k) [23].

Evaluation of medium entropy production. The MCMC
algorithm yields a sequence of transition paths parametrized
by their expansion coefficients, i.e., (a(0), a(1), . . .). For ev-
ery fifth path we evaluate the medium entropy production
via Eq. (1). Since the forward path sojourn probabilities for
radius R/L = 0.3, 0.5, 0.7 have already been measured for
the MCMC step, we only need to evaluate the correspond-
ing backward path sojourn probabilities to obtain the entropy
production along the path. For every fifth path we therefore
measure the backward-path sojourn probabilities at radius
R/L = 0.3, 0.5, 0.7, then fit a quadratic function f (R) =
a + R2b to the log ratio ln Pϕ(a(k) )

R (t f )/Pϕ̃(a(k) )
R (t f ), and extrap-

olate to R → 0 as limR→0 ln Pϕ(a(k) )
R (t f )/Pϕ̃(a(k) )

R (t f ) ≡ a.
Numerical parameters for sojourn probabilities. For the

evaluation of all finite-radius sojourn probabilities in the
MCMC algorithm we use the time series from Appendix A
with θ = 1, and the algorithm from Appendix B with
M0 = 104 and Nfinal = 5 × 103.

To decrease the influence of initial conditions in the mea-
surement of the sojourn probability, as observed at the far ends
of Fig. 2(c), we do not use the delta-peak initial conditions
described in Appendix B. Instead, before starting the MCMC
algorithm, we for each radius R/L = 0.3, 0.5, 0.7, and each
of the points x0, x f , consider a constant path; i.e., we consider
circles of radius R around both the initial and final points.
We use the algorithm from Appendix B to let the delta-peak
initial condition relax to the respective steady-state absorbing-
boundary decay on those circles around x0, x f . We then use
the corresponding normalized spatial distributions as initial
conditions for each evaluation of the forward (backward) so-
journ probability in the MCMC algorithm.

To increase the number of samples, and to decrease cor-
relations among the samples, we run 90 independent MCMC
algorithms in parallel. We discard the first 1000 steps of each
MCMC run to account for the fact that the initial condition
a(0) might correspond to a very atypical transition path. After
subtracting the first 1000 steps, the MCMC data comprise
287 240 MCMC steps (the number of steps in the individual
MCMC runs ranges, after subtracting the first 1000 steps,
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FIG. 4. (a) The solid blue line is a replot of the medium-entropy-production distribution shown in Fig. 3(a), which is inferred using an
MCMC algorithm that uses measured sojourn probabilities; cf. Appendix C. The dotted magenta line displays the medium-entropy-production
distribution obtained from using the same MCMC algorithm, but evaluating ratios of path probabilities and the medium entropy production
using analytical expressions; cf. Appendix D. Consequently, the “OM” in the legend refers to the Onsager-Machlup action (7). Both algorithms
use the path-space parametrization (13) with M = 15. (b) The distribution of the medium entropy production for the ensemble of paths that
start at x0 = (0, 0) and at time t = τD are at x f = (L, L). Distributions are obtained using the theoretical MCMC algorithm from Appendix D,
with M = 15 [dotted magenta line, replot from panel (a)], M = 40 (dashed black line), and M = 50 (solid green line). (c) The solid green
line is a replot of the M = 50 data from panel (c). The dashed red line is a replot of the corresponding data from Fig. 3(a) and shows the
medium entropy production for the ensemble of paths that start at x0 = (0, 0) and at time t = τD are at x f = (L, L), obtained from evaluating
the formula (9) on trajectories generated from direct Langevin simulations. (d) The solid colored lines are replots of the corresponding data in
Fig. 3(b). The blue dotted and solid curves represent the mean path for the full ensemble of paths that move from x0 = (0, 0) to x f = (1, 1)
in a time t = τD. While the dash-dotted and solid orange lines show the mean over such paths with entropy production �sm � 20, the dashed
and solid green lines denote the mean for low-entropy production paths with �sm � −2. All solid lines are obtained from direct Langevin
simulation, the corresponding broken lines represent means for the N = 100 theoretical MCMC data; cf. panels (b) and (c).

from 1245 to 6295). Since we use only every fifth MCMC
step to calculate a sample for the medium entropy production,
our MCMC data in total yield 287 240/5 = 57 448 samples
for �sm.

We now briefly discuss our choice of the step size pa-
rameter κ . Preliminary MCMC runs showed that, for our
model system and parameters, in the subdomain of Rd for
which P(a) and the product �smP(a) are non-negligible, the
components of the vector a ∈ Rd are of order 1. This means
that if a typical MCMC step changes any component of the
vector a by a number much larger than 1, the algorithm will
frequently try to leave the relevant subdomain of Rd within a
single step, which leads to a low MCMC acceptance rate, and
hence a large number of MCMC steps necessary to explore the
relevant domain. On the other hand, if a typical MCMC step
changes the components of the vector a by only a number

much smaller than 1, it will take many steps to explore the
relevant domain.

The above heuristic arguments motivate our choice
κ = 1/10 for the MCMC step: The factor 1/10 means that in
each MCMC step we attempt to vary each vector component
of a on a scale one order of magnitude smaller as compared
to the relevant subdomain. Ultimately, the justification for our
choice of κ is that our MCMC data are reasonably converged,
as discussed in Appendix D and in particular in Fig. 4(a)
below.

We have chosen κ = 1/10 also in our initial condition so
as to be consistent with our MCMC step. Note that, since we
disregard the first 1000 steps of each MCMC run, the details
of the initial condition are in fact not important for our result,
as long as the initial values for each component of a(0) are of
the order of unity.
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APPENDIX D: FURTHER ANALYSIS OF THE DEVIATION
BETWEEN THE ENTROPY DISTRIBUTIONS OBTAINED
FROM SOJOURN-PROBABILITY MCMC AND DIRECT

LANGEVIN SIMULATIONS

In Fig. 3(a) we consider the distribution of the medium
entropy production, obtained (1) from the sojourn-probability
MCMC algorithm described in Appendix C and (2) from the
theoretical formula, Eq. (9), evaluated on directly simulated
Langevin trajectories. In the present Appendix, we demon-
strate that the slight differences in the two data sets can be
explained by the number of modes used in the parametrization
(13), which, for the MCMC data shown in Fig. 3, is M = 15.

For this, we consider a variation of the MCMC algorithm
described in Appendix C. In this variation, we do not use
recorded sample trajectories to evaluate ratios of path prob-
abilities and the entropy production, but instead use (1) the
difference in Onsager-Machlup actions (7) for log ratios of
path probabilities and (2) the analytical formula, Eq. (9), for
the medium entropy production. To distinguish it from the
data-driven MCMC algorithm described in Appendix C, we
in the following refer to this MCMC algorithm as “theoretical
MCMC”; here “theoretical” means that neither path proba-
bilities nor entropy productions are measured from data, but
rather evaluated using the corresponding analytical formulas
available for overdamped Langevin dynamics. We run the
theoretical MCMC using the same parameters for the cloning
algorithm as in Appendix C. For each parameter combination
considered below, we run 100 independent theoretical MCMC
realizations with 200 000 steps each, and evaluate the medium
entropy production for every MCMC step. We discard the
first 999 MCMC steps for each run, which means that for
each parameter combination, our theoretical MCMC ensem-
ble consists of in total 100 × (199 001) ≈ 1.99 × 107 data
points for �sm. Thus, for the theoretical MCMC we have two
orders of magnitude more MCMC paths as compared to the
data-driven MCMC results shown in Fig. 3, which is because
the theoretical MCMC is computationally much cheaper.

We now show that the deviations between the two curves
in Fig. 3(a) originate from the relatively low number of
modes we use, M = 15. For this, we consider the theoretical
MCMC with also M = 15 modes, i.e., the same number of
modes as used for the sojourn-probability MCMC in Fig. 3(a).
We compare the sojourn-probability and theoretical-MCMC
results in Fig. 4(a), where we observe that the distribu-
tions are very similar, with only minor deviations around
�sm ≈ 5. This indicates that the sojourn-probability MCMC
data are sufficiently converged, and that the deviations
from the direct Langevin simulations are due to the low-
dimensional approximation M = 15 of the path space. We
chose M = 15 in the main text as a compromise between
approximation error (which decreases with increasing M) and
convergence speed of the MCMC algorithm (which decreases
with increasing M).

We additionally run the theoretical MCMC algorithm for
M = 40 and M = 50 mode vectors, corresponding to N =
Md = 80, 100, respectively. The resulting distributions are
shown in Fig. 4(b), where we observe that the M = 15 data
slightly disagree with the M = 40, 50 results. This confirms
that the projection on only M = 15 modes leads to a distortion

of the actual distribution of the medium entropy production.
The distributions for M = 40 and M = 50 modes agree with
each other very well, so that we conclude that M � 40 modes
are enough to reproduce the actual distribution. Indeed, the
M = 50 theoretical MCMC data agree very well with the
direct Langevin results; see Fig. 4(c).

In Fig. 4(d) we finally compare the mean paths obtained
from direct Langevin simulations, shown in Fig. 3(b), to the
corresponding mean paths of the M = 50 theoretical MCMC
data. We observe that all three path pairs are in very good
agreement; this once again confirms the validity of the MCMC
algorithm.

APPENDIX E: ENTROPY PRODUCTION ALONG CLOSED
LOOPS IN A CIRCULAR DOUBLE WELL

We here consider a second example system. For a length
scale L and a timescale τ , we again consider the overdamped
Itô-Langevin Eq. (5) for dimension N = 2 with diffusivity
D = L2/T , so that τD ≡ L2/D = τ . We now consider a force
F,

F(x) = −(∇U )(x) + θ Fneq(x), (E1)

which is given as a sum of the gradient of a potential U
and an additional term Fneq which is nonconservative, i.e.,
does not admit a (global) potential. As in the main text,
the dimensionless parameter θ ∈ R controls the amplitude
of the nonconservative force, and for θ �= 0 this system is a
nonequilibrium system. For U we consider a sombrero poten-
tial superimposed with an angular double well, defined as

U (x) = U0

[( ||x||
L

)2

− 1

]2

+ U1

[
1 + cos(2φ)

2

1 + exp
(

1
10

)
1 + exp

( ||x||2
10L2

) − 1

]
,

(E2)

where ||x|| =
√

x2
1 + x2

2 , x1 = ||x|| cos(φ), x2 = ||x|| sin(φ);
we use βU0 = 5, βU1 = 2. This potential, which is illustrated
in Fig. 5(a), has local minima at x = (L, 0), (−L, 0) and
saddle points at x = (0, L), (0,−L). For the nonequilibrium
force we consider an angular force

1

T
Fneq(x) = 1

||x||2
(−x2

x1

)
, (E3)

which is illustrated as a quiver plot in Fig. 5(a).
For the force (E1), (E2), and (E3) and ϕ a closed loop, the

analytical entropy production (10) is given by

�sm[ϕ] = 2π�θ, (E4)

where � ∈ Z is the winding number which quantifies how
often the path ϕ winds counterclockwise around the origin
x = 0. Thus, for the particular nonequilibrium force (E3),
the theoretical entropy production (E4) is topological, i.e.,
depends on only the winding number and not on more details
of the path.
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FIG. 5. (a) The colored contours show the potential U defined in Eq. (E2). The nonequilibrium force Eq. (E3) is shown as black quiver
plot. The dashed yellow line denotes the path ϕ defined in Eq. (E5), and the yellow circle indicates an instantaneous ball of radius R/L = 0.2
around ϕ. The dotted red line denotes the path ψ defined in Eq. (E6). For both paths ϕ, ψ, arrows indicate the forward direction. (b) The black
line denotes the theoretical entropy production (E4) for � = 1. The colored symbols denote the entropy production obtained by evaluating the
right-hand side of Eq. (1) using extrapolated measured sojourn probabilities. The dots correspond to ϕ; the crosses are obtained using ψ. (c, d)
The solid colored lines denote the extrapolation to R → 0 of measured finite-radius exit-rate differences between forward and backward paths,
for several values of θ and the reference path (c) ϕ and (d) ψ. The broken colored lines denote the corresponding theoretical predictions given
by the right-hand side of Eq. (9), calculated using the force (E1). Numerical data are smoothed using a Hann window of width 0.005 τD.

We consider two circular paths

ϕt = L

(
cos(2πt/t f )
sin(2πt/t f )

)
, (E5)

ψt = L

(
cos

(
2πt2/t2

f

)
sin

(
2πt2/t2

f

)) + L

5

(
sin

(
10πt2/t2

f

)
sin

(
2πt2/t2

f

) )
, (E6)

where t ∈ [0, t f ] ≡ [0, τ ]. These paths, which both have a
winding number � = 1, are shown in Fig. 5(a) as yellow
dashed and dotted red lines.

For θ = 0, 0.5, 1, 1.5, 2 and R/L = 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5, we measure the entropy production along the
forward and reverse version of each path ϕ, ψ, using a vari-
ation of the cloning algorithm from Appendix B: Instead
of binning space, and creating a set of sample time series
beforehand, we run simulations on the fly. Initial conditions
for the (n + 1)-th iteration are then sampled from a uniform
distribution on the final positions of the trajectories that have

never left the tube in the nth iteration. Also here simulations
are run using the standard Euler-Maruyama, but since we now
consider smaller tube radii, we also use a smaller time step
�t/τD = 10−5 as well as shorter iteration times �T /τD =
0.005. We furthermore use M0 = Nfinal = 105 and a delta-peak
initial condition at the initial tube center.

We extrapolate the resulting measured finite-radius exit-
rate differences between forward and reverse paths R = 0 as
described in the main text, and in Figs. 5(c) and 5(d) we
show that the result agrees well with the theoretical predic-
tion (9) along the paths. Finally, in Fig. 5(b) we compare
the negative temporal integral of the extrapolated exit-rate
differences with the expected theoretical entropy production,
and find that the numerical and theoretical results agree very
well. Thus, also this second example confirms that Eqs. (1)
and (3) can be used to infer and analyze the medium en-
tropy production along individual paths directly from exit
rates.
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