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The canonical ensemble plays a crucial role in statistical mechanics in and out of equilibrium. For example,
the standard derivation of the fluctuation theorem relies on the assumption that the initial state of the heat bath
is the canonical ensemble. On the other hand, the recent progress in the foundation of statistical mechanics has
revealed that a thermal equilibrium state is not necessarily described by the canonical ensemble but can be a
quantum pure state or even a single energy eigenstate, as formulated by the eigenstate thermalization hypothesis
(ETH). Then a question raised is how these two pictures, the canonical ensemble and a single energy eigenstate
as a thermal equilibrium state, are compatible in the fluctuation theorem. In this paper, we theoretically and
numerically show that the fluctuation theorem holds in both of the long- and short-time regimes, even when
the initial state of the bath is a single energy eigenstate of a many-body system. Our proof of the fluctuation
theorem in the long-time regime is based on the ETH, while it was previously shown in the short-time regime on
the basis of the Lieb-Robinson bound and the ETH [Phys. Rev. Lett. 119, 100601 (2017)]. The proofs for these
time regimes are theoretically independent and complementary, implying the fluctuation theorem in the entire
time domain. We also perform a systematic numerical simulation of hard-core bosons by exact diagonalization
and verify the fluctuation theorem in both of the time regimes by focusing on the finite-size scaling. Our results
contribute to the understanding of the mechanism that the fluctuation theorem emerges from unitary dynamics
of quantum many-body systems and can be tested by experiments with, e.g., ultracold atoms.

DOI: 10.1103/PhysRevE.105.044106

I. INTRODUCTION

Conventional statistical mechanics relies on the concept
of ensembles, such as the microcanonical ensemble and the
canonical ensemble. These are characterized as the maximum
entropy states under certain energy constraints [1] and thus
given by statistical mixtures of enormous energy eigenstates.
The canonical ensemble plays a crucial role even beyond
equilibrium situations. For example, we can prove the second
law of thermodynamics and the fluctuation theorem [2–13]
out of equilibrium of the system, by relying on the assumption
that the initial state of the heat bath is in the canonical ensem-
ble. Here the fluctuation theorem is a universal relation that
incorporates the role of fluctuations of the entropy production,
represented as 〈e−σ 〉 = 1 where σ is the stochastic entropy
production. The fluctuation theorem implies the second law at
the average level, stating that the average entropy production
is nonnegative:

〈σ 〉 := �SS − βQ � 0, (1)

where �SS is the change of the von Neumann entropy of the
system, β is the inverse temperature of the heat bath, and Q
is the average heat emitted from the bath. We note that the
fluctuation theorem reproduces the second law through the
Jensen inequality 〈e−σ 〉 � e−〈σ 〉.

On the other hand, in recent years, it has been
established that most states, not limited to those ensembles

(maximum entropy states), can represent thermal equilibrium
states [14–26]. The extreme case opposite to the canonical
ensemble is zero entropy states such as a single energy eigen-
state; the eigenstate thermalization hypothesis (ETH) [27–43]
states that a single energy eigenstate can represent a thermal
equilibrium state. The ETH is a sufficient condition for ther-
malization in isolated quantum many-body systems [27–29]
and numerically shown to be valid in various nonintegrable
quantum many-body systems [29–43]. Furthermore, in recent
experiments such as cold atoms [19–24], trapped ions [25],
and superconducting qubits [26], it has been observed that
thermal equilibrium states are not necessarily canonical en-
sembles but can be pure states.

A critical question here is how universally the thermody-
namic properties appear without canonical ensembles, even
in nonequilibrium situations. In particular, it is interesting to
investigate the validity of the fluctuation theorem: The ques-
tion focuses on whether it is possible to understand how the
fluctuation theorem and the second law emerge from quan-
tum mechanics without assuming the conventional statistical
ensembles.

A partial understanding of the above question has been
addressed in recent papers. Specifically, Ref. [44] theoreti-
cally showed the fluctuation theorem (and the second law)
in the short-time regime, which is based on the ETH and the
Lieb-Robinson bound [45–47]. We note that in the numerical
simulation of Ref. [44], the initial state of the system was
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chosen to be a pure state, and the fluctuation theorem was
apparently broken in the long-time regime. This apparent
breakdown originates from so-called absolute irreversibil-
ity [48,49] induced by the pure initial state, and as will be
shown in this paper, the fluctuation theorem still holds in the
long-time regime if absolute irreversibility is properly treated.
Moreover, Ref. [50] theoretically showed the second law at
the average level in the long-time regime on the basis of the
ETH. Also in previous papers [51,52], it has been numerically
suggested that the fluctuation theorem holds even in the long-
time regime. Given these researches, it is desirable to make a
comprehensive understanding of the validity of the fluctuation
theorem in the entire time domain.

The main result of this paper is to show, analytically and
numerically, that the fluctuation theorem holds with the non-
canonical bath in both of the short- and long-time regimes.
Specifically, the initial state of the bath is supposed to be
a single energy eigenstate sampled from an energy shell.
This establishes that the universal property of nonequilibrium
fluctuations in entropy production emerges even without the
canonical ensemble. In particular, since we prove the fluc-
tuation theorem for the extreme case with a single energy
eigenstate, the fluctuation theorem holds when the initial state
of the bath is any mixture of energy eigenstates in the energy
shell.

We discuss the entire time domain by considering the
long- and short-time regimes. We theoretically show that
the long-time average of the deviation from the fluctuation
theorem vanishes in the thermodynamic limit of the heat
bath. We also perform numerical simulations and show that
the deviation decreases with the bath size N . On the other
hand, Ref. [44] theoretically showed the fluctuation theo-
rem for the short-time regime in the thermodynamic limit
on the basis of the Lieb-Robinson bound and the ETH.
While the theory of Ref. [44] is valid in the thermodynamic
limit, the fluctuation theorem in the short-time regime for the
numerically-accessible system size was not fully established
in Ref. [44] because of the large finite-size effect. In the
present paper, we perform systematic numerical calculations
to clarify whether the theoretical scenario is indeed relevant
for the numerically accessible system size. In particular, we
numerically investigate the bath-size dependence of the error
term of the fluctuation theorem, which eventually excludes
other scenarios than the theoretical scenario of Ref. [44].

The rest of this paper is organized as follows. In Sec. II
we introduce the setup of this study. In Sec. III we overview
the main results of this paper without going into details. In
Sec. IV we theoretically derive the fluctuation theorem in the
long-time regime and show our numerical results to support
the theory. In Sec. V we discuss the fluctuation theorem in
the short-time regime and show the corresponding numerical
results. In Sec. VI we summarize the results and make some
remarks. In Appendix A we introduce the concept of absolute
irreversibility [48,49]. In Appendix B we examine the details
of the interaction-induced error of the fluctuation theorem. In
Appendix C we show that the interaction-induced error van-
ishes under the rotating wave approximation. In Appendix D
we discuss another naive approach to show the fluctuation the-
orem. In Appendix E we discuss the initial time dependence
of the errors of the fluctuation theorem. In Appendix F we

explain the details of the proof of the fluctuation theorem in
the long-time regime. In Appendix G we show the additional
calculations for the interaction-induced error. In Appendix H
we show the supplementary numerical results.

II. SETUP

In this section we introduce the setup of the study. In
Sec. II A we explain the conventional setup for the fluctuation
theorem with the canonical bath and briefly overview the fluc-
tuation theorem [2–13]. In Sec. II B we explain the setup of
the present study with the energy eigenstate bath. In Sec. II C
we explain the setup of our numerical simulation.

A. Fluctuation theorem for the canonical bath

As a preliminary, we consider the conventional setup of
the fluctuation theorem. The total system is composed of the
system S and the heat bath B. The Hamiltonian of the total
system is written as

H := HS + HI + HB, (2)

where HS, HB are the Hamiltonian of system S and bath B,
respectively, and HI( �= 0) describes the interaction between S
and B. The initial state of the total system SB is assumed to
be a product state:

ρ(0) := ρS(0) ⊗ ρB(0). (3)

We also define the canonical ensembles of system S and
bath B as ρcan

S := e−βHS/ZS with ZS := trS[e−βHS ] and ρcan
B :=

e−βHB/ZB with ZB := trB[e−βHB ], respectively.
The time evolution of the total system is given by ρ(t ) =

UρS(0) ⊗ ρB(0)U †, where U (t ) := e−iHt/h̄ is the unitary time
evolution operator. We write the reduced density operator of
system S and bath B at time t as ρS(t ) := trB[ρ(t )], ρB(t ) :=
trS[ρ(t )], respectively.

In this setup, we explain the concept of the stochastic
entropy production σ [7]. To introduce it, let us consider
an operator σ (t ) := − ln ρS(t ) + βHB (see [9,53,54] for the
same approach to the stochastic entropy production). The first
term on the right-hand side is the informational contribution,
whose average is the von Neumann entropy of the system
SS(t ) := −trS[ρS(t ) ln ρS(t )]. We note that such an informa-
tional contribution has been experimentally investigated in
quantum systems [55,56]. The second term of σ (t ) is the
thermal contribution that gives the heat term.

While σ (t ) is not an ordinary physical observable because
it depends on the state ρS(t ), the above definition of σ (t )
enables us to treat various physically relevant situations in
a unified manner. One of typical situations is that the initial
state of system S is the canonical ensemble, in which the
measurement of σ (t ) is equivalent to the measurement of en-
ergy, because − ln ρcan

S = βHS + ln ZS. If we do not have any
prior knowledge about the state of the system, we can measure
− ln ρS(t ) by performing quantum state tomography of ρS (t )
beforehand [57]. In fact, by quantum state tomography, we
obtain the information about the eigenbasis of ρS (t ) and its
eigenvalues. Then we can perform the projection measure-
ment of the eigenbasis and associate an eigenvalue with the
outcome.
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We consider the projection measurement of σ (t ) at time
0 and t . Let the measurement outcomes be σi at t = 0 and
σf at t . We then define the stochastic entropy production
σ as σ := σf − σi, whose average 〈σ 〉 = �SS − βQ is the
average entropy production of the total system. Here Q is
the heat emitted from bath B to system S, defined as Q :=
−trB[HB(ρB(t ) − ρB(0))].

For the conventional fluctuation theorem, the initial state of
bath B is assumed to be the canonical ensemble ρB(0) = ρcan

B .
The fluctuation theorem states that

〈e−σ 〉 = 1. (4)

It is straightforward to show [7] that 〈e−σ 〉 can be rewritten as

〈e−σ 〉 = tr
[
e−βHBUeβHBρcan

B U †ρcan
S (t )

]
. (5)

Substituting ρcan
B = e−βHB/ZB, we obtain

〈e−σ 〉 = tr

[
e−βHBUeβHB

e−βHB

ZB
U †ρcan

S (t )

]
(6)

= tr

[
e−βHB

ZB
UU †ρcan

S (t )

]
(7)

= tr
[
ρcan

S (t ) ⊗ ρcan
B

]
(8)

= 1. (9)

We note that if absolute irreversibility [48,49] occurs, the
fluctuation theorem is modified (see details in Appendix A).
Absolute irreversibility is an apparent violation of the fluc-
tuation theorem that occurs when ρS (0) does not have the
full rank [e.g., ρS (0) is a pure state]. The modification term
appears in the form of

〈e−σ 〉 = 1 − λ(t ). (10)

See Appendix A for details. Absolute irreversibility can be
understood as a kind of singularity about the initial state of
system S. We emphasize that this is not a purely mathematical
problem, but can be observed experimentally [55].

B. Fluctuation theorem for the energy eigenstate bath

In this subsection, we introduce the setup of the fluctuation
theorem for the energy eigenstate bath, which will be shown
as the main result of the present paper.

The total system is composed of system S and bath B in
the same manner as the setup for the conventional fluctuation
theorem, while in the present setup, bath B is defined on a
lattice as shown in Fig. 1. We assume that the Hamiltonian of
bath B is local and system S interacts with a local region of
B by the interaction HI. Let N be the number of sites in bath
B, and d = 1, 2, 3, . . . be the spatial dimension of it. The size
of system S and the support of HI are fixed and do not depend
on N . We refer to the dimensions of the Hilbert space of S, B,
and the total system SB as DS, DB, and DSB, respectively. We
denote an eigenstate of H with eigenenergy Ea as |Ea〉. In the
same manner, we denote eigenstates of HS, HB as |ES

i 〉, |EB
α 〉,

respectively. We denote a matrix element of an operator with
respect to the eigenstates of H as (· · · )ab := 〈Ea| · · · |Eb〉. We
also define an operator of system S as qi j

S := |ES
i 〉〈ES

j |.
In the present paper, we consider the thermodynamic limit

that means the large-bath limit (N → ∞) without changing

FIG. 1. The setup of our study. The total system consists of the
system S and the heat bath B. The system S interacts with a local
(bounded) region of B, and the interaction in B is also local. The
bath B is defined on a d-dimensional lattice. We denote the number of
sites of B by N and the dimension of the Hilbert space of B by DB. We
also consider an energy shell of B, whose Hilbert-space dimension is
D. See the inset of Fig. 2 for the specific lattice used in our numerical
simulation.

system S. To describe asymptotic behaviors of this limit, we
use the following asymptotic notations:

f (D) = �(g(D)) ⇔ 0 < lim
D→∞

∣∣∣∣ f (D)

g(D)

∣∣∣∣ < ∞, (11)

f (D) = O(g(D)) ⇔ lim
D→∞

∣∣∣∣ f (D)

g(D)

∣∣∣∣ < ∞, (12)

f (D) = o(g(D)) ⇔ lim
D→∞

∣∣∣∣ f (D)

g(D)

∣∣∣∣ = 0. (13)

We define the operator norm ‖X‖ as the largest singular value
of X and the trace norm ‖X‖1 as the sum of the singular values
of X . For the sake of simplicity, we use A 
 B for operators
A and B to represent that ‖A − B‖ = o(1) or ‖A − B‖1 = o(1)
depending on the context.

The initial state of SB is assumed to be a product state as
in (3). We also assume that the initial state of S is diagonal
with respect to HS, because it simplifies the discussion of the
time dependence in Secs. III and V.

Now, a crucial assumption is that the initial state of bath
B is a single energy eigenstate, which is sampled from the
energy shell [E − �E , E ]. The energy E is given by E :=
trB[ρcan

B HB] with the canonical ensemble at inverse tempera-
ture β. The width �E can be chosen as �(1) � �E � �(N ),
which gives the normal thermodynamic scaling D = exp(sN )
with the entropy density s [58].

We next summarize the assumptions regarding the ETH,
as summarized in Table I. For the proof of the fluctuation
theorem in the long-time regime (Sec. IV), we assume that
H satisfies the ETH for all the eigenstates in the energy shell
(the “strong” ETH) with respect to all observables of system
S and HI. Here we can introduce the energy shell of H , which
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TABLE I. The assumptions regarding the ETH.

Time regime (section) Long-time regime (Sec. IV) Short-time regime (Sec. V)

Which ETH The diagonal and off-diagonal ETH of H The diagonal ETH of HB

For which eigenstates All the eigenstates Only for the given initial state of B

is determined by the energy and energy width of the initial
state (3) (see details in Appendix F). Specifically, we assume
the (strong) diagonal and off-diagonal ETH [18,27–29] for all
observables of system S and HI, written as OSI, stating that the
following relations hold for all the eigenstates in the energy
shell:

〈Ea|OSI|Ea〉 = 〈OSI〉MC + O(D′−1/2), (14)

|〈Ea|OSI|Eb〉| = O(D′−1/2) (a �= b), (15)

where 〈·〉MC is the microcanonical average of the energy shell
of H . Since the size of system S is �(1), the dimension of the
energy shell D′ (< DSB) satisfies D′ = �(D).

In Sec. V we discuss the fluctuation theorem in the short-
time regime, which has been theoretically proved in Ref. [44].
Here we assume the diagonal ETH of HB:〈

EB
a

∣∣LB0

∣∣EB
a

〉 = 〈LB0〉MC,B + O(D−1/2), (16)

where 〈·〉MC,B is the microcanonical average of the energy
shell [E − �E , E ], D (< DB) is the dimension of the Hilbert
space of the energy shell of HB, and LB0 is a quasilocal oper-
ator defined in Sec. V. We note that Eq. (16) is assumed only
for the given initial state |EB

a 〉 of B.
We remark on the validity of the ETH. It has been

numerically shown that the strong ETH holds in various non-
integrable quantum many-body systems [29–43], while it does
not hold in the presence of quantum many-body scar [59] and
in integrable systems [32]. The assumptions (14) and (15) rely
on the strong ETH of the local operator OSI. On the other
hand, the ETH for a given single energy eigenstate can be
valid even in integrable systems [30,44]. In fact, it has been
shown that almost all energy eigenstates in the energy shell
satisfy the ETH even in integrable systems [44,60,61]. This is
true even for quasilocal operators such as LB0 in Eq. (16) [44].
Specifically, if the support size of a quasilocal operator in-
creases as Nα (0 < α < 1/2), it satisfies the ETH for almost
all energy eigenstates as proven in Ref. [44]. This theorem ap-
plies to integrable systems but requires translation invariance.
We note that a consistent observation has been made in terms
of the entanglement properties of integrable systems [62,63].
We also note that the ETH for typical energy eigenstates does
not hold in many-body localized (MBL) systems that break
translation invariance [64,65].

Meanwhile, in the following sections, we sometimes con-
sider the following condition for the interaction Hamiltonian:

[HS + HB, HI] = 0, (17)

which simplifies the derivation of the fluctuation theorem.
Under this condition, the sum of the energies of system S and
bath B does not change, and we can rewrite the heat Q by the
energy change in system S. We note that the interaction itself
(i.e., ‖HI‖) is not necessarily small for the condition (17) to

hold. While the condition (17) is satisfied in simple models
such as the Jaynes-Cummings model at the resonant condi-
tion [66], it is not necessarily satisfied in generic quantum
many-body systems.

When the condition (17) is not satisfied, an error term in-
duced by the interaction can appear in the fluctuation theorem.
It is noteworthy, however, that Eq. (17) is approximately satis-
fied under the rotating wave approximation [66], which holds
well even for many-body systems in a long-time regime where
high-frequency oscillations can be neglected. In Appendix C
we show that

‖[HS + HB, HI]‖ = o(1) (18)

holds by using the rotating wave approximation and the off-
diagonal ETH. Intuitively, the rotating wave approximation
ensures the energy conservation without including the inter-
action energy, i.e., it prohibits transitions between eigenstates
of HS + HB, implying that HI becomes commutable with
HS + HB.

C. Hamiltonian for numerical simulation

In this subsection, we explain the setup of our numerical
simulation discussed in Secs. III, IV, and V.

We perform numerical calculations of hard-core bosons
with nearest-neighbor repulsion using numerically exact di-
agonalization. System S is a single site, and bath B is on a
two-dimensional lattice. The Hamiltonian is given by

HS := ωn0, (19)

HI := −γ ′ ∑
〈0, j〉

(c†
0c j + c†

j c0), (20)

HB := ω

N∑
i=1

ni − γ
∑
〈i, j〉

(c†
i c j + c†

j ci ) + g
∑
〈i, j〉

nin j, (21)

where ω is the onsite potential, −γ is the hopping in bath
B, −γ ′ is the hopping between system S and bath B, and
g > 0 represents repulsion between hard core bosons. We
note that 〈i, j〉 means the sum over the nearest-neighbor sites.
Hard core bosons cannot exist simultaneously on a single
site, and their annihilation (creation) operator ci (c†

i ) satis-
fies the commutation relations [ci, c j] = [c†

i , c†
j ] = [ci, c†

j ] =
0 for i �= j, {ci, ci} = {c†

i , c†
i } = 0, and {ci, c†

i } = 1. The oc-
cupation number operator is defined as ni := c†

i ci. The site
of i = 0 corresponds to system S. We set bath B as a two-
dimensional square lattice with the open boundary condition,
and the bath size N is written as N = Lx × Ly. The operator
of the particle number in bath B is written as nB := ∑N

i=1 ni.
The Hamiltonian H is nonintegrable when g �= 0, γ �= 0, and
γ ′ �= 0.
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We write the initial state of system S as

ρS(0) := p|1〉〈1| + (1 − p)|0〉〈0|, (22)

where |nS〉 is the eigenstate of n0 and satisfies n0|nS〉 =
nS|nS〉 (nS = 1, 0). In order to avoid absolute irreversibility,
we choose ρS(0) to be a mixed state by setting p = 0.99 in
our numerical simulation. See Appendixes A and F 3 for the
case with absolute irreversibility. We define the change of the
particle number in S as

δnS := trS[n0(ρS(t ) − ρS(0))]. (23)

The initial state of bath B is an energy eigenstate of HB

with a particle number NP, which samples from the energy
shell [E − �E , E ]. We write the width of the energy shell as
�E = NδE with δE be a positive constant and set δE = 0.02
in our numerical simulation. We perform the calculation of
the fluctuation theorem for each energy eigenstate in the en-
ergy shell and investigate the dependence of the error of the
fluctuation theorem on the bath size and the initial state of
bath B. We define the inverse temperature of |EB

α 〉 as βα satis-
fying EB

α = trB[ρcan
B (βα )HB], where we explicitly write the β

dependence of the canonical ensemble. The onsite potential
ω is determined such that the canonical expectation of the
particle number of the bath equals NP: trB[nBρcan

B ] = NP. We
set ω as above, because the ETH is satisfied only within each
particle number sector, and NP should be close to the canonical
expectation number. To investigate the bath-size dependence,
we set Lx = 3, Ly = 3, 4, 5 and NP = N/3.

III. OVERVIEW OF THE RESULTS

In this section, we give an overview of the main results of
this paper: The fluctuation theorem holds in both the long-
and short-time regimes (as defined below) in the setting of the
previous section. The proof of the fluctuation theorem in the
long-time regime is based on the ETH of H (Sec. IV). Also,
the fluctuation theorem in the short-time regime has been
shown on the basis of the ETH of HB and the Lieb-Robinson
bound [44] (Sec. V). The proofs of the fluctuation theorem in
these time regimes are theoretically independent of each other
and play complementary roles. Our systematic numerical cal-
culations about the bath-size dependence support the theories
in both of the long- and short-time regimes.

This section is organized as follows. In Sec. III A we show
the numerical result of the real-time dynamics and define the
errors of the fluctuation theorem. In Secs. III B and III C we
explain the results on the fluctuation theorem in the long- and
short-time regimes, respectively. In Sec. III D we comment on
the two time regimes.

A. Errors of the fluctuation theorem

We first demonstrate whether the fluctuation theorem (4)
holds or not by numerically investigating the real-time dy-
namics. Figure 2 shows the time dependence of 〈e−σ 〉, which
implies that 〈e−σ 〉 
 1 holds in the entire time domain. The
right inset of Fig. 2 shows the time dependence of the error of
the fluctuation theorem |〈e−σ 〉 − 1|. The error increases until
the relaxation time of the system S (t ∼ 1) and then saturates.
Qualitatively the same behavior is seen with other interacting

FIG. 2. The time dependence of 〈e−σ 〉. The right inset shows the
time dependence of the error of the fluctuation theorem |〈e−σ 〉 − 1|,
whose initial rise is proportionate to t2. The left inset is a schematic
of the total system used in numerical calculations. Parameters: p =
0.99, g = 0.1γ , γ ′ = 0.1γ (purple), γ (green), 4γ (blue). The initial
state of the bath is the energy eigenstates of HB, whose energy is
maximum in the energy shell at β = 0.1. The onsite potential ω is
determined by trB[nBρcan

B ] = NP.

parameters (see Appendix H), and Fig. 3 is a schematic of the
typical time dependence of |〈e−σ 〉 − 1|.

We denote 〈e−σ 〉 when the initial state of bath B is ρB(0)
(resp. ρcan

B ) by G (resp. Gcan). We define G and Gcan as

G := tr[e−βHBUeβHBρB(0)U †ρS(t )], (24)

Gcan := tr
[
e−βHBUeβHBρcan

B U †ρcan
S (t )

] = 1, (25)

where ρcan
S (t ) is the reduced density operator of system S

defined as ρcan
S (t ) := trB[UρS(0) ⊗ ρcan

B U †]. Below we focus
on the error of the fluctuation theorem G − Gcan.

In the case where Eq. (17) holds, HB in G and Gcan can be
replaced by −HS, and correspondingly we define

GS := tr[eβHSUe−βHSρB(0)U †ρS(t )], (26)

Gcan
S := tr

[
eβHSUe−βHSρcan

B U †ρcan
S (t )

]
. (27)

FIG. 3. Sketch of a typical time dependence of |〈e−σ 〉 − 1|,
which initially rises in proportionate to t2 and relaxes to the long-time
average in t � τrelax. We refer to the time regime after the relaxation
as the long-time regime. We also call the sufficiently shorter time
regime than the Lieb-Robinson time τLR (38) the short-time regime
(t  τLR).
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Using the Baker-Campbell-Hausdorff formula for
e−β(HS+HB )Ueβ(HS+HB ), we can show G = GS and Gcan = Gcan

S
under Eq. (17), and the error of the fluctuation theorem is
written as

G − Gcan = GS − Gcan
S . (28)

With the above argument, we define the error of the fluctu-
ation theorem in the general case as

G − Gcan = δGS + δGI, (29)

where we define

δGS := GS − Gcan
S , (30)

δGI := G − Gcan − δGS (31)

= G − GS + Gcan
S − Gcan (32)

= δG(1)
I + δG(2)

I , (33)

δG(1)
I := G − GS, (34)

δG(2)
I := Gcan

S − Gcan. (35)

We refer to δGI as the interaction-induced error.
As argued above, δGI = 0 holds under Eq. (17). Even

if Eq. (17) does not hold, the interaction-induced error δGI

satisfies

|δGI| = o(1) (36)

under the rotating wave approximation and the off-diagonal
ETH (see Appendix C). We also note that δGI = 0 holds
without the rotating wave approximation when ρB(0) = ρcan

B ,
even if Eq. (17) does not hold. See also Appendix B for the
form of δGI.

We have decomposed the error of the fluctuation theorem
into δGS and δGI. If we try to show the error without the
decomposition, we cannot show that the error vanishes in the
thermodynamic limit (see Appendix D).

B. Long-time regime

We consider the fluctuation theorem in the long-time
regime. In this paper, we prove that 〈e−σ 〉, the long-time
average of 〈e−σ 〉, nearly equals 1 in the large-bath limit. Note
that we denote the long-time average of any quantity O(t ) as

O(t ) := lim
T →∞

1

T

∫ T

0
O(t ) dt . (37)

In the special case that the condition (17) is satisfied, we can
prove that |〈e−σ 〉 − 1| = o(1) holds, where the right-hand side
represents the asymptotic behavior with respect to the bath
size N .

If Eq. (17) is not strictly satisfied, the interaction-induced
error δGI defined in Sec. III A can generally appear in the
fluctuation theorem. However, the interaction-induced error
vanishes in the thermodynamic limit under the rotating wave

approximation, which holds well in the long-time regime (see
Appendix C for details).

In the absence of localization [64,65] or persistent oscilla-
tions [59], 〈e−σ 〉 relaxes to the long-time average 〈e−σ 〉 after
the finite relaxation time τrelax. We refer to the regime of t
satisfying τrelax � t as the long-time regime. We argue that the
relaxation time satisfies τrelax = �(1) with respect to the bath
size N for the following reason. The relaxation of 〈e−σ 〉 can
be associated with observables of system S, because under the
condition (17), the heat Q is replaced by the energy change of
system S. Under physically reasonable conditions, the relax-
ation time of observables of system S is �(1) when the initial
state of bath B is the microcanonical ensemble [67]. We note
that even when the condition (17) does not strictly hold, we
can replace the heat Q under the rotating wave approximation,
which again implies the relaxation time of �(1). We note that
Ref. [68] showed that the relaxation time is independent of the
size of the total system if the Hamiltonian is random, and that
numerical results consistent with the random Hamiltonians
have been obtained with realistic models [69,70]. In summary,
we argue that τrelax = �(1) holds in our setup, which is con-
sistent with our own numerics as well.

We briefly remark on absolute irreversibility (see
Appendixes A and F 3 for details). As mentioned in the in-
troduction, the numerical calculations in Ref. [44] showed
that 〈e−σ 〉 is smaller than 1 in the long-time regime, which
was argued to be a violation of the fluctuation theorem. As a
matter of fact, this is due to the numerical setup of Ref. [44]
that the initial state of system S is a pure state, causing ab-
solute irreversibility. That is, the reason why the fluctuation
theorem in the long-time regime appeared to be broken in the
numerical calculations of Ref. [44] is that the correction term
λ in Eq. (10) was not taken into account, while the numerical
calculation itself is correct. In the present paper, we prove and
numerically show that the fluctuation theorem holds in the
long-time regime with absolute irreversibility and the energy
eigenstate bath if the correction term λ is taken into account.
Finally, we remark that there is an alternative approach to
make the fluctuation theorem hold by regularizing the pure
initial state [71].

C. Short-time regime

We next consider the short-time regime. To define the
short-time regime in line with Ref. [44], we divide bath B
into B0 and B1, where B0 is near S and B1 is far from S
(see Fig. 4). We refer to the boundary between B0 and B1

as ∂B, and the size of B0 is set to be �(Nμd ) [0 < μ <

1/(2d )]. Then the short-time regime is defined as t  τLR.
Here τLR is the Lieb-Robinson (LR) time introduced by the
Lieb-Robinson bound [45–47], which, in the present case,
represents a timescale that the information of S reaches B1.
Specifically, under the above choice of the size of B0, the LR
time is given by

τLR = �(Nμ). (38)

Again in the special case that the condition (17) is satisfied,
|〈e−σ 〉 − 1| = o(1) holds in the short-time regime, as shown
in Ref. [44] on the basis of the Lieb-Robinson bound and
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FIG. 4. Division of bath B used in the discussion of the short-
time regime in Sec. V. We divide bath B into the near part (B0)
and the far part (B1). The size of B0 depends on N as �(Nμd ) [0 <

μ < 1/(2d )]. System S interacts with a part of B0. From the
Lieb-Robinson bound, we introduce the Lieb-Robinson time τLR =
�(Nμ), at which the information of system S reaches B1. We note
that the velocity of the information propagation does not depend
on N .

the ETH. Even when the condition (17) does not hold, we
show that the interaction-induced error vanishes within the
perturbation theory at high temperature if the initial state of
bath B satisfies the ETH (see Appendix G 2).

In the present paper, to show the validity of the fluctuation
theorem in the short-time regime, we perform systematic nu-
merical calculations of the bath-size dependence of the error
of the fluctuation theorem. Our results in Sec. V show that the
error decreases as N increases, which supports the validity of
the fluctuation theorem.

We note that the error of the fluctuation theorem is 0 at t =
0 and initially increases in proportion to t2 as shown in Fig. 3.
We theoretically show this time dependence in Appendix E.
In Sec. V, assuming that the error of the fluctuation theorem
initially grows in the form of at2 with a being a t-independent
coefficient, we numerically show that this coefficient a de-
creases as the bath size increases, implying a = o(1).

We note, as a side remark, that the time dependence of the
change of the particle number in S (23) also initially takes the
form of ant2 with an being a t-independent coefficient. In this
case, we observe that the bath-size dependence of an is just
an = �(1). The bath-size independence of an contrasts with
the error of the fluctuation theorem a = o(1), implying that
the ETH plays a crucial role only for the latter.

D. On the two time regimes

We emphasize that the short- and long-time regimes are
defined and analyzed theoretically independently. The short-
time regime is defined by the Lieb-Robinson time, which
increases at most linearly with the bath size, while the long-
time regime is defined by coincidence with the long-time
average, which covers a very long timescale characterized
by the quantum recurrence time that increases doubly expo-
nentially with the bath size [72–74]. From the argument in
Secs. III B and III C, the short- and long-time regimes have
an overlap and thus cover the entire time domain as shown in
Fig. 3, when the bath size is sufficiently large (see also Sec.
V A).

Suppose that the time evolution of the error is given as
in Fig. 3, i.e., the error of the fluctuation theorem initially

increases in t2 and relaxes monotonically to the long-time
average after the N-independent relaxation time. Then the
fluctuation theorem in the long-time regime implies that in
the short-time regime, and vice versa. In general, however,
the fluctuation theorem in these time regimes is theoretically
shown independently, and the respective theorems together
show the fluctuation theorem in the entire time domain.
In fact, only from the fluctuation theorem in the long-time
regime, we cannot exclude the situation that the error is not
monotonic like Fig. 3, but overshoots to a value larger than
o(1) after a time evolution of t2 and then relaxes to the
long-time average. This possibility can be excluded from the
fluctuation theorem in the short-time regime.

Let us discuss the timescales of real experimental setups.
For example, in Ref. [75], real-time dynamics of ultracold
atoms has been experimentally studied over about 300τ with
τ being the tunneling time. On the other hand, the Lieb-
Robinson time τLR is estimated as τLR ∼ �τ , where � = N1/4

is the distance between S and B1. As the experiment is per-
formed in the two-dimensional system where the site number
is N ∼ 250, the Lieb-Robinson time is evaluated as 4τ . Thus,
the Lieb-Robinson time is reasonably longer than the exper-
imental time resolution, while it is much shorter than the
experimentally tractable time regime. In such an experimen-
tal setup, therefore, the theories for the short- and long-time
regimes are both necessary to address the entire time domain.
On the other hand, we note that the Lieb-Robinson time is
too short in our numerical setup of Sec. II C for the short-time
regime to be clearly visible, because our system size is small
due to the limitation of numerical accessibility (N ∼ 15). Our
theory for the short-time regime as well as for the long-time
regime is more relevant to real-experimental setups with cur-
rent or the near-future technologies, where the system sizes
can be much bigger than numerics.

IV. LONG-TIME REGIME

In this section we theoretically and numerically show the
fluctuation theorem in the long-time regime. In Sec. IV A
we discuss the long-time average and the relaxation time to
the long-time average. In Sec. IV B we outline the proof of
the fluctuation theorem. In Sec. IV C we show our numerical
results are consistent to our theory.

A. Long-time average

In this subsection, we consider the long-time average of
δGS = GS − Gcan

S and discuss the relaxation times of δGS and
δGI.

To analyze the long-time average of GS, we first write GS

as follows:

GS := tr[eβHSUe−βHSρB(0)U †trB[UρS(0) ⊗ ρB(0)U †]].
(39)

We note that Eq. (39) contains four unitary operators.
Then, under no degeneracy and the nonresonance condi-

tion [i.e., Ea − Eb + Ec − Ed = 0 holds only when the pair
of indexes (a, c) equals (b, d )], the long-time average of GS
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can be written as GS = GS1 + GS2. Here GS1 and GS2 are
defined as

GS1 := ZS

∑
a,c

trS
[
eβHS trB

[
πaρ

can
S ⊗ ρB(0)πa

]
× trB[πcρS(0) ⊗ ρB(0)πc]

]
, (40)

GS2 := ZS

∑
a,b
a �=b

trS
[
eβHS trB

[
πaρ

can
S ⊗ ρB(0)πb

]

× trB[πbρS(0) ⊗ ρB(0)πa]
]
, (41)

where πa := |Ea〉〈Ea|. We refer to GS1 as the diagonal term
because it contains the diagonal ensemble [76], which is the
long-time average of the density operator and will be defined
in Sec. IV B. We also refer to GS2 as the off-diagonal term,
because GS2 contains the off-diagonal matrix elements with
respect to energy eigenstates of H . In a similar manner, we
write Gcan

S = Gcan
S1 + Gcan

S2 .
In this paper, we prove

|δGS| = o(1). (42)

From the foregoing discussion, the left-hand side is divided as
δGS = (GS1 − Gcan

S1 ) + (GS2 − Gcan
S2 ). In the next subsection,

we will show that

|GS1 − Gcan
S1 | = o(1), (43)

|GS2| = o(1), (44)

|Gcan
S2 | = o(1), (45)

which imply Eq. (42).
We now discuss the relaxation time of δGS. From Eq. (39),

we can write GS as

GS =
∑

i, j,k,l

eβ(ES
i −ES

j ) pS
k〈ψk (t )|qil

S |ψk (t )〉〈φ j (t )|qli
S |φ j (t )〉,

(46)

|ψk (0)〉 :=∣∣pS
k

〉 ⊗ ∣∣EB
ini

〉
, (47)

|φ j (0)〉 :=∣∣ES
j

〉 ⊗ ∣∣EB
ini

〉
, (48)

where the spectral decomposition of ρS(0) is ρS(0) =∑
k pS

k |pS
k〉〈pS

k |. As shown in Eq. (46), GS is written as a
combination of the expectation values of qil

S . Also, the same
rewrite is possible for Gcan

S . In the total system SB, if the initial
state of bath B is the microcanonical ensemble, the relaxation
time of an observable of system S to its long-time average
is independent of the bath size under some conditions on the
matrix elements of the operator and the initial state of SB [67].
Those conditions are satisfied if the amplitudes of the matrix
elements obey the Gaussian distribution, which is numerically
confirmed in various quantum many-body systems satisfying
the off-diagonal ETH [31,34]. Then we argue that the relax-
ation time of any system operator does not depend on the bath
size also in our setup assuming the off-diagonal ETH. Since
GS and Gcan

S are written as a combination of the expectation
values of operators in S, the relaxation time of δGS is also
independent of the bath size.

We also discuss the relaxation time of δGI to δGI. Since
the interaction HI is local, we argue that the relaxation time is
�(1) by the same argument as above.

B. Outline of the proof

This subsection outlines the proof that the diagonal contri-
bution |GS1 − Gcan

S1 | and the off-diagonal contributions |GS2|
and |Gcan

S2 | vanish in the thermodynamic limit. See Appendix F
for the complete proof. We also note that the interaction-
induced error |δGI| vanishes in the thermodynamic limit under
the rotating wave approximation (see Appendix C for the
proof).

First, we show the outline of the proof of |GS1 − Gcan
S1 | =

o(1). We note that GS1 and Gcan
S1 can be written as the expec-

tation values of the observables of S. That is, the following
relations hold:

GS1 = tr[OSρ
DE], (49)

Gcan
S1 = tr

[
Ocan

S ρcan,DE
]
, (50)

where ρDE := ∑
a πaρ

can
S ⊗ ρB(0)πa is the diagonal ensemble

of ρcan
S ⊗ ρB(0) with respect to H and OS := ZSρS(t )eβHS is

an operator of system S. Similarly, ρcan,DE := ∑
a πaρ

can
S ⊗

ρcan
B πa is the diagonal ensemble of ρcan

S ⊗ ρcan
B with respect

to H , and Ocan
S := ZSρ

can
S (t )eβHS is an operator of system S. It

is clear that the energy width of ρB(0) is �(1). For the case
of ρcan

B , the large-deviation-type upper bound for the energy
distribution has been obtained, and the energy width of ρcan

B
is �(N1/2) [77]. Both of these energy widths are smaller than
� = �(Nα ) (1/2 < α < 1). Thus, we can define an energy
shell with the energy width �, which includes both of the
supports of ρB(0) and ρcan

B , and the contribution out of the
shell is negligible in the thermodynamic limit.

When the energy eigenstates of H satisfy the strong
diagonal ETH for any observable of system S, OS 
 Ocan

S and
trB[ρDE] 
 trB[ρcan,DE] hold, implying that any observable of
system S relaxes to the long-time average and the initial states
of bath B cannot be distinguished by looking at system S
alone. Then we obtain

GS1 = tr[OSρ
DE] 
 tr

[
Ocan

S ρcan,DE
] = Gcan

S1 , (51)

which leads to |GS1 − Gcan
S1 | = o(1).

When the interaction between system S and bath B is
weak, the above result can also be interpreted as follows.
We rewrite OS and Ocan

S as OS = ρS(t )(ρcan
S )−1 and Ocan

S =
ρcan

S (t )(ρcan
S )−1, respectively. If the state of S relaxes to the

canonical ensemble of HS, i.e., ρS(t ) 
 ρcan
S and ρcan

S (t ) 

ρcan

S , OS 
 1S and Ocan
S 
 1S hold, which leads to GS1 
 Gcan

S1 .
That is, |GS1 − Gcan

S1 | = o(1) holds when the system-bath in-
teraction is weak and the state of system S relaxes to the
canonical ensemble.

We next prove |GS2| = o(1) and |Gcan
S2 | = o(1) by using

the off-diagonal ETH for the energy eigenstates of H and
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observables in S. We first approximate GS2 as

GS2 
 ZS

∑
a,b∈sh

a �=b
i, j

(
qi j

S

)
ab

(
q ji

S

)
ba

(
ρcan

S ⊗ ρB(0)
)

ab

× (ρS(0) ⊗ ρB(0))ba, (52)

where the summation over the energy eigenstates of H is
restricted to the energy shell. If the off-diagonal ETH for qi j

S
holds, the bath-size dependence of the off-diagonal matrix
elements (qi j

S )ab is written as(
qi j

S

)
ab = O(1)/

√
D′. (53)

In addition, by using the Cauchy-Schwartz inequality and the
fact that the purity of any state ρ is not larger than 1, we obtain∣∣GS2

∣∣ � �(1)

D′ = o(1). (54)

See details in Appendix F 2. In a similar manner, |Gcan
S2 | = o(1)

is proved.
We next comment on the interaction-induced error δGI

defined in (32). As mentioned in Sec. III A, the interaction-
induced error is zero when the condition (17) is satisfied. Even
when the condition (17) is not satisfied, we can prove that

|δGI| = o(1) (55)

holds under the rotating wave approximation (see Ap-
pendix C).

We here summarize the assumptions used in the foregoing
proofs. In the proof of |GS1 − Gcan

S1 | = o(1) [Eq. (43)], we
used the (strong) diagonal ETH (14) of H for all observables
of S, and the fact that the energy width of the canonical en-
semble is narrower than �(Na) (1/2 < a < 1). In the proof of
|GS2| = o(1) and |Gcan

S2 | = o(1) [Eqs. (44) and (45)], we used
the (strong) off-diagonal ETH (15) of H for all observables
of S.

C. Numerical results

In this subsection, we numerically show that |δGS| = o(1)
[Eq. (42)] and |δGI| = o(1) [Eq. (55)]. To numerically obtain
|δGS| and |δGI|, we first analytically obtain the expressions
like Eqs. (40) and (41), and then numerically evaluate these
expressions.

First, we show the numerical results for the long-time
average of δGS and δGI. We note that |δGS| and |δGI| are cal-
culated for each initial eigenstate of bath B. Since we consider
D eigenstates of B in the energy shell, D data respectively
for |δGS| and |δGI| are obtained in our numerical calculation.
Figure 5 shows the boxplot of the dependence of |δGS| and
|δGI| on the bath size, which represents the distribution of
|δGS| and |δGI|. Each datum in the boxplot corresponds to
each initial eigenstate of bath B in the energy shell [E −
�E , E ]. The middle line of the box represents the median, and
the top (bottom) of the box represents the upper (lower) quar-
tile. The half of the eigenstates in [E − �E , E ] are included
in the box. Figure 5 shows that |δGS| and |δGI| decreases as
N increases.

To investigate the N dependence of |δGS| and |δGI| in more
detail, we fit the numerical data of log |δGS| and log |δGI|

FIG. 5. The boxplot of |δGS| and |δGI| to represent the depen-
dence on the bath size and the initial state. Each datum in the
boxplot corresponds to each initial eigenstate of bath B in the en-
ergy shell [E − �E , E ]. Parameters: p = 0.99, g = 0.1γ , β = 0.1,
γ ′ = γ . Both |δGS| and |δGI| tend to decrease as N increases.

against a fitting function −a log N + b with the fitting pa-
rameters a and b. The positive a implies |δGS| = o(1) and
|δGI| = o(1). Figure 6 shows the γ ′ dependence of a, where
we recall that γ ′ is the coupling strength of the interaction
between system S and bath B. Our result shows that a for
|δGS| is indeed positive for any γ ′. Thus, |δGS| = o(1) holds,
which is consistent with the theory (42).

We note that system S is decoupled from bath B in the limit
of γ ′ → 0. Also, system S and the support of HI are decoupled
from the rest of the total system SB in the limit of γ ′ → ∞.
These decouplings imply that the ETH is no longer relevant
to system S, and thus the fluctuation theorem does not hold.
Thus, it is reasonable that a is small in the region of γ ′/γ 
 0
or γ ′/γ � 1 because of the large finite-size effect. If the bath
size is much larger than N currently used, the finite-size effect
is expected to become less significant, as a similar mechanism
observed in Ref. [42].

For the interaction-induced error |δGI|, the fitting parame-
ter is positive within the margin of numerical errors as shown
in Fig. 6, which is consistent with (55), while the numerical
errors are larger when γ ′ is small. We consider this is because
the finite-size effect of the ETH is larger there.

V. SHORT-TIME REGIME

In this section we investigate the fluctuation theorem with
the energy eigenstate bath in the short-time regime. While
Ref. [44] theoretically showed that |δGS| = o(1) holds on the
basis of the Lieb-Robinson bound and the ETH, no quantita-
tive numerical calculations of the bath-size dependence of the
error were made. In the present paper, we numerically inves-
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FIG. 6. The γ ′ dependence of the exponent a, which is obtained
by fitting the medians of log |δGS| and log |δGI| against −a log N +
b. The fitting is performed with error, and the error bars of a
comes from it. Parameters: p = 0.99, g = 0.1γ , β = 0.1. For both
|δGS| and |δGI|, we obtain a > 0, which supports the theories (42)
and (55). When γ ′ is near 0 or γ ′ is too large, the finite-size effect is
large and a tends to be small.

tigate the dependence of the error of the fluctuation theorem
on the bath size and the initial state. In Sec. V A we define the
error and briefly overview the theory developed in Ref. [44].
In Sec. V B we show our numerical results, which support the
theory.

A. Definition of the error

In this subsection, we discuss the error of the fluctuation
theorem in the short-time regime. Specifically, we decompose
δGS introduced in Eq. (30) into the term that can be evaluated
by the Lieb-Robinson bound and the term that can be evalu-
ated by the ETH.

From the Lieb-Robinson bound, when considering the dy-
namics of the short-time regime, the effect of the far side of
bath B (B1 in Fig. 4) on system S is negligible. Using HB0

which is given by restricting HB to B0, we define the truncated
Hamiltonian HT and the corresponding time evolution oper-
ator UT as HT := HS + HI + HB0 and UT := exp(−iHTt/h̄).
Then we define GT

S and Gcan,T
S as

GT
S := tr[eβHSUTe−βHSρB(0)U †

TρS(t )], (56)

Gcan,T
S := tr

[
eβHSUTe−βHSρcan

B U †
Tρcan

S (t )
]
. (57)

Due to the Lieb-Robinson bound, GT
S 
 GS and Gcan,T

S 
 Gcan
S

hold in t  τLR. Using these arguments, we decompose δGS

as

δGS = δGLR + δGETH, (58)

where we define

δGLR := δG(1)
LR + δG(2)

LR, (59)

δG(1)
LR := GS − GT

S, (60)

δG(2)
LR := Gcan,T

S − Gcan
S , (61)

δGETH := δGS − δGLR = GT
S − Gcan,T

S . (62)

We can evaluate these terms as follows.
Using the Lieb-Robinson bound [45,46], we can show that

|δGLR| = o(1) (t  τLR) (63)

holds. In this evaluation, the ETH is not used, while it is
essential that HB and HI are local. In Ref. [44] it has been
shown that ∣∣δG(1,2)

LR

∣∣ � Ce−κ�t2 (64)

holds in t  τLR, where � := dist(S̃, ∂B) is the distance be-
tween S̃ and ∂B, and S̃ is the area that consists of system
S and the support of HI. The positive constants C and κ

are independent of N . Since � is increasing as the bath size
increases, Eq. (64) implies Eq. (63). Furthermore, using the
improved Lieb-Robinson bound [47], we can show that

∣∣δG(1,2)
LR

∣∣ � C′ t
�

�!

 C′e−�(log �−1)t� (65)

holds in t  τLR with C′ being a positive constant indepen-
dent of N . The evaluation of (65) is tighter than (64), where
the power of t depends on �.

We next discuss δGETH. Under the assumption that the
initial state |EB

a 〉 of bath B satisfies the ETH of HB for ob-
servables in B0, we show that

|δGETH| 
 ∣∣trB0

[
LB0 trB1

[
ρB − ρcan

B

]]∣∣ (66)

= o(1), (67)

where LB0 := trS[U †
TρS(t )eβHSUTe−βHS ]. In Eq. (67), we use

the ETH for LB0 . The initial state of bath B must be indis-
tinguishable from the canonical ensemble, because the time
evolution is restricted to UT and the far part B1 can be ne-
glected.

If the bath size is small [specifically, O(1)], τLR and τrelax

becomes comparable [both O(1)], which cannot be distin-
guished in practice. Therefore, in our numerical calculations
in the next subsection, we focus only on the time regime
t � τrelax in which the error of the fluctuation theorem is pro-
portionate to t2. We calculate the coefficients in our numerical
calculations, aETH, aI and aLR defined as

|δGETH| = aETHt2, (68)

|δGI| = aIt
2, (69)

|δGLR| = aLRt b, (70)

044106-10



EIGENSTATE FLUCTUATION THEOREM IN THE SHORT- … PHYSICAL REVIEW E 105, 044106 (2022)

where b is a fitting parameter determined by numerical calcu-
lation. We will show the t2 dependence in Eqs. (68) and (69)
in Appendix E. Since Eq. (65) is an inequality, b does not
necessarily equal �. We note that b can depend on the bath
size. Thus, we find that the initial t2 behavior in δGS originates
from δGETH, not from δGLR.

In order for the time dependence (68) and (70) to continue
until the relaxation time of �(1) and for Eqs. (63) and (67) to
hold,

aLR = o(1), (71)

aETH = o(1) (72)

must be satisfied. We will numerically show these equations in
the next subsection.

Using the perturbation theory and the off-diagonal ETH
(see Appendix G 2), we can show that

|δGI| = o(1). (73)

holds in t  τLR. In order for the time dependence (69) to
continue until the relaxation time of �(1) and for Eq. (73) to
hold,

aI = o(1) (74)

must be satisfied. This will be numerically shown in the next
subsection.

We here remark on the two separate timescales appeared
above. The time interval satisfying τrelax � t  τLR clearly
exists for a sufficiently large bath size N , while such a large
bath size is not accessible by our numerical calculations but
may be achieved by real experiments with ultracold atoms.
In our numerical simulation (see Fig. 13 in Appendix H),
only τrelax � t � τLR can be guaranteed for the bath size N =
15. We should further remark that τrelax can depend on the
system-bath coupling γ ′, and the bath size N required for the
existence of the time interval τrelax � t � τLR increases as γ ′
decreases. In our numerical simulation, such a time interval
exists for γ ′/γ = 1, 1.5, 2, 3, 4, while it does not clearly exist
for γ ′/γ = 0.05, 0.1, 0.4 where our N is not sufficiently large.

B. Numerical results

In this subsection, we numerically show that
Eqs. (71), (72), and (74) hold. We choose three sites close to
system S as B0 as shown in Fig. 7.

Using the fitting functions |δGETH| = aETHt bETH and
|δGI| = aIt bI and numerical data in 10−3 < γ t < 10−2, we
determine the fitting parameters aETH, bETH, aI, and bI. Be-
cause the effect of the subleading terms are negligible in
this time region, we choose this time region for simplicity.
Regardless of the parameters of the Hamiltonian, we obtain
bETH = 2 and bI = 2 with negligibly small numerical errors.
Figure 8 is a boxplot showing the dependence of aETH and
aI on the bath size and the initial state. Each datum in the
boxplot corresponds to each energy eigenstate in the energy
shell [E − �E , E ]. Both aETH and aI tend to decrease as the
bath size increases.

To investigate the N dependence of aETH and aI, we fit the
medians of log aETH and log aI against the fitting functions
log aETH = cETH − ηETH log N and log aI = cI − ηI log N . As

FIG. 7. B0 used in our numerical simulation in Sec. V B.

a result, we obtain ηETH = 1.4 ± 0.8, ηI = 2.0 ± 0.8 for γ ′ =
γ , g = 0.1γ and ηETH = 1.8 ± 0.2, ηI = 2.1 ± 0.1 for γ ′ =
γ , g = 0.4γ . These results support the theories based on the
ETH (72) and (74). We note that these values are almost in-
dependent of γ ′. This is understood from the fact that aETH =
o(1) is brought by the ETH of HB, which is independent of the
interaction between system S and bath B.

We next show our numerical results on the errors related
to the Lieb-Robinson bound. We fit the median of |δG(1)

LR|
against the function a(1)

LRt b(1)
LR . Because δG(2)

LR cannot be fitted

by the fitting function a(2)
LRt b(2)

LR , we numerically find a(2)
LRt b(2)

LR

only satisfying |δG(2)
LR| � a(2)

LRt b(2)
LR in 10−3 < γ t < 10−2. As a

result, we obtain b(1,2)
LR = 4, which is different from b = 2 in

Eq. (63). Figure 9 is a boxplot showing the dependence of a(1)
LR

FIG. 8. The dependence of aETH and aI on the bath size and the
initial state. Each datum in the boxplot corresponds to each initial
eigenstate of bath B in the energy shell [E − �E , E ]. Parameters:
p = 0.99, g = 0.1γ , γ ′ = γ , β = 0.1. Both aETH and aI tend to de-
crease as N increases.
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FIG. 9. The bath-size dependence of a(1)
LR and a(2)

LR, which relate
to the Lieb-Robinson bound. Each datum in the boxplot corresponds
to each initial eigenstate of bath B in the energy shell [E − �E , E ].
Parameters: p = 0.99, g = 0.1γ , γ ′ = γ , β = 0.1. Both a(1)

LR and a(2)
LR

tend to decrease as N increases. For a(1)
LR at N = 15, we note that the

vertical range of the graph is widened because there are outliers on
the smaller error side. The initial state dependence is small for a(2)

LR,
implying that the change of a(2)

LR with respect to β is small when the
initial state of bath B is the canonical ensemble.

and a(2)
LR on the bath size and the initial state. Both a(1)

LR and a(2)
LR

tend to decrease as N increases.
Finally, we compare the time dependence of the errors of

the fluctuation theorem with that of an ordinary observable
of system S. As mentioned in Sec. III, the change of the
occupation number in system S (23) initially rises in the
form of ant2, which is apparently similar to the case of the
fluctuation theorem (E1). Figure 10 shows the dependence of
an on the bath size and the initial state of B. We observe that an

does not depend on the bath size, i.e., an = �(1). This bath-
size independence is reasonable because there is no physical
mechanism for the change of the occupation number in system
S to be suppressed in the thermodynamic limit. This result
an = �(1) is in contrast with aETH = o(1) and aLR = o(1)
about the fluctuation theorem. Then, while the initial rise of
the error of the fluctuation theorem is also proportionate to t2,
this is due to a different physical mechanism from the case
of ordinary observables such as the occupation number. Thus,
the above numerical result and discussion again support the
scenario that the fluctuation theorem in the short-time regime
holds with the nontrivial thermal mechanism based on the
Lieb-Robinson bound and the ETH.

VI. SUMMARY AND DISCUSSION

In this study, we have investigated the fluctuation theorem
in the long- and short-time regimes, when the initial state of

FIG. 10. The bath-size dependence of an. Each datum in the
boxplot corresponds to each initial eigenstate of bath B in the energy
shell [E − �E , E ]. We note that the boxes are squashed because
the initial-state dependence of an is quite small. Parameters: p =
0.99, g = 0.1γ , γ ′ = γ , β = 0.1. an is independent of the bath size
N , which is reasonable because the size of system S does not depend
on the bath size N .

bath B is an energy eigenstate and the time evolution of the
total system is unitary. Our results theoretically and numeri-
cally show that the fluctuation theorem holds in the entire time
domain.

In the long-time regime, we have considered the long-time
average of 〈e−σ 〉. We theoretically showed that the error of
the fluctuation theorem introduced in Eq. (30) vanishes in the
thermodynamic limit of the heat bath (Sec. IV). The main
assumptions used are the diagonal and off-diagonal ETH (14)
(15). We have also shown that the interaction-induced er-
ror (32) decreases with increasing the bath size by using the
rotating wave approximation (C2). We numerically investi-
gated the dependence of the error of the fluctuation theorem
on the bath size and the initial state. Figures 5 and 6 support
the above theory.

We remark that the fluctuation theorem in the long-time
regime can also be derived from other assumptions than ours.
For example, Ref. [71] is based on some natural assumptions
on transition probabilities. While those assumptions are not
equivalent to our assumptions such as the ETH of H discussed
in Sec. IV, their result and ours are both correct and would
play complementary roles.

In the short-time regime, the fluctuation theorem has been
theoretically shown in Ref. [44] on the basis of the ETH and
the Lieb-Robinson bound. We performed systematic numeri-
cal calculations to show the validity of the fluctuation theorem
in the short-time regime (Sec. V). In particular, we focus on
the dependence of the errors of the fluctuation theorem on the
bath size, which establishes that the validity of the fluctuation
theorem is due to the theoretically proposed scenario based
on the ETH and the Lieb-Robinson bound [44], rather than
a trivial scenario argued in the last paragraph of Sec. V.
Figures 8–10 show that our numerical results support this
theoretical scenario.

The two time regimes play key roles in this study: The
long- and short-time regimes. The long-time regime is de-
fined by that 〈e−σ 〉 nearly equals the long-time average
〈e−σ 〉, which is independent of the bath size as discussed in
Sec. III B. The short-time regime is defined by the system in-
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formation’s not reaching the far part of bath B, which becomes
longer as the bath size increases. Therefore, the long- and
short-time regimes overlap and cover the entire time domain
when the bath size is large enough. We again emphasize,
however, that the fluctuation theorem has been shown inde-
pendently in these time regimes.

We remark that our result highlights the connection
between information and thermodynamics [78–80]. The in-
formational entropy (the von Neumann entropy) and the
thermodynamic quantity (heat) are quantitatively connected
to each other in the second law of thermodynamics (1), as
historically demonstrated by the Szilard engine [81] and the
Landauer principle [82]. While in the conventional theory [9]
this connection between the informational entropy and heat
relies on the assumption that the initial state of the bath is
canonical and thus has the maximum entropy, the present
work shows that the same connection emerges even when the
initial state of the bath is a single energy eigenstate. Therefore,
our result serves as a theoretical foundation of thermodynam-
ics of information beyond the conventional canonical setup.

Meanwhile, in our numerical calculation, we used a spe-
cific model of the two-dimensional system introduced in
Sec. II C. However, our theory ensures that the fluctuation
theorem should hold for a much broader class of models
that satisfy the ETH (Table I). Since it has been numerically
confirmed that the ETH holds for various nonintegrable sys-
tems [29–42], the fluctuation theorem holds for these systems.

We consider that our theory can be experimentally verified.
In particular, the dynamics of isolated nonintegrable many-
body systems have been investigated using artificial quantum
systems such as cold atoms [19–24], trapped ions [25], and su-
perconducting qubits [26]. Not only local physical quantities
but also informational entropy are experimentally measur-
able [20,26]. Because our numerical calculation is performed
with a small bath size of 15 sites using numerically exact
diagonalization, we cannot observe the separation between the
two timescales, the Lieb-Robinson time τLR and the relaxation
time τrelax, as mentioned in Sec. V. However, experiments
with around 100 to 400 sites are currently accessible [22–24].
Therefore, the separation of the above timescales would be
experimentally observable. It is an interesting future issue to
directly verify the theory of the long- and short-time regimes
by such real experiments, which would open up the exper-
imental investigation of the emergence of thermodynamics
from quantum mechanics.

Note added. Recently we became aware of the results of
J. Gemmer et al. [71], which are closely related to the present
work.
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APPENDIX A: ABSOLUTE IRREVERSIBILITY

Absolute irreversibility means a violation of the fluctuation
theorem, which occurs when the initial state of system S is
singular in the sense that it does not have the full support in
the Hilbert space (e.g., the initial state is pure) [48,49]. This is
because the final state of the reverse process is not necessarily
in the support of the initial state of the forward process. The
violation of the fluctuation theorem can be described by a cor-
rection term as described later. In this Appendix we consider
the generalized fluctuation theorem including the correction
term in the presence of absolute irreversibility.

First, we consider the conventional case where the initial
state of bath B is the canonical ensemble. We denote the
projection operator onto the subspace which supports ρS(0) by
PS

ini. When DS > rank[PS
ini], the fluctuation theorem is accom-

panied by the correction term due to absolute irreversibility. In
particular, if ρS(0) is pure, rank[PS

ini] = 1 < DS holds. Then it
has been shown in Refs. [48,49] that

〈e−σ 〉 = 1 − λcan(t ), (A1)

λcan(t ) := tr
[(

1 − PS
ini

)
U †ρcan

R (0)U
]
, (A2)

where ρcan
R (0) := ρcan

S (t ) ⊗ ρcan
B is the initial state of the re-

verse process. We note that one can measure 〈e−σ 〉 and λcan(t )
in the forward and the reverse processes independently. In
fact, Eq. (A1) has been confirmed experimentally using pro-
jection measurements on the system [55].

The correction term (A2) does not appear if the singularity
is removed by regularizing the initial state of system S as
follows:

ρ
reg
S (0) := ρ̃S(0)

trS[ρ̃S(0)]
, (A3)

ρ̃S(0) := ρS(0) + ε
(
1 − PS

ini

)
(ε > 0), (A4)

which is essentially the same approach as adopted in Ref. [71]
(see also Ref. [83]). If we take the limit of ε → 0 after calcu-
lating 〈e−σ 〉, then 〈e−σ 〉 = 1 holds. On the other hand, if we
take the limit ε → 0 first and then calculate 〈e−σ 〉, Eq. (A1)
holds. This is not just the problem of the (unphysical) order
of the limits. As mentioned above, however, Eq. (A1) has
been experimentally observed, and thus the effect of absolute
irreversibility is physically relevant. On the other hand, in
the case where small noise is unavoidable in the initial state,
the regularization approach would be relevant. Therefore,
these two approaches are both physically reasonable and play
complementary roles.

We next consider the fluctuation theorem with the energy
eigenstate bath in the long-time regime in the presence of
absolute irreversibility. We define the correction term as

λ(t ) := tr
[(

1 − PS
ini

)
U †ρR(0)U

]
, (A5)

where ρR(0) := ρS(t ) ⊗ ρB(0). We will prove in Appendix F
that

〈e−σ 〉 = 1 − λ(t ) (A6)

holds in the thermodynamic limit. Because we have already
discussed the long-time average of the left-hand side in
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FIG. 11. The time dependence of 〈e−σ 〉 when the initial state of
system S is pure (p = 1). Parameters: g = 0.1γ , γ ′ = 0.1γ (purple),
γ (green), 4γ (blue). The initial state of bath B is an energy eigenstate
of HB, whose energy is maximum in the energy shell at β = 0.1. The
onsite potential ω is determined by trB[nBρcan

B ] = NP. The horizontal
lines represent the numerically obtained values of 1 − λ(t ).

Sec. IV B, we only need to show

|λcan(t ) − λ(t )| = o(1). (A7)

We will prove Eq. (A7) by using the ETH of the total system
SB in Appendix F.

We here show the validity of Eq. (A6) by numerical simula-
tion. Figure 11 shows the time dependence of 〈e−σ 〉 when the
initial state of system S is a pure state (p = 1). In the long-time
regime, 〈e−σ 〉 deviates from 1 because absolute irreversibility
occurs. The convergent value nearly equals 1 − λ(t ), implying
the fluctuation theorem with the correction term (A6) holds.
We note that in the numerics of Ref. [44] (Lx = Ly = 4,
NP = 4), we have numerically checked that Eq. (A6) holds
by performing the same analysis as in this paper.

APPENDIX B: SUPPLEMENT ON THE
INTERACTION-INDUCED ERROR

In this Appendix we discuss the form of the interaction-
induced error. Specifically, we compare δGI defined in
Eq. (32) and the interaction-induced error defined in Ref. [44].
We show that δGI reflects how thermal the initial state of bath
B is.

First, we consider the characteristic function of the entropy
production:

G(u; ρB) := tr[Ue−iuβHB eiu ln ρS(0)

× ρS(0) ⊗ ρBU †e−iu ln ρS(t )eiuβHB ], (B1)

which is the Fourier transformation of the probability distri-
bution of the stochastic entropy production σ . We note that
〈e−σ 〉 = G(i; ρB) holds. Let us next consider the following
function by replacing HB by −HS, as in GS defined in Eq. (26):

GS(u; ρB) := tr[UeiuβHS eiu ln ρS(0)

× ρS(0) ⊗ ρBU †e−iu ln ρS(t )e−iuβHS ]. (B2)

The interaction-induced error comes from the difference be-
tween Eqs. (B1) and (B2). By noting that the fluctuation

theorem holds if the initial state of B is canonical, we define
the interaction-induced error as

δGI := G(i; ρB(0)) − GS(i; ρB(0)) + GS
(
i; ρcan

B

) − G
(
i; ρcan

B

)
.

(B3)

By definition, δGI = 0 holds when the initial state of bath B
is the canonical ensemble [ρB(0) = ρcan

B ].
As an alternative definition, in the supplemental informa-

tion of Ref. [44], the interaction-induced error is introduced
using the operator norm as

δI(u) := ‖eiuβHBUe−iuβHB − e−iuβHSUeiuβHS‖. (B4)

Using δI(u), the error of the fluctuation theorem is
evaluated as

|G(u; ρB(0)) − GS(i; ρB(0))| � δI(u)C(u), (B5)

where C(u) is an N-independent constant and written as

C(u) =
⎧⎨
⎩

(pb(0))−|uI−1| > 1 (1 < uI )
1 (0 � uI � 1)
(pb(t ))−|uI| > 1 (uI < 0),

(B6)

where pb(t ) is the minimum eigenvalue of ρS(t ) and uI :=
Im[u]. In the supplemental information of Ref. [44], C(u) in
the right-hand side of (B5) was considered to be 1, while the
modification as above is required for 1 < uI and uI < 0. We
note that only the case of uI = 1 was used in the proof of the
fluctuation theorem of the form (4) in Ref. [44], and therefore
the proof of it is correct as it is.

In the above evaluation, δI(u) is independent of the initial
state of bath B. On the other hand, δGI = 0 holds when the
initial state of bath B is the canonical ensemble. Therefore,
δGI is a more proper measure of the error, because it can
reflect how thermal the initial state of bath B is.

APPENDIX C: ROTATING WAVE APPROXIMATION
AND THE INTERACTION-INDUCED ERROR

In this Appendix we show that Eqs. (18) and (36) hold
under the rotating wave approximation and the off-diagonal
ETH. We first introduce the rotating wave approximation and
show Eq. (18) in Appendix C 1. Then we show Eq. (36) in
Appendix C 2.

1. Rotating wave approximation and the proof of Eq. (18)

We write the interaction Hamiltonian as

HI =
∑

ab

(HI )ab|Ea〉〈Eb|. (C1)

Let � be the cutoff frequency for the rotating wave approx-
imation, which is assumed to be independent of the system
size. We then introduce the rotating wave approximation of
HI as

H̃I =
∑

ab

′
(HI )ab|Ea〉〈Eb|, (C2)

where the sum is taken over (a, b) satisfying |Ea − Eb| < �.
The rotating wave approximation holds in a long-time regime
with t � �−1.
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To show Eq. (18), we assume the off-diagonal ETH in the
following form [28,37]:

(H̃I )ab = 1√
D′ gabrab, (C3)

where gab characterizes the dependence of (H̃I )ab on Ea and
Eb, and rab is a random variable whose mean is 0 and variance
is 1. We note that Eq. (C3) is stronger than the off-diagonal
ETH in the form of Eq. (15). We use Eq. (C3) only in this
Appendix.

Under the rotating wave approximation and the off-
diagonal ETH, the commutator in Eq. (18) is written as

[HS + HB, H̃I] =
∑

ab

′|Ea〉〈Eb| Rab√
D′ , (C4)

where Rab := (Ea − Eb)gabrab. We note that Rab is the matrix
elements of the band random matrix and the variance of Rab

is less than �2‖H̃I‖2. From the Wigner semicircle law, the
maximum eigenvalue of a random matrix, whose dimension
is D and variance of the matrix elements is σ 2, is about
2
√

Dσ . Similarly, the maximum eigenvalue of a band random
matrix with band width W is evaluated to be 2

√
W σ , which

is mathematically shown for some band random matrix [84].
We evaluate the band width of the band random matrix R as
D′�/‖H̃‖, where we defined H̃ := HS + HB + H̃I. Then the
operator norm of Eq. (C4) is evaluated as

‖[HS + HB, H̃I]‖ � c�‖H̃I‖√
N

, (C5)

where we used ‖H̃‖ = �(N ) and introduced c := �(1). Thus,
Eq. (18) is proved.

In the same manner, we can show that

‖ fn‖ � c√
N

‖H̃I‖�n, (C6)

‖ga
n‖ � ca√

N
‖H̃I‖a�n, (C7)

where we inductively define

fn+1 := [H̃, fn], f0 = A, (C8)

ga
n+1 := [H̃, ga

n], ga
0 = H̃a

I , (C9)

A := [H̃I, Ũ †], (C10)

where Ũ = exp(−iH̃t/h̄). We note that Eq. (C5) is a special
case (a = n = 1) of Eq. (C7).

2. Proof of Eq. (36)

In this subsection, we show Eq. (36). We first focus on
δG(1)

I :

δG(1)
I = tr[δŨβρŨ †�S(t )], (C11)

where δŨβ := e−βH0Ũ eβH0 − Ũ , H0 := HS + HB, ρ :=
ρcan

S ⊗ ρB(0), and �S(t ) := ρS(t )(ρcan
S )−1. Using the

Cauchy-Schwartz inequality, we bound (δG(1)
I )2 from

above as(
δG(1)

I

)2 � tr[ŨρŨ †�S(t )�†
S(t )]tr[δŨβρδŨ †

β ].

Since |tr[ŨρŨ †�S(t )�†
S(t )]| = �(1), we focus on

tr[δŨβρδŨ †
β ] = tr[δŨ †

2βŨρ] − 2tr[δŨ †
βŨρ]

=:
∑
n=2

βnBn. (C12)

In the first line, we used [H0, ρ] = 0. In the second line, we
used the Baker-Campbell-Hausdorff formula, respectively, for
δŨ †

2β and δŨ †
β . We will show that |Bn| = o(1) in the following.

We first consider |B2|. We can write B2 as

B2 = tr[[H0, [H0, Ũ †]]Ũρ]

= −tr[( f1 − H̃I f0 + f0H̃I )Uρ]. (C13)

Then we obtain

|B2| � (‖ f1‖ + 2‖H̃I‖‖ f0‖)‖Ũ‖‖ρ‖1

� c√
N

‖H̃I‖(� + ‖H̃I‖)

= o(1), (C14)

where we used Eq. (C6) in the second line.
We next consider the case of n � 3. Bn is written as a linear

combination of terms consisting of the product of fm, ga
m, H̃I

(m � n) and each term contains a single fn. Since Eqs. (C6)
and (C7), the leading terms with respect to N do not contain
ga

n. Then, from the straightforward calculation, we obtain

|Bn| � 1√
N

‖H̃I‖
y

(6βy)n

n!
+ o

(
1√
N

)
, (C15)

y := max(�, ‖H̃I‖). (C16)

Summing βnBn over n, we obtain

∣∣∣∣∣
∑
n=2

βnBn

∣∣∣∣∣ � ‖H̃I‖
y

(
e6βy − 6βy − 1

) c√
N

+ o

(
1√
N

)
.

(C17)

From the foregoing arguments, |δG(1)
I | = o(1) is shown. In

the same manner, |δG(2)
I | = o(1) is also shown. Thus, Eq. (36)

is shown under the rotating wave approximation (C2) and the
off-diagonal ETH (C3). Furthermore, Eq. (55) is shown since
� = �(1).

APPENDIX D: NAIVE APPROACH TO EVALUATE
THE ERROR OF THE FLUCTUATION THEOREM

In this Appendix we discuss another naive approach to
evaluate the error of the fluctuation without Eq. (29). In this
approach, however, we cannot show that the error of the fluc-
tuation theorem vanishes in the thermodynamic limit.

We note that G − Gcan can be written as the difference
between the expectation values of OB(t ), which is nonlocal
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for t > 0, as follows:

G − Gcan = trB
[
OB(t )

(
ρB − ρMC

B

)]
+trB

[
OB(t )

(
ρMC

B − ρcan
B

)]
(D1)

OB(t ) := ZBtrS
[
U †ρS(t ) ⊗ ρcan

B U
]
eβHB . (D2)

The first and second terms on the right-hand side of Eq. (D1)
are regarded as the errors associated with the ETH and the
equivalence of ensembles for OB(t ), respectively. Below we
discuss them in detail.

The equivalence of ensembles has been theoretically
shown for (quasi)local operators, whose support is at most
N1/2 and operator norm does not increase with respect to
N [77]. The error of the equivalence of ensembles only poly-
nomially decreases with respect to N . If we assume that the
equivalence of ensembles in the same form as [77] holds
for OB(t ), we cannot show the error of the equivalence of
ensembles vanishes in the thermodynamic limit due to the
exponential increase of the norm of OB(t ).

The ETH for highly nonlocal operators has been investi-
gated theoretically [85] and numerically [86]. In Ref. [85] the
ETH is theoretically shown to hold with the error decreasing
as 1/

√
D for typical many-body operators, whose operator

norm does not grow exponentially. In Ref. [86] the same
scaling as [85] was numerically observed. However, the op-
erator norm of OB(t ) exponentially increases and is bounded
by D

√
N [77] [see also Eq. (F37)]. Then the error associated

with the ETH is bounded by
√

DN , and we cannot show that
the error of the fluctuation theorem associated with the ETH
vanishes in the thermodynamic limit.

For the above reasons, instead of the direct evaluation of
G − Gcan, in the main text we have adopted the decomposi-
tion (29) and show the fluctuation theorem based on plausible
assumptions such as the ETH and the equivalence of ensem-
bles for (quasi)local physical quantities.

APPENDIX E: INITIAL RISE OF THE ERROR
OF THE FLUCTUATION THEOREM

In this Appendix we show that the errors of the fluctuation
theorem initially rises in proportionate to t2 as mentioned in
Secs. III and V.

The error of the fluctuation theorem 〈e−σ 〉 − 1 initially
rises in proportionate to t2, which is shown as

〈e−σ 〉 − 1 = tr[e−βHBUeβHBρB(0)U †ρS(t )] − 1

= tr
[
e−βHB

(
− itH

h̄

)
eβHBρS(t ) ⊗ ρB(0)

]

+ tr
[
ρB(0)

( itH

h̄

)
ρS(t )

]
+ O(t2)

= tr
[−itH

h̄

(
eβHBρt e

−βHB − ρt
)] + O(t2)

= O(t2), (E1)

where we defined ρt := ρS(t ) ⊗ ρB(0). In the second line, we
expand the time evolution operator with respect to t . In the
last line, we used [HB, ρ(0)] = 0. We note that Eq. (17) is not
assumed here.

Similarly, by using [HS, ρ(0)] = 0 in addition to
[HB, ρ(0)] = 0, we show that δGS and δGI initially rise
in t2. In fact,

δGS = tr[eβHSUe−βHSρB(0)U †ρS(t )]

− tr[eβHSUe−βHSρcan
B U †ρcan

S (t )]

= tr
[(

− itH

h̄

)
(e−βHSρ0eβHS − ρ0)

]

− tr
[(

− itH

h̄

)
(e−βHSρcan

0 eβHS − ρcan
0 )

]
+ O(t2)

= O(t2), (E2)

where ρcan
t := ρS(t ) ⊗ ρcan

B . Next, the interaction-induced
error δGI is decomposed into δG(1)

I and δG(2)
I as in

Eq. (33). Then

δG(1)
I = tr[e−βHBUeβHBρB(0)U †ρS(t )]

− tr[eβHSUe−βHSρB(0)U †ρS(t )]

= tr
[(

− itH

h̄

)
(eβHBρt e

−βHB − ρt )
]

− tr
[(

− itH

h̄

)
(e−βHSρt e

βHS − ρt )
]

+ O(t2)

= O(t2), (E3)

where we used the fact that ρ0 and ρcan
0 commute with both of

HS and HB. In the same manner as in Eq. (E3), it is shown that
the initial rise of δG(2)

I defined in Eq. (35) is also proportionate
to t2.

Furthermore, we can show that δGETH defined in Sec. V
initially rises as t2 by replacing U in Eq. (E2) by UT. Thus,
Eqs. (68) and (69) are confirmed.

APPENDIX F: PROOF IN THE LONG-TIME REGIME

This Appendix shows the details of the proof of the fluctu-
ation theorem in the long-time regime, which was discussed
in Sec. IV. We show |GS1 − Gcan

S1 | = o(1) [Eq. (43)] in Ap-
pendix F 1 and |GS2| = o(1) and |Gcan

S2 | = o(1) [Eqs. (44)
and (45)] in Appendix F 2. In Appendix F 3 we show that
|λ(t ) − λcan(t )| = o(1) [Eq. (A7)] holds, which complements
the discussion about absolute irreversibility in Appendix A.
Finally, we show that the temporal fluctuation of the error of
the fluctuation theorem in the long-time regime vanishes in
the thermodynamic limit in Appendix F 4.

1. Proof of Eq. (43) in Sec. IV

In this subsection, we show that |GS1 − Gcan
S1 | = o(1)

[Eq. (43)] holds. The assumption used here is the diagonal
ETH of H for the observable of system S [Eq. (14)]. We
also assume Eqs. (F4) and (F5) below, which state that the
contribution from the outside of the energy shell is negligible
in the thermodynamic limit.

We first define the energy shell of H as [E ′ − �, E ′ +
�], where E ′ = tr[HρDE] and � = �(Na) (1/2 < a < 1).
We denote by

∑
a∈sh the sum over a such that E ′ − � �

Ea � E ′ + �. For the energy shell, we define ρDE-sh :=∑
a∈sh πaρ

DEπa and ρcan,DE-sh := ∑
a∈sh πaρ

can,DEπa, where
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ρDE-sh and ρcan,DE-sh are not normalized. Also, we define the
microcanonical ensemble ρMC := ∑

a∈sh πa/D′, where D′ is
the dimension of the energy shell.

From Eqs. (49) and (50), we evaluate |GS1 − Gcan
S1 | by using

the triangle inequality as follows:∣∣GS1 − Gcan
S1

∣∣ (F1)

=∣∣tr[OSρ
DE] − tr

[
Ocan

S ρcan,DE
]∣∣ (F2)

� |tr[OSρ
DE] − tr[OSρ

DE-sh]|
+ |tr[OSρ

DE-sh] − tr[OSρ
MC]|

+ ∣∣tr[OSρ
MC] − tr

[
Ocan

S ρMC
]∣∣

+ ∣∣tr[Ocan
S ρMC

] − tr
[
Ocan

S ρcan,DE-sh
]∣∣

+ ∣∣tr[Ocan
S ρcan,DE-sh

] − tr
[
Ocan

S ρcan,DE
]∣∣. (F3)

The energy widths of ρB(0) and ρcan
B are �(1) and

�(N1/2) [77], respectively. Since they are narrower than �

for sufficiently large N , the truncation error, which originates
when ρDE and ρcan,DE are restricted to the energy shell, is
negligible in the thermodynamic limit [50]:

‖ρDE − ρDE-sh‖1 = o(1), (F4)

‖ρcan,DE − ρcan,DE-sh‖1 = o(1). (F5)

From Eqs. (F4) and (F5), |1 − tr[ρDE-sh]| = o(1) and |1 −
tr[ρcan,DE-sh]| = o(1) hold. Then the first and fifth terms on
the right-hand side of Eq. (F3) are evaluated as

|tr[OSρ
DE] − tr[OSρ

DE-sh]| � ‖OS‖‖ρDE − ρDE-sh‖1 = o(1),
(F6)∣∣tr[Ocan

S ρcan,DE-sh
] − tr

[
Ocan

S ρcan,DE
]∣∣

�
∥∥Ocan

S

∥∥‖ρcan,DE-sh − ρcan,DE‖1 = o(1). (F7)

We next evaluate the second term on the right-hand side of
Eq. (F3) by using the ETH of H for OS. We write the spectral
decomposition of ρDE-sh as ρDE-sh = ∑

a∈sh pDE
a πa. Then we

can evaluate the second term on the right-hand side of Eq. (F3)
as follows:

|tr[OS(ρDE-sh − ρMC)]| =
∣∣∣∣∣
∑
a∈sh

pDE
a (OS)aa − 〈OS〉MC

∣∣∣∣∣ (F8)

� max
a∈sh

|(OS)aa − 〈OS〉MC|
∑
a∈sh

pDE
a

+
(

1 −
∑
a∈sh

pDE
a

)
|〈OS〉MC| (F9)

= o(1). (F10)

In the last line, we used the ETH of H for OS and Eq. (F4). In
the same manner, we show that the fourth term on the right-
hand side of Eq. (F3) is o(1) by using the ETH for Ocan

S .
The third term on the right-hand side of Eq. (F3)

can be bounded from above by ‖ρMC‖‖OS − Ocan
S ‖1. Be-

sides, we can evaluate ‖OS − Ocan
S ‖1 as ‖OS − Ocan

S ‖1 �
ZS‖eβHS‖‖trB[ρDE − ρcan,DE]‖1. Then, using the triangle

inequality, we obtain

‖trB[ρDE − ρcan,DE]‖1 �‖trB[ρDE − ρDE-sh]‖1

+ ‖trB[ρDE-sh − ρMC]‖1

+ ‖trB[ρMC − ρcan,DE-sh]‖1

+ ‖trB[ρcan,DE-sh − ρcan,DE]‖1.

(F11)

Using Eqs. (F4) and (F5), we can show that the first and fourth
terms on the right-hand side are both o(1). From the ETH for
any operator of system S, we show that the second and third
terms on the right-hand side are also o(1).

By summing up the foregoing arguments, |GS1 − Gcan
S1 | =

o(1) is proved.

2. Proof of Eqs. (44) and (45) in Sec. IV

This Appendix shows that Eqs. (44) and (45) hold by using
the off-diagonal ETH for all operators of system S (53) and the
assumption on the initial energy distribution (F4) and (F5).

From Eqs. (F4) and (F5), we can neglect the contribution
from the outside of the energy shell and obtain Eq. (52) from
Eq. (41). Then, along with the off-diagonal ETH (53), we
show that

|GS2| � �(1)

D′

∣∣∣∣∣∣∣∣∣∣
∑

a,b∈sh
a �=b
i, j

eβES
i (ρ1)ab(ρ2)ba

∣∣∣∣∣∣∣∣∣∣
(F12)

holds, where ρ1 := ρcan
S ⊗ ρB(0) and ρ2 := ρS(0) ⊗ ρB(0).

Using the Cauchy-Schwartz inequality, we obtain∣∣∣∣∑a,b∈sh
a �=b

(ρ1)ab(ρ2)ba

∣∣∣∣ �
√

tr
[
ρ2

1

]
tr
[
ρ2

2

]
� 1.

From the above,

|GS2| � �(1)

D′
∑
i, j

eβES
i = o(1) (F13)

is proved. In the same manner, |Gcan
S2 | � o(1) is proved.

3. Proof of Eq. (A7) in Appendix A

In this Appendix we show Eq. (A7) in Appendix A. As in
Sec. IV, the long-time averages of λ(t ) and λcan(t ) are written
as the sums of the diagonal term and the off-diagonal term:
λ(t ) = λ1 + λ2 and λcan(t ) = λcan

1 + λcan
2 .

First, we evaluate the diagonal term. We define QS := 1 −
PS

ini. Then λ1 is written as

λ1 =
∑

a

tr
[
QS|Ea〉〈Ea|ρDE

S ⊗ ρB(0)|Ea〉〈Ea|
]

(F14)

= 〈QS〉MC + δλ1, (F15)

δλ1 :=
∑

a

((QS)aa − 〈QS〉MC)
(
ρDE

S ⊗ ρB(0)
)

aa, (F16)

where 〈QS〉MC only depends on the energy shell and does not
depend on the microscopic details of the initial state. On the
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other hand, δλ1 can depend on the details. By neglecting the
outside of the energy shell, we obtain

|δλ1| 

∣∣∣∣∣
∑
a∈sh

((QS)aa − 〈QS〉MC)
(
ρDE

S ⊗ ρB(0)
)

aa

∣∣∣∣∣ (F17)

� max
a∈sh

|(QS)aa − 〈QS〉MC|
∑

b

(ρDE
S ⊗ ρB(0))bb (F18)

= o(1), (F19)

where we used the ETH for QS. We can show |λcan
1 −

〈QS〉MC| = o(1) in the same manner. Thus, |λ1 − λcan
1 | = o(1)

is proved.
The off-diagonal term λ2 can be evaluated as follows:

λ2 

∑

a,b∈sh
a �=b
i, j

(QS)ba
(
qi j

S

)
ab

(
q ji

S

)
ba(ρ(0))ab (F20)

=
∑

a,b∈sh
a �=b

�(1)

D′ (qS)ba(ρ(0))ab, (F21)

where we used the off-diagonal ETH for QS and qi j
S and de-

fined qS := ∑
ji q ji

S , which is a Hermitian operator of system
S. Using the Cauchy-Schwartz inequality, we obtain

∣∣λ2

∣∣ � �(1)

D′

√√√√√√√
∣∣∣∣∣∣∣∣
∑

a,b∈sh
a �=b

(qS)ba(qS)ab

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

a,b∈sh
a �=b

(ρ(0))ab(ρ(0))ba

∣∣∣∣∣∣∣∣
.

(F22)

The right-hand side of this inequality is evaluated as∣∣∣∣∣∣∣∣
∑

a,b∈sh
a �=b

(qS)ba(qS)ab

∣∣∣∣∣∣∣∣
� D′∣∣trS[(qS)2]

∣∣ = �(D),

∑
a,b∈sh

a �=b

(ρ(0))ab(ρ(0))ba � tr[(ρ(0))2] � 1. (F23)

Then ∣∣λ2

∣∣ � �(1)√
D′ = o(1) (F24)

is proved. In the same manner, |λcan
2 | = o(1) is proved.

From the foregoing argument, |λ(t ) − λcan(t )| = o(1) is
proved. We note that if the ETH holds, the correction
of absolute irreversibility in the long-time regime is given
by 〈QS〉MC = 1 − 〈PS

ini〉MC regardless of the initial state of
bath B.

4. Temporal fluctuation

In this subsection, we show that the temporal fluctuation
around the long-time average of the error of the fluctuation
theorem vanishes in the thermodynamic limit. Together with
the fact that the long-time average of the error is o(1), we show
that the fluctuation theorem holds for almost all the times

FIG. 12. The terms that appear in the calculation of the temporal
fluctuation. The indexes connected by the lines are equal. For exam-
ple, (a) shows a1 = b1, a2 = b4, a3 = b3, and a4 = b2.

after the relaxation time, except for the effect of quantum
recurrence [72–74].

We define the temporal fluctuation around the long-time
average A as

�T (A) := (A − A)2 (F25)

and the cross correlation as

�T (A, B) := AB − A B. (F26)

The temporal fluctuations of δG := G − 1, δGS and δGI

are written as

�T (δG) = �T (G), (F27)

�T (δGS) = �T (GS) + �T
(
Gcan

S

) − 2�T
(
GS, Gcan

S

)
, (F28)

�T (δGI ) = �T (δGS) + �T (G)

− 2�T (G, GS) + 2�T
(
G, Gcan

S

)
, (F29)

respectively. From the Cauchy-Schwartz inequality,
|�T (A, B)|2 � �T (A)�T (B) holds. Then, if all of
the equations �T (GS) = o(1), �T (Gcan

S ) = o(1) and
�T (G) = o(1) hold, the temporal fluctuations (F27), (F28),
and (F29) vanish in the thermodynamic limit. Below we will
show �T (GS) = o(1), �T (Gcan

S ) = o(1) and �T (G) = o(1).

First, to show �T (GS) = o(1), we evaluate G2
S. In the same

manner as in Sec. IV A, we obtain

G2
S =

∑
(a1,a2,a3,a4 )=(b1,b2,b3,b4 )

i, j,k,l

ρa1,b1ρ
′
a2,b2

ρa3,b3ρ
′
a4,b4

× (
Ai j

S

)
b1,a1

(
Bi j

S

)
b2,a2

(
Akl

S

)
b3,a3

(
Bkl

S

)
b4,a4

, (F30)

where ρ := ρcan
S ⊗ ρB(0), ρ ′ := ρS(0) ⊗ ρB(0), Ai j

S :=
ZSqi j

S eβHS , and Bi j
S := ZSq ji

S . We note that the summation is
taken over the case of (a1, a2, a3, a4) = (b1, b2, b3, b4), i.e.,
a permutation of (a1, a2, a3, a4) equals (b1, b2, b3, b4). In
the calculation of (GS)2, only the combination of the form
(a1, a2) = (b1, b2) and (a3, a4) = (b3, b4) appears in the
sum. Then this combination does not appear in the temporal
fluctuation G2

S − (GS)2. In Fig. 12 we show that combinations
of (a1, a2, a3, a4) and (b1, b2, b3, b4) that should be evaluated.
The combinations that do not appear in Fig. 12 are equivalent
to some of the combinations in Fig. 12. In the following
evaluation, the diagonal matrix elements for the observable of
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system S are evaluated using the diagonal ETH as(
Ai j

S

)
a,a 
 〈

Ai j
S

〉
MC = �(1). (F31)

In �T (GS), the term corresponding to Fig. 12(a) is evalu-
ated as ∑

a1,a2,a3,a4
i, j,k,l

ρa1,a1ρ
′
a2,a4

ρa3,a3ρ
′
a4,a2

×(
Ai j

S

)
a1,a1

(
Bi j

S

)
a4,a2

(
Akl

S

)
a3,a3

(
Bkl

S

)
a2,a4

(F32)

= �(1)

D′
∑

a1,a2,a3,a4
i, j,k,l

ρa1,a1ρ
′
a2,a4

ρa3,a3ρ
′
a4,a2

(F33)

= �(1)

D′ (tr[ρ])2tr[(ρ ′)2] (F34)

= o(1). (F35)

We used the off-diagonal ETH for Bi j
S and Bkl

S and the diagonal
ETH for Ai j

S and Akl
S . Because we can evaluate the other terms

in the similar manner, �T (GS) = o(1) is proved.
In the evaluation of �T (GS), only tr[ρ] = 1 and tr[ρ2] �

1 are used as the properties of the density operator. Then
�T (Gcan

S ) = o(1) is proved by setting ρ = ρcan
S ⊗ ρcan

B and
ρ ′ = ρS(0) ⊗ ρcan

B .
We next evaluate �T (G). As in Eq. (F30), we can write G2

as

G2 =(
DSZBeβEB

ini
)2

×
∑

(a1,a2,a3,a4 )=(b1,b2,b3,b4 )
i, j,k,l

ρ̃a1,b1ρ
′
a2,b2

ρ̃a3,b3ρ
′
a4,b4

× (ρ i j )b1,a1

(
Bi j

S

)
b2,a2

(ρkl )b3,a3

(
Bkl

S

)
b4,a4

, (F36)

where EB
ini is the energy of the initial state of bath B, ρ̃ :=

(1S/DS) ⊗ ρB(0) and ρ i j := qi j
S ⊗ ρcan

B .
Regarding the partition function, the following relation

holds [77]: (
ZBeβEB

ini
)2 � D2N. (F37)

We also have

tr[(ρ i j )2] = δi j/Deff
[
ρcan

B

]
, (F38)

where Deff [ρcan
B ] is the effective dimension of ρcan

B with re-
spect to HB. For simplicity, when there is no degeneracy in
the eigenenergy and the state is diagonal with the energy
eigenstates as ρ = ∑

i pi|Ei〉〈Ei|, the effective dimension is
written as

Deff [ρ] :=
(∑

i

|pi|2
)−1

. (F39)

We note that Deff [ρcan
B ] increases exponentially with respect to

the bath size N [50]. Also, we assume that the matrix elements
of the density operator ρ ′ and ρ̃ are O(D′−1):

|(ρ ′)ab| = O(D′−1), (F40)

|(ρ̃)ab| = O(D′−1). (F41)

This is not satisfied when the density operators ρ ′ and ρ̃,
which are product states as in Eq. (3), are localized to some
specific eigenstates of H . When the initial state is in the form
of Eq. (3), we argue that O(D′−1) is naturally satisfied if the
Hamiltonian H is chaotic and mixes system S and bath B
sufficiently.

In �T (GS), the term corresponding to Fig. 12(b) is evalu-
ated as ∣∣(DSZBeβEB

ini
)2 ∑

a1,a2,a3,a4
i, j,k,l

ρ̃a1,a3ρ
′
a2,a2

ρ̃a3,a1ρ
′
a4,a4

× (ρ i j )a3,a1

(
Bi j

S

)
a2,a2

(ρkl )a1,a3

(
Bkl

S

)
a4,a4

∣∣ (F42)

� �(N )

∣∣∣∣∣∣∣
∑

a1,a2,a3,a4
i, j,k,l

ρ ′
a2,a2

ρ ′
a4,a4

(ρ i j )a3,a1 (ρkl )a1,a3

∣∣∣∣∣∣∣ (F43)

� �(N )(tr[ρ ′])2
∑

i, j,k,l

√
tr[(ρ i j )2]tr[(ρkl )2] (F44)

= �(N )

Deff [ρcan
B ]

= o(1). (F45)

In the first inequality, we used Eqs. (F31), (F37), and (F40). In
the second inequality, we used the Cauchy-Schwartz inequal-
ity. In the last inequality, we used Eq. (F38). Because we can
evaluate the other terms in the same manner, �T (G) = o(1) is
proved.

APPENDIX G: PERTURBATION THEORY
ON THE INTERACTION-INDUCED ERROR

In this Appendix, by using the perturbation theory, we
show that the interaction-induced error does not grow sig-
nificantly in the long-time regime and vanishes in the
thermodynamic limit in the short-time regime.

1. The long-time regime

We show that |δGI| � �(1) holds at high temperature
using the perturbation theory. The long-time average of the
interaction-induced error (32) is written as

δG(1)
I := G − GS, (G1)

δG(2)
I := Gcan

S − Gcan. (G2)

First, we divide δG(1)
I into the diagonal term δG(1)

I1 and the

off-diagonal term δG(1)
I2 . The diagonal term is written as

δG(1)
I1 =

∑
a

tr
[
e−βHBπaeβHBρB(0)πaρ

DE
S

]
−

∑
a

tr
[
eβHSπae−βHSρB(0)πaρ

DE
S

]
, (G3)

where ρDE
S := trB[ρDE]. By using the first-order perturbation

theory for the eigenstates, we obtain

δG(1)
I1 


∑
iα

∑
jβ

′∑
kγ

′
∣∣〈ES

j EB
β

∣∣HI

∣∣ES
i EB

α 〉∣∣2(
δES

ji + δEB
βα

)(
δES

ki + δEB
βα

)δβγ
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× [〈
ES

j

∣∣ρDE
S

∣∣ES
k

〉
δα,ini

(
e−βδEB

βα − e−βδES
ki
)

+ 〈
ES

j

∣∣ρDE
S

∣∣ES
k

〉
δα,ini

(
e−βδEB

βα − e−βδES
ki
)]

, (G4)

where the summation over j, k, β, γ are restricted to j �=
i, k �= i, β �= α, γ �= α and δα,ini means α equals the index of
the initial state of bath B. We also define δES

i j := ES
i − ES

j and
δEB

βα := EB
β − EB

α .
Here we assume the following relation as the off-diagonal

ETH instead of Eq. (53).

∣∣〈ES
j EB

β

∣∣HI

∣∣ES
i EB

α

〉∣∣2 ∼ �(1)

D
e−ν|δEB

βα |, (G5)

where ν is an N-independent constant. The exponential de-
cay with respect to energy difference δEB

βα in Eq. (G5) has
been observed in numerical calculations of the off-diagonal
ETH [37]. Also, the exponential decay is theoretically shown
when the Hamiltonian is local [87]. Then the terms that can
diverge in Eq. (G4) are written as e−(ν±β )|δEB

βα |. At high tem-

perature ν > β, δG(1)
I1 � �(1) is shown.

We next show that the off-diagonal term vanishes as

N increases: |δG(1)
I2 | = o(1). Since |GS2| = o(1) is already

shown, it is sufficient to show |G2| = o(1), where G2 is the
off-diagonal contribution of G. In the same manner as Ap-
pendix F, we show |G2| = o(1) by using the off-diagonal
ETH (53) and the conditions on the density operators (F40)
and (F41).

We divide δG(2)
I into the diagonal term δG(2)

I1 and the

off-diagonal term δG(2)
I2 . Since Gcan

S2 = o(1) is already shown,

|δG(2)
I2 | = o(1) holds. By using the diagonal ETH for the oper-

ator of system S, the diagonal term δG(2)
I1 is evaluated as

δG(2)
I1 
 1 − 〈

ρDE
S

(
ρcan

S

)−1〉
MC. (G6)

If the density operator of system S in the long-time regime
ρDE

S relaxes to the canonical ensemble of HS, the second term

on the right-hand side equals 1. Then we argue that δG(2)
I1 =

o(1) holds when ρDE
S relaxes to the canonical ensemble. On

the other hand, ρDE
S does not necessarily relax to the canonical

ensemble of HS for general interactions. Then we assume

δG(2)
I1 � �(1) in general.
From the foregoing argument, |δGI| � �(1) is shown.

2. The short-time regime

We show that |δGI| = o(1) holds in the short-time regime
(t  τLR) at high temperature using the perturbation theory.

The interaction-induced error is defined in Eq. (32).
Because ρS(t ) 
 ρcan

S (t ) in t  τLR holds due to the Lieb-
Robinson bound and the ETH, we obtain

δGI 
 tr[e−βHBUeβHBδρBU †ρS(t )]

− tr[eβHSUe−βHSδρBU †ρS(t )], (G7)

where δρB := ρB(0) − ρcan
B . By using the Lieb-Robinson

bound and the ETH again, the second line is shown to be
o(1). Below we evaluate the first line using the perturbation
calculation for the time evolution operator.

From the first-order perturbation theory, we obtain

U 
 U0 + U1, (G8)

U0 := e−iH0t/h̄, (G9)

U1 := −iU0

∫ t

0
dτe−iH0τ/h̄HIe

iH0τ/h̄, (G10)

where we define H0 := HS + HB. We also define

δGB
I [U,V †] := tr[e−βHBUeβHBδρBV †ρS(t )], (G11)

δGB
I,(i, j) := δGB

I [Ui,U †
j ]. (G12)

Then the first line of Eq. (G7) is approximated as∑1
i=0

∑1
j=0 δGB

I,(i, j).
We first evaluate δGB

I,(0,0) as

δGB
I,(0,0) = tr[e−βHBU0eβHBδρBU †

0 ρS(t )]

= tr[ρS(t ) ⊗ δρB]

= 0, (G13)

where we used [U0, HB] = 0 and [U0, δρB] = 0. We next cal-
culate δGB

I,(0,1) as∣∣δGB
I,(0,1)

∣∣ = ∣∣tr[e−βHBU0eβHBδρBU †
1 ρS(t )]

∣∣
=

∣∣∣∣
∫ t

0
dτ tr[U0HIρS(t, τ ) ⊗ δρB]

∣∣∣∣
�

∫ t

0
dτ‖U0‖‖HIρS(t, τ ) ⊗ δρB‖1, (G14)

where we define ρS(t, τ ) := eiHS(t−τ )ρS(t )e−iHS(t−τ ). We note
that ‖U0‖ = 1 holds, and ‖HIρS(t, τ ) ⊗ δρB‖1 = O(D−1/2) is
satisfied from the ETH. Then, in the short-time regime t 
τLR, we obtain∣∣δGB

I,(0,1)

∣∣ � τLR

�(D1/2)
= �(Nμ)

�(D1/2)
= o(1). (G15)

Also, δGB
I,(1,0) is evaluated as

δGB
I,(1,0) = −i

∫ t

0
dτ tr[U0ρS(t, τ ) ⊗ δρHI]. (G16)

Then δGB
I,(1,0) = o(1) in t  τLR is shown to hold in the same

manner as δGB
I,(0,1).

We finally calculate δGB
I,(1,1) as

δGB
I,(1,1) =

∫ t

0

∫ t

0
dτdτ ′tr[e−βHB eiH0(t−τ )HI

× e−iH0τ eβHBδρBeiH0τ
′
HIe

iH0(t−τ ′ )ρS(t )]

� t2

∣∣∣∣∣
∑
a,b,c

e−βδE
aBbB
B (HI )ab(HI )bc(δρB)bb(ρS(t ))ca

∣∣∣∣∣
= t2

∣∣∣∣∣
∑
a,b,c

M(a, b, c, t )

∣∣∣∣∣, (G17)

where

M(a, b, c, t ) :=e−βδE
aBbB
B (HI )ab(HI )bc(δρB)bb(ρS(t ))ca.

(G18)
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FIG. 13. The time dependence of the error of the fluctuation
theorem |〈e−σ 〉 − 1|, whose initial rise is proportionate to t2. The
initial state of bath B is the energy eigenstates of HB, whose energy
is maximum in the energy shell at β = 0.1. Parameters: γ ′/γ =
0.05, 0.1, 0.4, 1, 1.5, 2, 3, 4 (from bottom to top) and p = 0.99. The
onsite potential ω is determined by trB[nBρcan

B ] = NP.

We note that the index a represents a pair of indexes of
the eigenstates of system S and bath B and is written as
a = (aS, aB). We write the corresponding eigenenergy as
Ea = EaS

S + EaB
B . The same applies to b and c. We write

the matrix elements as (A)ab = 〈EaS
S EaB

B |A|EbS
S EbB

B 〉, (A)aSbS =
〈EaS

S |A|EbS
S 〉, and (A)aBbB = 〈EaB

B |A|EbB
B 〉. We also write the

energy change of B as δEaBbB
B .

We define the energy ranges of bath B as follows. First,
we define �1 := [E − �, E + �], E = trB[HBρB(0)] =
trB[HBρcan

B ], and � = �(Na) (1/2 < a < 1). We note that
the energy widths of ρB(0) and ρcan

B are included in �1. We
also define �2 := [E − 2�, E + 2�] and denote the outside
of �2 by �2. We write the sum range as a ∈ �1, which means
that

∑
a∈�1

= ∑
aS

∑
aB∈�1

.
We evaluate

∑
a,b,c M(a, b, c, t ) for the following three

cases: (1) Ea ∈ �2, (2) Ea ∈ �2, aB �= bB, and (3) Ea ∈
�2, aB = bB. We note that aB = cB always holds since ρS(t )
is the operator of system S.

FIG. 14. The γ ′ dependence of the exponent a, which is obtained
by fitting |δGS| and |δGI|. Parameters: p = 0.9, g = 0.1γ , β = 0.1,
γ ′ = γ . The left figure shows |δGS|, and the right figure shows |δGI|.

FIG. 15. The γ ′ dependence of the exponent a, which is obtained
by fitting |δGS| and |δGI|. Parameters: g = 0.4γ , β = 0.1, γ ′ = γ .
p = 0.99 (upper panels) and p = 0.9 (lower panels). The left panels
show |δGS|, and the right panels show |δGI|.

First, we consider case (1):∑
a∈�2
b∈�1

c;cB=aB

M(a, b, c, t ) = �(1)

D

∑
a∈�2
b∈�1

c;cB=aB

(δρB)bb(ρS(t ))ca

× e−ν|δE
aBbB
B |e−ν|δE

bBcB
B |e−βδE

aBbB
B ,

(G19)

where we used the off-diagonal ETH for HI. We write bB max-

imizing e−ν|δE
aBbB
B | and e−βδE

aBbB
B as bν

B and bβ

B, respectively. By

using e−ν|δE
bBcB
B | � 1 and |(ρS(t ))ca| � 1, the absolute value

of the right-hand side of Eq. (G19) is bounded from above as
follows:

DS

D

∑
a∈�2

e−ν|δE
aBbν

B
B |e+β|δE

aBbβ
B

B | ∑
b∈�

|δρbb|

�
DSD�2

D
max

aB

(
e−ν|δE

aBbν
B

B |e+β|δE
aBbβ

B
B |), (G20)

where we used
∑

b∈� |δρbb| � 1 and D�2
is the dimension of

�2. The right-hand side exponentially decays as e−(ν−β )�(�)

if β < ν. Then the right-hand side of Eq. (G17) in this case is
evaluated as τ 2

LRe−(ν−β )�(�) = o(1).
Next, we consider case (2). When aB �= bB, cB �= bB holds

from aB = cB. Then, using the off-diagonal ETH, we evaluate∑
a,b,c M(a, b, c, t ) restricted to case (2) as

1

�(D)

∑
a∈�2

b∈�1;bB �=aB
c;cB=aB

(δρB)bb(ρS(t ))ca

× e−βδE
aBbB
B −ν(|δE

aBbB
B |+|δE

cBbB
B |), (G21)

which is shown to exponentially decay as e−(ν−β )�(�) in
β < ν using

∑
b∈� |δρbb| � 1. Then the right-hand side of

Eq. (G17) in case (2) is o(1).
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FIG. 16. The dependence of aETH and aI on the bath size and the
initial state. Parameters: p = 0.99, g = 0.1γ , γ ′ = 4γ (upper panels)
and 0.1γ (lower panels), β = 0.1. Left panels are aETH, and right
panels are aI.

Finally, we consider case (3). We evaluate∑
a,b,c M(a, b, c, t ) restricted to this case as

∑
bB∈�′

1
aS,bS,cS

(
JaSbS

I

)
bBbB

(
JbScS

I

)
bBbB

(ρS(t ))cSaS
(δρB)bBbB



∑

aSbScS

〈
JaSbS

I

〉
MC

〈
JbScS

I

〉
MC(ρS(t ))cSaS

∑
bB∈�1

(δρB)bBbB ,

(G22)

where we define JaSbS
I := 〈EaS

S |HI|EbS
S 〉 and use the ETH for

JaSbS
I . Also, | ∑bB∈�1

(δρB)bBbB | is the contribution of ρcan
B

from outside �1, which decays as e−�(�). Therefore, the right-
hand side of Eq. (G17) in case (3) is also o(1).

FIG. 17. The dependence of a(1)
LR and a(2)

LR on the bath size and
the initial state. Parameters: p = 0.99, g = 0.1γ , γ ′ = 4γ (upper
panels) and 0.1γ (lower panels), β = 0.1. Left panels are a(1)

LR, and
right panels are a(2)

LR.

From the foregoing argument, |δGI| = o(1) is shown in the
short-time regime (t  τLR).

APPENDIX H: SUPPLEMENTARY NUMERICAL RESULTS

We first show the time dependence of the error of the
fluctuation theorem |〈e−σ 〉 − 1| for various interaction pa-
rameters. As in Fig. 13, we observe qualitatively the same
behavior as the inset of Fig. 2 as mentioned in Sec. III.

We next show the supplemental data in the long-time
regime. Figure 14 shows the γ ′ dependence of |δGS| and |δGI|
with p = 0.9. Also, Fig. 15 shows the γ ′ dependence of |δGS|
and |δGI| with g = 0.4γ , showing a similar result as in the
main text.

Finally, we show the supplemental data in the short-time
regime. Figure 16 shows the N dependence of aETH and aI

with γ ′/γ = 4 and 0.1. Both aETH and aI decrease as N
increases. Figure 17 shows the N dependence of a(1,2)

LR . We
see that both a(1)

LR and a(2)
LR decrease in N .
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