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Triangles on a triangular lattice: Insights into self-assembly in two dimensions
driven by shape complementarity

S. S. Akimenko ,* A. V. Myshlyavtsev, M. D. Myshlyavtseva, V. A. Gorbunov, S. O. Podgornyi, and O. S. Solovyeva
Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation

(Received 28 September 2021; accepted 7 March 2022; published 4 April 2022)

A series of models for reversible filling of a triangular lattice with equilateral triangles has been developed
and investigated. There are eight distinct models that vary in the set of prohibitions. In zeroth approximation,
these models allow one to estimate the influence of the particles’ shape and complementarity of their pair
configurations on the self-assembly of dense monolayers formed by reversible filling. The most symmetrical
models were found to be equivalent to hard-disk models on the hexagonal lattice. When any contact of hard
triangles by vertices is prohibited, the dense monolayers are disordered, and their entropy tends to the constant. If
only one pair configuration is prohibited, the close-packed layer appears through the continuous phase transition.
In other cases, the weak first-order transition resulting in the self-assembly of close-packed layers is observed.
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I. INTRODUCTION

Understanding the self-assembly of many particles leading
to ordered structures of larger scale is the inevitable mile-
stone in the technological development of our civilization.
Firstly, it is potentially a highly effective way manufacture
new materials. Secondly, it is a way to create entirely new
functions and technological capabilities inspired by living or-
ganisms. The shape of the assembling objects (or interacting
particles) is the most important factor in our understand-
ing of the self-assembly. The shape significantly affects the
geometry of close packing, directionality, and selectivity of
interaction between particles [1–4], often regardless of scale.
Any shape arises from breaking the spherical symmetry of
an object and is usually determined by the geometry of its
surface. Therefore, a shape is usually defined by a set of
short-range repulsive interactions between atoms on the ob-
ject surface. Driven by such interactions the particles form
ordered structures which fill space in the most efficient way
and correspond to the minimum of relevant free energy of
the system. In the case of “hard” particles the type of close
packing is dominated by entropic contributions [1,3,5–7]. For
example, spherical particles usually self-organize into cubic or
hexagonal close-packed structures, while cubic particles form
the simple cubic lattice. Self-assembly of triangular particles
is much more difficult [7–10].

Considering the self-assembly of molecules and nanoscale
objects, we inevitably take into account many different types
of interactions. Functionalized organic molecules [11–14] or
colloid particles [2,4,15–17] forming complex ordered struc-
tures clearly illustrate the point. The functionalization gives
rise to the directionality of the interactions. In this case, the
interaction force depends on the relative positions and ori-
entations of the particles and achieves a maximum when the
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particles are complementary. Thus, defective and/or function-
alized objects having the same tangible shape can interact
in completely different ways. The resulting supramolecular
structures will differ. Selective functionalization of nanopar-
ticle faces has been adopted to nanochemistry to control the
resulting nanostructures [18]. On the other hand, the “per-
fection” of the species’ shape and structure is a necessary
condition for the most complex self-assembly systems, in-
cluding living organisms [19].

The hard-core lattice gas model is very important for
understanding the influence of nanoparticles’ or molecules’
shape on their self-assembly and critical behavior. A suitable
choice of the lattice, size, and shape of the excluded volume
allows one, at least in principle, to determine the structure of
close packing for almost any particle shape and reveal various
phases appearing as the density increases [5]. Since in the
hard-core lattice systems there are only infinite (excluding)
or zero (allowing) interactions, temperature plays no role.
Therefore, the phase transitions occurring in such systems
are always entropy driven. In this case, ordered close-packed
structures have a higher entropy than disordered ones under
given conditions [5].

Two-dimensional lattice models of packing the particles
of many different shapes have been studied. Examples in-
clude disks [20–29], triangles [10,30,31], squares [32–40],
dimers [36,41–43], rectangles [37,44–46] and rods [47–51],
Y-shaped particles [52], and hexagons [53]. Among them only
the hard hexagon model is exactly solvable. For hard-core
lattice gases of arbitrary geometry and wide range of density
the equations of state have been derived [34,54–57]. Recently,
multiple phase transitions have been discovered in several
hard-core models with both symmetric and asymmetric par-
ticles. This phase behavior is associated with the formation of
columnar and hexatic phases [22,25,26,36,44,52].

In this paper, we consider the self-assembly of triangles on
a triangular lattice. The self-assembly of triangular particles
is a general problem occurring at different scopes. One of
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FIG. 1. The model visualization: (a) Possible orientations of triangles on a triangular lattice, (b) on a hexagonal lattice, (c) possible paired
configurations, and (d) possible models.

the relevant examples is experimental and theoretical study of
self-assembling adsorption monolayers of functional organic
molecules having C3 symmetry [11–14,58–67], which is im-
portant for development of organic electronics, sensors, and
catalysis. Another well-known example is the self-assembly
of colloidal crystals from nanoparticles of various shapes,
including triangular [4,7,8,15,16,68]. In Sec. II we describe
a series of lattice models for filling a triangular lattice with
equilateral triangles. A difference between the models lies in
the set of prohibited and allowed pair configurations. This
is the simplest way to investigate the influence of the shape
complementarity and functionalization of particles on the self-
assembly of the close-packed layer. It can be considered as a
zero approximation.

II. MODEL

The model describes reversible filling of a triangular lattice
with equilateral triangles with side length equal to the lattice
constant a. The vertices of the triangles are always located
at the lattice sites. Therefore, the triangle can have two dif-
ferent orientations on the lattice [Fig. 1(a)]. Hereinafter the
orientation of triangles is marked with color for clarity. Owing
to the duality of triangular and hexagonal lattices, we can
consider the centers of triangles being located at the sites of
the hexagonal lattice [Fig. 1(b)] with a lattice constant equal
to ah = a/

√
3. Thus, for certain sets of prohibited and allowed

pair configurations the model of triangles on the triangular
lattice is assumed to be isomorphic to one of the hard-disk
lattice gas models on the hexagonal lattice. Further, we will
refer to this feature of the considered models and, if it is
possible, compare the obtained results with the work [24].

In the described model the triangles can form three possible
pair configurations on the triangular lattice: c1, c2, and c3

[Fig. 1(c)]. Here, we will consider the model in terms of “pro-
hibited” and “allowed” pair configurations and not account for
any finite interaction. In a zeroth approximation, we study the
influence of the particle shape complementarity on the self-
assembly of dense monolayers formed by reversible filling.
There are eight different special cases of the considered model
depending on the combination of the prohibited and allowed
pair configurations [Fig. 1(d)]. Further, we will refer to these

cases as separate models. Each of them has real molecu-
lar [11,14,58,61] or nanoscale (colloidal) [4,7,15] prototypes
differing in the particle shape or in the relevant function-
alization or protection of the particle edges and vertices.
The thermodynamic Hamiltonian of each model is written
as the sum of occupied lattice sites multiplied by the chem-
ical potential μ. For simplicity, we assume β = (kT )−1 = 1
in all calculations, where k is the Boltzmann constant and
T is the absolute temperature. Below, we briefly describe
the models.

Model 1. The model allows any contacts between the trian-
gles excluding overlaps. This model is evidently isomorphic
to the Langmuir model. In this regard, we will not study this
model since it will not provide new results. The close-packed
phase in this model has the maximum density due to the
absence of any prohibited pair configurations. In this regard,
we will use it as a density unit and, further, all the obtained
densities will be normalized to this value.

Models 2–4. In these models, side-to-side pair configura-
tion is allowed. The prohibitions on the contacts of triangles
by the vertices vary from one model to another. There are no
analogs of these models among the hard-disk models on the
hexagonal lattice. Prohibiting one or two vertex-to-vertex pair
configurations leads to a reduction of the model symmetry in
comparison with model 1. Thus, the effect of shape comple-
mentarity of the particles is examined.

Model 5. Any contacts of the triangles by the vertices are
allowed. In fact, there is a prohibition on nearest neighboring
on the hexagonal lattice sites (1NN model). Therefore, this
model is isomorphic to the hard-disk model on the hexago-
nal lattice. The model is known to possess one continuous
phase transition belonging to the Ising universality class
[24,27,69,70].

Model 6. In this instance the triangles having the same
orientation can contact by vertices. Like models 2–4, it is not
isomorphic to any hard-disk model on the hexagonal lattice.
Therefore, it has not been studied previously.

Model 7. The triangles having opposite orientation are
allowed to contact by vertices, but the side-to-side contact is
prohibited. This model is isomorphic to the second nearest
neighbor (2NN) model on the hexagonal lattice. In addition,
this specific case of the general model can be interpreted as
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FIG. 2. Transformation of the lattice sites: (a) New states of the
site, and (b) transformation of the lattice.

a model of Y-shaped molecules on the hexagonal lattice in
which the weak first-order transition is observed [24].

Model 8. In this case of the general model, all contacts
between the triangles are prohibited. That can be called “a
hard triangles model on a triangular lattice.” It is isomorphic
to the third nearest neighbor (3NN) model on the hexago-
nal lattice. As is known, there is no phase transition in this
model [24].

III. METHODS

The models were studied with the transfer matrix (TM),
the tensor renormalization group (TRG), and the Monte Carlo
(MC) methods. Such a set of methods allows one to minimize
errors associated with the disadvantages of each methods used
and to conduct a comprehensive study of the model. Calcu-
lations were carried out using SUSMOST 1.1 [71]. Below we
briefly describe the details of each method.

Transfer-matrix method. The main idea of the method is
to determine the partition function of a semi-infinite system
(M × ∞ sites) by calculating the largest eigenvalue of the
transfer matrix describing the interactions between M sites. In
addition, the eigenvectors of the transfer matrix allow one to
estimate the probabilities of the corresponding configurations.
It can be used to explore the structure of resulting phases.
The main and well-known drawback of the TM method is
the exponential growth of the computing time with increasing
M. Thus, using the TM method it is possible to calculate
thermodynamic characteristics of relatively small systems as
well as assess the related size effects. A correct choice of M
requires knowing in advance the structure of the phases which
appear in the simulation at the considered conditions. The
main advantage of the TM method is the ability to calculate
any thermodynamic quantities (including entropy and heat
capacity) with any desired accuracy for a semi-infinite system
(M × ∞). In this work, we used the mentioned features of the
method to estimate the phase transitions.

To increase the limiting size of the studied system we have
developed a less versatile code exploiting the system pecu-
liarities. Let us briefly describe the main features of the TM
algorithm used. Initially, the sites of the lattice are redefined
in such a way that the new site is formed by joining two
adjacent triangles on the original lattice [Fig. 2]. There are

four different states of the new site: empty, the first triangle is
filled, the second triangle is filled, and both triangles are filled.

Rings necessary for the implementation of the TM method
are generated by sequentially adding sites of the new type.
Accounting for numerous prohibitions on the nearest neigh-
boring, this technique drastically reduces the number of
preliminary computations by discarding the prohibited states
at each step of the ring generation. Additional consideration
of the translation invariance of the generated rings reduces the
dimension of the resulting transfer matrix by about M times.
Here M is the number of new sites in the ring. It allowed us
to carry out the TM calculations at sufficiently large values of
M = 12−16.

Tensor renormalization group. Designing the network was
carried out as described in [23]. We performed the calculation
according to the standard algorithm proposed by Levin and
Nave [72]. A singular decomposition of the tensor T was
further implemented, with only χ remaining of the largest
singular values. In this way we had discarded configurations
having the lowest probabilities. Next, the resulting tensors
were contracted in the appropriate way. The resulting tensor
T ′ described a system twice as large. The process was re-
peated until convergence on the partition function had been
achieved. In fact, we had determined the partition function
of the system. It can be further used to calculate any ther-
modynamic characteristics of the infinite system. The main
problem of the TRG method lies in the difficulty of the error
estimation. Therefore, the sufficient value χ is unknown in
advance. In this work, the χ value was varied from 48 to 200.
The maximum values of χ used in a particular calculation are
indicated in all graphs. The difference in the partition function
values obtained at various χ was used as the selection criterion
as recently suggested in [23]. Thus, the TRG method had
provided us the thermodynamic characteristics of the model
guaranteed to be “clean” of the finite size effects. It was the
main value of the TRG method in this study.

Monte Carlo method. The standard grand canonical Monte
Carlo (GCMC) method as implemented in SUSMOST 1.1 was
used for the simulations. To enhance the convergence to the
equilibrium state we utilized the parallel tempering technique
at β = [0.83, 1, 1.25, 2.03, 3.32, 5]. The elementary acts (ad-
sorption, desorption, rotation, and diffusion) and temperature

FIG. 3. Adsorption isotherm and lattice snapshot of model 5.
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FIG. 4. Heat capacity and susceptibility of the layer vs chemical
potential in model 5.

switching between the simulated systems were done accord-
ing to the Metropolis algorithm. To equilibrate the system
and calculate the average value of the density we performed
5.2 × 105 Monte Carlo steps. The size of the simulated system
was L = 60 × 60 in all cases. The GCMC method was mainly
used for visual analysis of the layer structure and estimation
of the layer density at key values of the chemical potential
μ. Comparison of the layer densities obtained by the GCMC
and TRG methods had allowed us to conclude whether the
selected system size and the number of GCMC steps were
sufficient or not.

IV. RESULTS AND DISCUSSION

The obtained results are discussed in two parts. In the first
part, we consider the models that are isomorphic to hard-disk
models on the hexagonal lattice: model 5 (1NN), model 7
(2NN), and model 8 (3NN). Those models were previously
well studied [24], so we only compare the results and high-
light previously unknown features. In the second part of the
section, we consider the models having no consistent analogs

on the hexagonal lattice. However, those models reveal the
effect of particle shape anisotropy on the formation of dense
monolayers from the lattice gas phase.

Model 5. As mentioned earlier, if we consider model 5
within the hexagonal lattice, then in fact we deal with the
hard-disk model with the nearest neighbor exclusion. Figure 3
shows the layer density dependence on the chemical poten-
tial (hereinafter referred to as the “adsorption isotherm”) and
snapshots of the layer obtained by the GCMC method. In all
cases, we preliminarily processed the images and show only
a part of the lattice. The unit cell of the close-packed phase is
marked in yellow.

In model 5, the close-packed phase consisting of iden-
tically oriented triangles is formed. A continuous phase
transition belonging to the 2D Ising universality class is
known to occur in this model. The approximate value of the
critical chemical potential μc ≈ 2.064 [24] was also estimated
in the previous studies. The dependences of the heat capacity
CV and density derivative on the chemical potential ∂θ/∂μ

(or susceptibility) obtained by the TM and TRG methods are
illustrated in Fig. 4. As one can see, an increase of the system
size leads to convergence of the curves calculated by the TM
and TRG methods.

Position of the heat capacity peak estimated by the TM
method always lies to the right of the critical chemical poten-
tial μc, but the corresponding maximum of the susceptibility
is always to the left. It allows one to find the boundary
for the true value of the critical chemical potential. Using
the scaling relation μM = μc + a(M−2), where a is a con-
stant, further improves the accuracy of such estimation. Thus,
the TM method provides the following value of the crit-
ical chemical potential μTM

c ≈ 2.06 ± 0.006. It reproduces
well the known result. The TRG method yields the value
μTRG

c ≈ 2.06 ± 0.005.
Model 7. The model is equivalent to the hard-disk model

on the hexagonal lattice with the first and second neighbor
exclusion. Figure 5 shows the adsorption isotherm and layer
images at full coverage of the lattice. The coexistence of
two energetically equivalent phases is clearly observed in the
close-packed layer. One of the phases exists as islands, while
the elements of the other phase form the interface between
those islands.

FIG. 5. (a) Adsorption isotherm and layer snapshot for model 7, and (b) structure of two energetically equivalent close-packed phases.
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FIG. 6. Heat capacity vs chemical potential for model 7.

Recently, a weak first-order phase transition was revealed
in this model [24]. Figure 6 illustrates the calculated depen-
dence of the heat capacity on the chemical potential. Since
the susceptibility curve behaves in a similar way, we do not
demonstrate it here and further. Serious problems with accu-
racy of the TRG calculations are also seen in the figure. It
can be associated with the degeneracy of the resulting dense
structure. In the case of the infinite system, the peak should
probably be observed in an infinitely small region of the
chemical potential. This circumstance locks the determination
of the critical value of the chemical potential for model 7 by
the TRG method.

The data obtained with the TM method show sharp peaks
at even values of M. Heights of the peaks noticeably grow,
and the width decreases with increasing M. Such behavior
is characteristic of a first-order phase transition. The heat
capacity curves calculated at odd values of M differ from the
even ones. Changes associated with increase of odd M are
small, but the extremum gradually forms. The position and
shape of the peak obtained at odd M approach the ones at even
values of M. The described behavior results from the size of
the unit cells of close-packed phases [Fig. 5(b)].

Since the position of the heat capacity peaks strongly de-
pends on M, it hampers an accurate estimation of the critical
chemical potential using the TM method. In this case, the shift
of the peak position is determined not by a term proportional
to M−d , but by a term proportional to M−(d−1), where d is the
space dimension [24]. The anomalous scaling dependence of
the critical point position can be associated with the infinite
degeneracy of the close-packed phase. This means that the
entropy for a lattice of size L × L at L → ∞ also tends to
infinity according to a power law as Lγ , where 0 < γ � 2.
Direct TM calculation of the dimensionless entropy per one
row at μ → ∞ results in the value ln2/2 and does not reveal
any dependence on the TM ring size at M � 4. Thus, the
exponent γ for model 7 is equal to 1 and the critical point
position should be determined according to the anomalous
scaling formulas.

We have approximated the critical value of the dimension-
less chemical potential μc by μM = μc + a(M−1) + b(M−2),
where a and b are constants. For M = 8, 10, 12 we have
μc ≈ 5.3, which sufficiently differs from the value μc ≈
6.66 obtained in [24]. For the next approximation at M =
10, 12, 14 we have found μc ≈ 5.43. The TM calculations
at M = 12, 14, 16 have yielded μc ≈ 5.65. These results
confirm the slow convergence with increasing M, which
is characteristic of systems with infinite degeneracy of the
ground state.

Model 8. Calculations carried out by all three methods
unambiguously indicate the absence of phase transitions in
this model. As seen on the snapshots collected in the GCMC
simulation [Fig. 7(a)] there is no ordered structure of the layer.
Instead, a mixture of differently oriented triangles is observed
on the lattice. Figure 7 shows the adsorption isotherms, the
heat capacity, and entropy dependences on the chemical po-
tential.

The curves calculated with the TM method at M � 8 are
practically independent of the M value, and a sharp peak
is absent in all cases. This indicates the absence of phase
transitions in this model. This behavior is known, but rather
curious, since this model is equivalent to the 3NN model on
the hexagonal lattice. It is known that for the kNN models on
square and triangular lattices at any value of k, at least one

FIG. 7. Model 8: Adsorption isotherm, layer snapshot, and heat capacity and entropy vs chemical potential.
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FIG. 8. Snapshots of close-packed phases appearing in model 2: (a) Triangle phase, (b) supratriangle phase, and (c) linear phase.

phase transition is always present, but the hexagonal lattice is
different [24].

An interesting feature is the behavior of entropy per site at
high density. It is equal to a nonzero value resulting from the
disordered structure of the dense layer. For the same reason
the TRG calculations at high density require a greater number
of singular values. The entropy STRG = 0.045 ± 0.001 of the
close-packed layer obtained with the TRG method is in good
agreement with the limiting value 0.04−0.045 of entropy
calculated with the TM method.

Next, we consider the models that have no analogs among
the models of hard disks on the hexagonal lattice and, there-
fore, have not been previously studied.

Model 2. We have found that this model is very similar to
model 5, but not equivalent. It follows from the coincidence of
the isotherms obtained with the TRG and GCMC methods, as
well as the susceptibility, entropy, and heat capacity calculated
with the TRG method. But the same accuracy of the TRG
calculations for model 2 requires more singular values. The
physical reason for this similarity is illustrated in the GCMC
snapshots of close-packed structures observed in model 2
[Fig. 8].

The point is that one of the close-packed structures in
model 2 coincides with the dense layer forming in model 5.
Apparently, it is the reason for the similar behavior of the
models. For deeper understanding of this phenomenon, we
have compared the TM results obtained for both models at
different values of M. Since the other characteristics behave in
the same way, we demonstrate only the susceptibility curves
[Fig. 9]. All the calculated thermodynamic characteristics of
both models (isotherm, susceptibility, entropy, and heat ca-
pacity) are identical at the odd values of M. Such values of
M force the appearance of the triangular phase consisting of
identically oriented triangles. Other ordered structures are not
formed in model 2 at odd M values. A completely different
behavior is observed at even values of M. The results for
model 2 at M = 2n, where n is a natural number greater than
1, are found to be the same as model 5 at M = n. Moreover,

the results for model 2 also coincide at M = 2n and M = n
for the odd values of n.

Since the supratriangular phase has the highest configura-
tional entropy per lattice site, it predominantly forms at even
M. At the same time, only the triangular phase is observed
at any integer M/2 in model 5. Apparently, the self-assembly
mechanism of these structures realized with a gradual increase
of the layer density is the same if adjusting for the scale.
The coincidence of the data at odd M/2 is explained by the
assembly of only the triangular phase in both models, but
why are the remaining phases with higher entropy not being
formed? The most probable supratriangular phase does not
appear in model 2 at odd M/2 values since the unit cell size of
the phase is even. The linear phase has higher entropy per site
than the triangular phase only at even M, because one of the
linear sizes of the unit cell has an even value. As the result,
the entropy of the linear phase decreases at odd values of M
in the TM simulation.

FIG. 9. Dependences of the susceptibility on the chemical poten-
tial at different M for models 2 and 5.
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FIG. 10. Model 3: Isotherm and layer snapshot, and heat capacity of the layer vs chemical potential.

The sensitivity of the layer characteristics to odd and even
values of M can be attributed to the self-assembly of triangular
particles under confinement conditions: on the terraces of the
high index faces of single crystals, in the narrow pores and
channels, and on the surface of nanowhiskers and nanotubes.

When M → ∞, the behavior of both models becomes
identical. It is expressed in the same type of phase transition
and position of the critical point.

Model 3. Relying on obtained data [Fig. 10], a close-packed
phase in this model occurs through a continuous phase tran-
sition. It is a linear dense structure with a unit cell of 3 × 3
size.

Self-assembly of the ordered structure with the unit cell of
3 × 3 size is revealed in significantly sharper peaks of heat
capacity and susceptibility calculated with the TM method
at the M values that are multiples of 3. In this regard, we
used only these TM ring sizes when determining the phase
transition point. Using the previously found scaling relations,
we have obtained the following value: μTM

c ≈ 2.41 ± 0.01. It
is clearly seen in Fig. 10 that the TM curves tend to the curve
obtained by the TRG method when M increases. The TRG
method gives the following estimation of the critical chemical
potential for the infinite system: μTRG

c ≈ 2.406 ± 0.005.

Model 4. Our calculations definitely indicate the absence
of phase transitions in this model [Fig. 11].

Layer snapshots for model 4 demonstrate phase behavior
similar to model 8. A close-packed phase in this model con-
sists of a disordered mixture of differently oriented pairs of
triangles contacting by an edge. Therefore, the entropy per site
in this model is expectedly nonzero at μ → ∞ and gradually
tends to a constant value with increasing M. Our estimation
with the TM method yields the entropy value lying in the
range 0.042−0.047. This is in good agreement with the TRG
calculation that gives STRG = 0.046 ± 0.005. These values
are also very close to the entropy of the close-packed phase
appearing in model 8, despite the difference in the structure
of these phases. Apparently, the magnitude of the entropy
of the disordered close-packed phases in models 4 and 8 is
determined by the lattice geometry. Heat capacity and sus-
ceptibility of the layer as functions of the chemical potential
practically coincide at M � 8. This confirms the absence of a
phase transition in model 4.

Model 6. In this model only the c2 configuration in which
triangles have the same orientation contact by vertices is
allowed. A network of co-oriented triangles is obviously
formed in the model when density grows. It is confirmed

FIG. 11. Model 4: Isotherm and layer snapshot, and heat capacity and entropy of the layer vs chemical potential.
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FIG. 12. Model 6: Isotherm and lattice snapshot, and graphs of heat capacity and susceptibility vs chemical potential.

by the calculated isotherm and snapshots of the layer
(Fig. 12).

As one can observe, the close-packed structure in this
model is the same as models 2 and 5. However, the ther-
modynamic characteristics of the models are different. The
shape and position of the heat capacity peaks calculated with
the TM method do not visibly change with increasing M,
while the susceptibility peak gradually shifts. The height of
the susceptibility peak gradually increases tending to the one
obtained with the TRG method. The described behavior is
characteristic of weak first-order phase transitions. The shift
of the susceptibility maximum with increasing M is rather
small. It is also a marker of a first-order phase transition.
An accurate estimation of the phase transition point μTM

c ≈
0.45 ± 0.01 with the TM method has been done using the
scaling relations. Applying the TRG method we have gotten
the following critical value: μTRG

c ≈ 0.447 ± 0.001.

V. CONCLUSION

Monolayers of hard particles of various shapes have been
an unceasing subject of research for over 50 years. In this
period two-dimensional lattice models of different hard par-
ticles from disks to Y-shaped particles and tetrominoes were
extensively studied. However, the question about orientational
complementarity of nonspherical particles and its effect on the
structure and thermodynamic characteristics of dense phases
remained open. The source of such complementarity usually
arises from defectiveness or functionalization of the particle
faces or molecules.

To shed light on this problem, here we have developed and
investigated a series of models for reversible filling of a tri-
angular lattice with equilateral triangles. The models differ in
the set of prohibitions on specific pairs configurations. There

are eight distinct models. In a zeroth approximation, these
models allow one to estimate the influence of the particles’
shape and complementarity of their pair configurations on
the self-assembly of the dense monolayer resulting from a
reversible filling.

The following main conclusions summarize the results of
our study:

(i) The most symmetric models, 1, 5, 7, and 8, obtained by
sequential prohibition of the pair configurations from c1 to c3

are equivalent to the hard-disk models on the hexagonal lattice
with 1NN, 2NN, and 3NN neighbor exclusions, correspond-
ingly. However, the structure of the close-packed layers and
their phase behavior on the triangular lattice are different in
all four models.

(ii) Close-packed monolayers are disordered for models 4
and 8, where any contacts of the triangles by vertices (c2 and
c3) are prohibited. In model 8, the dense disordered phase con-
sists of randomly oriented triangles. The close-packed phase
in model 4 comprises randomly oriented pairs of triangles.
There are no phase transitions in both models, and the entropy
tends to the constant STRG = 0.045 ± 0.001 at μ → ∞. The
fact is that such combination of the prohibitions eliminates a
self-assembly of short- and long-range ordered structures.

(iii) In the models possessing only one prohibited pair
configuration (models 2, 3, and 5) the close-packed layers
are formed through the continuous phase transition. The weak
first-order transition is observed in models 6 and 7, where two
pair configurations are prohibited.
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