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We show that the simplest universality classes of fracton hydrodynamics in more than one spatial dimen-
sion, including isotropic theories of charge and dipole conservation, can exhibit hidden quasiconservation
laws, in which certain higher multipole moments can only decay due to dangerously irrelevant corrections to
hydrodynamics. We present two simple examples of this phenomenon. First, an isotropic dipole-conserving
fluid in the infinite plane conserves an infinite number of harmonic multipole charges within linear response;
we calculate the decay or growth of these charges due to dangerously irrelevant nonlinearities. Second, we
consider a model with xy and x2 − y2 quadrupole conservation, in addition to dipole conservation, which is
described by isotropic fourth-order subdiffusion, yet has dangerously irrelevant sixth-order corrections necessary
to relax the harmonic multipole charges. We confirm our predictions for the anomalously slow decay of the
harmonic conserved charges in each setting by using numerical simulations, both of the nonlinear hydrodynamic
differential equations, and in quantum automaton circuits on a square lattice.
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I. INTRODUCTION

Quantum dynamics constrained to conserve multipole mo-
ments of charge can exhibit striking phenomena that are
only beginning to be understood. For example, locally gen-
erated quantum dynamics subject to conservation of charge
and dipole moment can robustly break ergodicity [1–3], with
Hilbert space shattering into exponentially many dynamically
disconnected Krylov subsectors, including a subspace expo-
nentially large in system size within which the dynamics is
exactly localized. This occurs in arbitrary spatial dimensions
[2] and has been the subject of intensive theoretical study
[4–7]. Thermalization in such shattered Hilbert spaces oc-
curs not with respect to a symmetry sector, as is usually the
case, but with respect to a Krylov subsector [4], and occurs
more slowly than diffusion [8]. The universal, long wave-
length description of such thermalization is given by fracton
hydrodynamics [9], and includes an infinitely large set of
new hydrodynamic universality classes that are themselves
arousing intense interest in the theory community [10–15].

We emphasize that such multipolar conservation laws are
not just a theoretical curiosity. Indeed, they were predicted to
occur [2], and have been observed experimentally [16–18],
in tilted Fermi-Hubbard models in optical lattices. They
have also been realized in systems of superconducting qubits
[19]. Additionally, fracton hydrodynamics constitutes the long
wavelength theory for two-dimensional (2D) charged fluids in
a magnetic field [9], and for certain dynamical universality
classes of quantum magnets [13]. Finally, such multipolar
conservation laws naturally arise [20] in fracton phases of
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quantum matter: exotic quantum spin liquids where the ele-
mentary excitations have constrained mobility [20–25].

This paper addresses a peculiar feature of the simplest
fracton hydrodynamic theories, which appears to have been
overlooked in the existing literature: the existence of (in-
finitely many) hidden quasiconservation laws, quantities that
are not truly conserved, but which cannot decay within linear
response. These quasiconservation laws both reveal an unex-
pected richness to the theoretical description of the problem,
and could be directly accessible in near-term experiments,
e.g., in optical lattices.

We illustrate the quasiconservation laws with a simple
example. Consider the linear response theory of fourth-order
subdiffusion, which arises due to dipole conservation [9,26]:

∂tρ = −D0(∇2)2ρ ; (1)

here ρ denotes the charge density and D0 > 0 is a phenomeno-
logical constant. All nonlinearities are irrelevant in any spatial
dimension [9], and thus we do not consider them here.
Suppose that we solve this equation in an infinite d-
dimensional volume, and ask what multipole moments of
charge are conserved? Namely, if we write

d

dt

∫
dd r f (r)ρ(r; t ) = 0, (2)

for which functions f (r) is this equation true if ρ solves
Eq. (1)? After a simple calculation (spelled out in detail in
the bulk of this paper), one finds that

∇2 f = 0 (3)

is already sufficient to satisfy (2) in the infinite plane (with
the correct number of boundary conditions at infinity). In
fact, even in certain finite domains, one can choose bound-
ary conditions such that (2) is satisfied whenever (3) holds.
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FIG. 1. Solution of the isotropic, linear, dipole-conserving PDE
∂tρ + D0∇4ρ = 0 subject to boundary conditions conserving total
charge and dipole moment: ∇2ρ = ∂n∇2ρ = 0, with ∂n the normal
derivative. Observe that Qxy = ∫

d2r xyρ is also conserved exactly.
In fact, all harmonic functions f (x, y) [∇2 f = 0] give rise to a
conserved charge Q f = ∫

d2r f ρ. We initialize the system with the
density profile ρ0(r) ∝ xy exp(−r2/2σ 2), and plot the moments f ∈
{1, x, xy} and the overlap with the initial state,

∫
d2r ρ0ρ (normalised

by its t = 0 value). The density profiles ρ(r; t ) in the top panels are
normalized by their maximum values. The PDE is solved on a lattice
with N2 = 482 sites, and σ � 0.42.

In d > 1, Eq. (3) is satisfied by infinitely many f : the har-
monic functions. A simple example in d = 2 is f = xy. These
conservation laws were not built in explicitly, unlike charge
and dipole conservation, but infinitely many of them seem to
emerge all the same. Numerical simulations of (1), presented
in Fig. 1, confirm that even in a domain of finite size with
seemingly mundane boundary conditions, hidden conserva-
tion laws emerge within the linearized hydrodynamic theory.

The goal of this paper is to deduce what ultimately happens
to the harmonic multipole charges

Q f ≡
∫

dd r f (r)ρ(r; t ), (4)

in a genuine charge- and dipole-conserving system, where
there is certainly no true conservation law for an infinite
number of f . We will discuss two resolutions and confirm
each with numerical simulations.

The first possible resolution, which is relevant for our
cartoon scenario in the infinite isotropic continuum described
above, is that formally irrelevant nonlinear corrections to the
subdiffusion equation allow partial relaxation of harmonic
multipole charges. We will analytically predict algebraic-in-
time decay or growth of these harmonic charges and confirm
these expectations via numerical simulations. We note, how-
ever, that the irrelevant nonlinearities decay fast enough that
the charges saturate to a nonzero (but nonuniversal) value,
i.e., in the infinite isotropic continuum, some fraction of
the harmonic function charge does not decay. We then con-
sider fracton hydrodynamics with boundaries. We analytically

argue that, even for an isotropic continuum theory, the com-
bination of nonlinearities and boundaries allows all harmonic
function charges to relax to zero in the long time limit. Fur-
thermore, we expect this relaxation to be exponential in time
on the longest timescales, although charge density will need to
subdiffuse to the boundary for the harmonic charges to relax
efficiently.

It is important to note that most known physical realiza-
tions of fracton hydrodynamics occur not in the isotropic
continuum, but rather on a lattice. In a lattice model, there
will arise lattice anisotropies, which can themselves allow
the harmonic charges to acquire dynamics, both in the bulk
and on the boundary. If the most relevant term in fracton hy-
drodynamics is isotropic, then the relaxation will come from
higher derivative, dangerously irrelevant, terms exhibiting lat-
tice anisotropy. In this case, the harmonic multipole charges
will relax more slowly (i.e., more subdiffusively) than the
simple power counting from fracton hydrodynamics would
suggest. This represents another example of UV-IR mixing
[27–30], in that microscopic lattice scales show up in the long
wavelength hydrodynamic description.

Our treatment in the continuum will be based on analytical
and numerical solutions of the partial differential equations of
fracton hydrodynamics. On the lattice, we will supplement
these analyses with automaton Monte Carlo simulations in the
manner of Ref. [8]. We will also illustrate the above principles
in the specific context of a fracton fluid inspired by the U(1)
generalization of Haah’s code [27–29,31,32]. We conclude
with a discussion of the implications of our results.

II. 2D AUTOMATON CIRCUITS

To test our predictions numerically on the lattice, we make
use of cellular automaton quantum circuits [8,33–35]. For a
more in-depth overview of the properties of automaton cir-
cuits, we refer the reader to, e.g., Refs. [8,10,12,35].

Cellular automaton dynamics is a type of discrete unitary
time evolution that does not generate entanglement in a par-
ticular, privileged (local) basis. That is, an automaton gate
Û , when acting on a state |m〉 belonging to this privileged
basis, simply permutes the basis states, and returns another
state belonging to the same basis, up to a phase [8,35]. For
a D-dimensional basis, this operation can be represented by
Û |m〉 = eiθm |πD(m)〉, where πD ∈ SD is an element of the
permutation group on D elements. While no real-space en-
tanglement is generated when acting with Û upon a basis
state |m〉, the time evolution generated by repeated applica-
tion of automaton gates generates volume law entanglement
when acting upon a generic initial state |ψ〉 = ∑D

m=1 cm|m〉
[35]. Indeed, while the evolution of a privileged basis state
|m〉 can be performed entirely classically, generic automaton
dynamics gives rise to chaotic quantum dynamics [35], being
able to reproduce many of the properties of the more general
Haar random circuits.

Throughout the paper the privileged basis will correspond
to local spin-1 tensor product states of the form |m〉 = ⊗i|mi〉
with |mi〉 ∈ {|+〉, |0〉, |−〉} the eigenstates of Ŝz

i on site i. We
will refer to the states |±〉 as hosting a charge q = ±1. There-
fore, in each discrete time update of the automaton evolution,
an Ŝz

i product state is mapped onto another Ŝz
i product state.
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FIG. 2. Illustration of the 4 × 4 dipole-conserving gates that
are employed in the automaton circuits. The blue (red) circles
indicate the presence of a positive (negative) charge, i.e., Sz

i =
1(−1), while the empty circles denote unoccupied sites, i.e., Sz

i = 0.
Both the left and the right charge configurations belong to the same
charge

∑
i Sz

i = −3, and dipole
∑

i riSz
i = (−5, −4) sector (with the

origin at the bottom left of the gate, and the lattice spacing a = 1).

Gates of the form
∏

j Û j,t are applied sequentially to the
system at each time step t . The local gates Ûj,t , which we take
to be randomly and uniformly distributed over space, permute
the spin states within a fixed symmetry sector set by the global
conservation laws, as indicated schematically in Fig. 2 for
gates of size Gx × Gy = 4 × 4 in two dimensions.1

A. Decay of hydrodynamic modes

One tool that we use to test the predictions of hydro-
dynamics is probing the relaxation of specific initial charge
distributions. In particular, we initialize the system at time
t = 0 in a spin-1 product state in the computational basis,
|ψz(0)〉 = |{Sz

i }〉. The state |ψz(0)〉 is chosen to have partic-
ularly strong overlap with one of the putative hydrodynamic
modes (and/or the relevant harmonic charges). The time
evolution generated thereafter by the automaton circuit is
followed, and the overlap with the initial state can be used
to diagnose how the system relaxes towards equilibrium. The
initial charge configurations that we utilize (depicted in Fig. 3)
have net zero charge and dipole moment,2 so the equilibrium
state corresponds, in the absence of shattering,3 to a feature-
less infinite temperature distribution of {Sz

i } within a fixed
symmetry sector.

In the case of a quadrupole initial state [i.e., a state with
a nontrivial quadrupole moment, as depicted in Fig. 3(b)],
for example, the system is split into four quadrants. The top
right and bottom left (top left and bottom right) quadrants are

1We define one unit of time as N/G random gate applications,
where N is the total number of spins, and G = GxGy is the number
of spins acted upon by each gate.

2This statement is true only on average; in a system of finite size,
there is statistical uncertainty in the total charge and dipole moment
which vanishes in the thermodynamic limit. Of course, the charge
and dipole in the statistically sampled initial conditions are exactly
conserved within each realization.

3The neglect of shattering can be justified by assuming that the
gates are large enough that the shattering is weak in the sense of
Refs. [2,3], i.e., that almost all of Hilbert space thermalizes, and also
that the initial condition does not lie in the (exponentially large but
measure zero) localized portion of Hilbert space.

FIG. 3. Left column: Illustration of the polynomials xy (top) and
x3y − xy3 (bottom). Right column: The corresponding average initial
states used for the automaton circuits: the charge on each site is
drawn from a weakly biased infinite temperature distribution, as
described in the main text. The initial states in the right column
therefore have strong overlap with the corresponding harmonic poly-
nomials depicted in the left column.

assigned a net positive (negative) charge. In the net positive
regions, this is accomplished by drawing each Sz

j from the
biased probability distribution P(Sz

i )

P(1) = 1 + 2ρ̄

3
, P(0) = P(−1) = 1 − ρ̄

3
. (5)

Implying that 〈ψz(0)|Ŝz
i |ψz(0)〉 = ρ̄ > 0, where the angled

brackets denote the quantum expectation value, and the over-
line represents an ensemble average over the probability
distribution (5) on each site, i.e., A = ∑

{Sz
i } A({Sz

i })
∏

j P(Sz
j ).

The average density ρ̄ is chosen to be small, ρ̄ 
 1, both
to avoid obstructions in the path to equilibrium in the form
of strong shattering [2,3,11], and to minimize any short-time
transient dynamics before the hydrodynamic description sets
in. In the negatively charged quadrants, the probability distri-
bution (5) is reversed (i.e., ρ̄ → −ρ̄ in these regions), thereby
favoring negative Sz

i eigenvalues.
The method of initialization described above can alterna-

tively be considered as a projection of the initial state

|�(0)〉 ∝
N⊗

i=1

[(1 + hi+)|+〉 + |0〉 + (1 + hi−)|−〉], (6)

onto the computational basis |{Sz
i }〉, where the parameters hi±

are related to the average density ρ̄ via hi+(−) =
√

1+2ρ̄

1−ρ̄
− 1

and hi−(+) = 0 for i belonging to the positive (negative) quad-
rant. Each state |{Sz

i }〉 appearing in the superposition is then
evolved separately according to the automaton dynamics. This

leads to the relationship4 〈�(t )|Ŝz
i |�(t )〉 � 〈ψz(t )|Ŝz

i |ψz(t )〉

4The approximate equality becomes an identity if (i) the average
over the (2S + 1)N initial product states is performed exactly, and
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for normalized states |�(0)〉 and |ψz(0)〉. The emergent aver-
aging that occurs for initial states such as (6) is reminiscent of
disorder-free localized systems [36,37], in which an extensive
number of local symmetries lead to an emergent disorder
average for certain translationally invariant initial states.

The overlap with the initial charge configuration can be
quantified by the imbalance I (t ) between charge in the posi-
tively versus negatively charged regions

I (t ) = 1

N ρ̄

[∑
i∈R+

〈
Ŝz

i (t )
〉 − ∑

i∈R−

〈
Ŝz

i (t )
〉]

(7a)

≡ 1

N ρ̄2

N∑
i=1

〈
Ŝz

i (t )
〉 〈

Ŝz
i (0)

〉
, (7b)

where the region R+(−) is the set of spins initialized with
net positive (negative) charge density. It follows from the
definition (7) that I (0) = 1. The imbalance will subsequently
decay from this maximal value at t = 0. The asymptotic decay
of I (t ) is governed by the slowest hydrodynamic mode with
which the initial condition has nonzero overlap.

B. Spin correlation function

We also measure the infinite temperature spin correlation
function in real space:

Cz(ri − r j ; t ) = 〈
Ŝz

i (t )Ŝz
j (0)

〉
. (8)

Here, the overline denotes an average over |{Sz
i }〉 product

states according an infinite temperature probability distribu-
tion, i.e., Eq. (5) with zero net charge density ρ̄ = 0 on
all sites. The time dependence of Cz(0; t ) quantifies the re-
turn probability; if the charge density spreads subdiffusively
(r ∼ t1/4 for dipole conserving systems) then conservation of
charge implies that Cz(0; t ) ∼ t−d/4. This prediction has been
verified in d = 1 in Refs. [8,10,12].

In spatial dimensions d � 2, lattice anisotropy plays an im-
portant role in determining the spatial dependence of Cz(r; t )
for fixed t . In conventional diffusive hydrodynamics, diffu-
sion is isotropic because there are no nontrivial second rank
tensors that are invariant under the point group symmetry of
the lattice. Meanwhile, for fracton hydrodynamics, in which
terms second order in spatial derivatives are removed by the
additional conservation laws, there exist nontrivial higher-
rank tensors that are invariant under the lattice’s point group
[9]. The conserved charge density evolves according to the
canonical equation of fracton hydrodynamics [9,26]

∂tρ + ∂i∂ jJ
i j = 0. (9)

To lowest order in spatial derivatives, the constitutive relation
between dipole current Ji j and the charge density ρ takes the
form Ji j = Di jk	∂k∂	ρ [12], where the index structure of Di jk	

is constrained by the point group of the lattice. A density mod-
ulation characterized by wave vector k will therefore decay
as ∼e−
(k)t , where the decay rate 
(k) = Di jk	kik jkkk	 is in
general anisotropic.

(ii) each product state appearing in the decomposition is evolved
according to an identical set of automaton gates.

Putting the above ingredients together, the hydrodynamic
prediction for the correlation function Cz(r; t ) is

Cz(r; t ) = 1

Ld

∑
k,p

eik·r〈Ŝz(k, t )Ŝz(p, 0)〉

� 1

3
S(S + 1)

∫
dd k

(2π )d
eik·re−
(k)t , (10)

where the S-dependent prefactor comes from the infinite

temperature average 〈Ŝz
i Ŝz

j〉 = 1
3δi jS(S + 1), and we have as-

sumed (discrete) translational invariance. Equation (10) holds
for sufficiently long times and distances, i.e., in the hydrody-
namic limit |r| → ∞ and t → ∞ keeping |r|4/t fixed. The
spatial dependence of Cz(r; t ) therefore provides access to
important information about the constitutive relation Ji j (ρ).

III. DYNAMICS OF HARMONIC FUNCTION CHARGES IN
THE ISOTROPIC CONTINUUM

A. Infinite plane

Here we describe how the additional quasiconserved har-
monic charges Q f [defined in Eq. (4)] are given dynamics
by the presence of nonlinearities in the constitutive relation
between charge and dipole current. In the isotropic case, the
simplest nonlinear correction that we can include takes the
form of a density-dependent subdiffusion constant:5

Ji j = (
D0 + D2ρ

2 + . . .
)
∂i∂ jρ. (11)

To scrutinize the conservation of the lowest-degree harmonic
charges, consider the hydrodynamic equation for the evolution
of the quadrupole density x	xmρ (note that 	 and m are indices,
not exponents):

∂t (x
	xmρ) + ∂iJ

i	m
q = −2J	m, (12)

where the quadrupole current Ji	m
q = x	xm∂ jJi j − xmJi	 −

x	Jim. Equation (12) is a special case of the general n-pole
continuity equation presented in Appendix B, and follows
directly from the continuity equation for charge (9), noting
that ∂i(x	xm∂ jJi j ) = x	xm∂i∂ jJi j + x	∂ jJm j + xm∂ jJ	 j =
x	xm∂i∂ jJi j + ∂i(xmJi	 + x	Jim) − 2J	m. Evidently, the
quadrupole density xix jρ is sourced by the dipole current
tensor Ji j .

In the linear theory, i.e., in the absence of D2 and higher-
order corrections, the appropriate components of the dipole
current tensor Ji j can be written as a total derivative, e.g.,
Jxy ∝ ∂x∂yρ (and similarly for Jxx − Jyy). However, as soon as
nonlinearities are included, this relationship ceases to hold,
and there exists a source term for the harmonic charges Qxy

and Qxx − Qyy that cannot be rewritten as a total derivative.

5In general, the first subleading term in the expansion is D1ρ, not
D2ρ

2 (especially if we consider ρ to be a perturbation about a finite
density state). However, we have explicitly checked that the scaling
argument that we present in this paper is unchanged if one accounts
for this linear correction, albeit becoming more cumbersome to write
down. This happens because a linear term D1ρ only leads to relax-
ation of Qxy at second order in D1, while D2ρ

2 can relax Qxy at
first order.
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TABLE I. The lowest-degree harmonic polynomials relevant to
this work.

Order, n Conserved quantity Polynomial moment

0 Charge 1

x
1 Dipole

y

x2 − y2

2 Quadrupole
xy

x4 − 6x2y2 + y4

4 Four-pole
x3y − xy3

The boundary terms that arise from integrating by parts also
play an important role in systems of finite size, and will be
discussed in further detail in the next section.

In the presence of such nonlinearities, the equation of mo-
tion for the xy charge is

d

dt
Qxy = −2

∫
d2r Jxy + boundary terms

= −2D2

∫
d2r ρ2∂x∂yρ + boundary terms. (13)

To calculate the dynamics of the xy charge implied by (13)
within perturbation theory, we must first solve the linear
problem. The Green’s function for the isotropic subdiffusion
equation in (1) in two dimensions is given by the Hankel
transform of e−D0k4t

G(r; t ) =
∫

dk

2π
kJ0(kr)e−D0k4t = 1

(D0t )1/2
f (u), (14)

where u = r(D0t )−1/4. The scaling function f (u) can be rep-
resented explicitly in terms of hypergeometric functions (see
Appendix C). Equation (14) describes how a unit δ-distributed
charge density spreads subdiffusively in time from its initial
position. However, such an initial condition has a trivial dipole
and quadrupole moment (zero, if the origin corresponds to the
initial position). To obtain a nontrivial xy charge, we should
initialize the system in a charge configuration with nonzero
quadrupole moment. This may be accomplished by consider-
ing two oppositely orientated dipoles

ρq(r; 0) =
∑
σx,σy
=±1

σxσyqδ

(
x − a

2
σx

)
δ

(
y − a

2
σy

)
. (15)

Taking a → 0+ while keeping the quadrupole moment Q =
a2q fixed, the time dependence of the initial charge configura-
tion (15) is given by ρq(r; t ) = Q∂x∂yG(r; t ). In an analogous
manner, to obtain nonzero overlap with higher-degree har-
monic polynomials, such as those listed in Table I, one must
use an initial charge distribution with nonzero higher mul-
tipole moments, whose time dependence is determined by
higher-order derivatives of G(r; t ).

From Eq. (14), we find that

Q∂x∂yG = Q

D0t

xy

r2

[
f ′′(u) − 1

u
f ′(u)

]
. (16)

FIG. 4. Dynamics of the xy charge, Qxy(t ), in the presence of
a nonlinear correction to the constitutive relation between charge
and dipole current [Eq. (11)] for various D2q2/(D0σ

4), a dimension-
less parameter that quantifies the nonlinearity. The relaxation of the
charge towards its asymptotic value, Qxy(∞) − Qxy(t ) ∼ t−α , is con-
sistent with α = 2, as shown in the inset (the gray dashed lines have
an exponent of −2). Note that the charge is not relaxed to zero; some
fraction of the harmonic function charge truly does not decay in the
long time limit, and the sign of D2 dictates whether the charge grows
or decays from its initial value. A system of linear size L/σ � 60 is
initialized with a charge density ρ(r; 0) = (q/σ 4)xye−r2/2σ 2

.

Within perturbation theory, the dynamics of the xy charge then
follows immediately from dimensional analysis. Each factor
of ρq(r; t ) = Q∂x∂yG introduces a factor of t−1, while each
spatial derivative gives a factor t−1/4. Finally, the 2D inte-
gration measure introduces t1/2. Any integral that depends on
ρq and derivatives thereof therefore scales as t1/2−#[ρ]−#[∂]/4.
For the particular case of Qxy, we find from (13) that Q̇xy ∼
t−3, leading to power-law relaxation or growth of Qxy ∼
−t−2 + const. depending on the sign of D2. We emphasize
that this integration constant is not zero in general, as observed
in Fig. 4.

The predicted power-law scaling is observed in Fig. 4,
where we simulate the nonlinear PDE defined by (11) subject
to an initial charge density ρ(r; 0) = (q/σ 4)xye−r2/2σ 2

, where
q is the charge enclosed in the quadrant x, y > 0. The solution
is obtained for times D0t 
 L4 such that any boundary effects
are negligible. Note that there remains residual overlap in the
long time limit; this is because the (irrelevant) nonlinearity de-
cays away sufficiently fast in time. This should be contrasted
with the lattice case discussed later (or indeed the case with
boundaries), where the harmonic charges do appear to relax
to zero at late times.

B. Relaxation with boundaries

On a domain of finite size, the boundary conditions also
provide a mechanism by which the harmonic charges cease
to be exactly conserved. This mechanism is most crisply
demonstrated by the simpler case of diffusive hydrodynamics,
in which only a U(1) charge is conserved. The ubiquitous
diffusion equation ∂tρ − D∇2ρ = 0 that follows from Fick’s
law actually conserves both charge and dipole moment on
the infinite plane. This can be seen by writing the continuity
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equation for dipole moment density x	ρ:

∂t (x
	ρ) − D∂ i

(
x	∂iρ − δ	

i ρ
) = 0. (17)

Boundary conditions that locally conserve charge demand that
the normal derivative of charge density must vanish on the
boundary, ∂nρ = 0, where n is the unit vector normal to the
boundary, and ∂n is shorthand for ni∂i. However, it may be
seen from (17) that a vanishing charge current is insufficient
to preserve dipole moment at the boundary.

The situation is more subtle for the case of dipole-
conserving hydrodynamics. In the linear theory, the boundary
conditions, ∇2ρ = 0 and ∂n∇2ρ = 0, which are sufficient
to conserve both charge and dipole moment, remarkably
also imply exact conservation of all harmonic charges Q f

at the boundary. Explicitly, if f (r) is a harmonic function,
∇2 f = 0, then

d

dt
Q f = −D0

∫
dd r f ∇4ρ

= −D0

∫
∂V

[
f ∂n∇2ρ − (∇2ρ)∂n f

]
, (18)

where in the second line we have integrated by parts. This
exact conservation of the harmonic charges is illustrated in
the bottom panel of Fig. 1, where the charge Qxy, in addition
to total charge and dipole moment, is shown to be constant
in time. The corresponding charge density at particular times
during the evolution is depicted in the top panels, demonstrat-
ing that the conservation of Qxy remains exact even once the
charge density reaches, and hence interacts with, the system’s
boundaries.

If nonlinearities of the form (11) are included, then the two
boundary conditions that are permitted by the fourth-order
subdiffusion Eq. (1) become inadequate to describe the three
exactly conserved quantities (in two dimensions): charge, and
the two components of dipole moment. The nonlinear cor-
rections therefore necessitate including a term that is sixth
order in spatial derivatives if we are to conserve all three of
these quantities exactly. Additionally, the nonlinear bound-
ary conditions (like the bulk equations) no longer conserve
higher-degree harmonic charges.

We emphasize that ∇2ρ = 0 and ∂n∇2ρ = 0 are very spe-
cial boundary conditions that preserve all of the relevant
charges in the linear theory, but do not correspond to vanish-
ing local dipole flux niJi j = 0: the two boundary conditions
are related by a solenoidal current of the form Ji j → Ji j +
εikε j	∂k∂	ρ, where εi j is the Levi-Cevita symbol. Therefore,
while the boundary conditions ∇2ρ = ∂n∇2ρ = 0 imply that∮

niJi j = 0, they give rise to a nonvanishing dipole flux lo-
cally of the form niJi j = −niε

ikε j	∂k∂	ρ. Hence, even within
linear response, the harmonic charges can decay to zero at
the longest time scales if vanishing dipole flux is enforced
locally with the boundary conditions niJi j = 0. The relaxation
of the charges induced by the boundary conditions will be
exponential in time at the longest timescales, ∼e−cD0tL−4

for
some c > 0, and commences once charge density has had
sufficient time to subdiffuse to the boundary. In principle, the
possible importance of higher derivative terms at the boundary
(as noted in the prior paragraph) suggests that there should be
a skin effect and an emergent length scale near the boundary

where the charge is distributed in such a way as to conserve
all components of dipole moment. Unfortunately, we have not
been able to see such a skin effect in our automaton numerics;
the resolution thereof remains an outstanding problem for
future work.

IV. RELAXATION ON THE LATTICE

We now turn to relaxation of harmonic function charges on
a lattice. While the relaxation mechanism involving nonlinear
corrections to hydrodynamics, and its interplay with bound-
ary effects, should also be operative on the lattice, we will
show that in lattice systems there is an alternative mechanism,
which endows the harmonic charges with dynamics as a bulk
phenomenon. The key ingredient here is lattice anisotropies.
For generic harmonic charges, lattice anisotropies permit dy-
namics in the bulk, without need for either boundaries or
nonlinearities.6 A single charge and dipole conserving gate
can relax these charges; however, they may be statistically
conserved in the infinite plane (e.g., Qxy on the square lat-
tice), much as ordinary diffusion statistically conserves the
dipole charge in infinite space. However, in the presence of
boundaries and lattice anisotropies, these charges also be-
come nonconserved, and relax to zero exponentially in time,
with a relaxation timescale determined by the most relevant
(i.e., fewest derivative) term exhibiting lattice anisotropy. This
can lead to relaxation timescales longer than one would ex-
pect based on simple power counting, if the leading lattice
anisotropies arise as dangerously irrelevant corrections to
fracton hydrodynamics.

We now elaborate on this high level summary. In the pres-
ence of an underlying lattice, the tensor structure permitted in
the constitutive relation is nontrivial [9]. For instance, when
the microscopic model lives on a square lattice, the constitu-
tive relation takes the form

Ji j = Di jk	∂k∂	ρ, (19)

where the D4 symmetry of the square lattice enforces the
following index structure:

Di jk	 = (Dxx − 3Dxy)δi jk	 + Dxy(δi jδk	 + δikδ j	 + δi	δ jk )
(20)

and δi jkl = δi jδikδi	 sets all indices equal to one another. With
periodic boundary conditions, a modulation of the density
with wave vector k, ρ(r) = ρ0eik·r, therefore decays with time
asymptotically as e−
(kx,ky )t , where


(kx, ky) = Dxx
(
k4

x + k4
y

) + 6Dxyk2
x k2

y . (21)

This prediction for the anisotropic decay rate is confirmed
by the infinite temperature correlation function Cz(r; t ) in

6In principle there are alternative charges that are conserved in
the bulk on average. For instance, for a subdiffusion equation ∂tρ +
Di jk	∂i∂ j∂k∂	ρ = 0 the charges corresponding to functions f solving
Di jk	∂i∂ j∂k∂	 f = 0 will be conserved in the bulk. However, these
charges (unlike the harmonic charges) will necessarily be noncon-
served in the presence of a boundary, and stochastic contributions to
hydrodynamics (which must exist, by the fluctuation-dissipation the-
orem), even without any nonlinear or higher derivative corrections.
We do not consider them further here.
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FIG. 5. Left: Autocorrelation function 〈Sz(r; t )Sz(0; 0)〉 for the
dipole-conserving automaton circuit, which exhibits the same D4

symmetry as the underlying lattice. The average is over initial con-
ditions drawn from an infinite temperature ensemble, and Lx = Ly =
100. Right: The same infinite temperature correlation function for
the circuit that additionally conserves the traceless components of
the quadruple tensor with Lx = Ly = 64. In this case, isotropy is
restored, and the correlation function exhibits an emergent rotational
symmetry. The phenomenological constants Dxx and Dxy in Eq. (20),
and D0 in Eq. (28) are not used as fitting parameters, being extracted
via alternative means, as described in Appendix A. In both cases the
automaton circuit employs gates of size 4 × 4, and the correlation
function is plotted at a time t = 29.

Fig. 5(a). The ratio Dxy/Dxx can be inferred from the correla-
tion function, or, to a higher degree of accuracy, by performing
a scaling collapse of the imbalance I (t ) ∼ e−
(kx,ky )t for var-
ious wave vectors k. The latter approach gives Dxy/Dxx =
1.1(3), consistent with Ref. [12]. Using this ratio, we observe
very good agreement between the hydrodynamic prediction
(10) and the automaton circuit with no adjustable parameters.

The boundary conditions that are relevant to the automa-
ton dynamics of circuits with open boundaries are zero local
charge flux and dipole flux across the boundary, ni∂ jJi j = 0
and niJi j = 0, respectively. As shown in Appendix B, the
time dependence of the complex harmonic charge Qn =∫

d2r (x + iy)nρ in the presence of such zero flux boundary
conditions is given by

d

dt
Qn = −n(n − 1)

∫
d2r (Jxx − Jyy + 2iJxy)zn−2, (22)

with z = x + iy. The equation for the xy charge, Eq. (13), is
recovered by taking the imaginary part of the above equa-
tion for n = 2. At the linear level, the constitutive relation (19)
gives Jxy = 2Dxy∂x∂yρ. Performing the integral over space, it
follows that

d

dt
Qxy = −4Dxy

∑
r∈

corners

(−1)cρ(r; t ), (23)

where, for the domain −1 < x < 1, −1 < y < 1, we have
c = sgnxsgny. The zero flux boundary conditions do not pre-
vent a nonzero charge density at the corners, and so Qxy will
inevitably decay at sufficiently long times. For the n = 3 (n �
4) charges, in the analog of (23), the corner contribution
is replaced by a boundary (bulk) term, but the conclusion
remains unaltered: The charges Qn will, at sufficiently long
times, decay exponentially, with a rate given by the slowest
hydrodynamic mode compatible with the boundary conditions
with which the initial conditions have nonzero overlap. When

FIG. 6. Relaxation of the charge imbalance I(t ) in the dipole
conserving automaton circuit with open boundary conditions, start-
ing from the quadrupole initial state (shown in the bottom left
inset). This initial state has large overlap with the xy charge Qxy.
The near perfect scaling collapse identifies asymptotic exponential
decay, e−t/τxy , with τxy ∝ k−2

x k−2
y , and ki = 2π/Li. The decay of the

xy charge Qxy is shown in the top right inset, which also exhibits
exponential decay with the same time scale τxy. The automaton
circuit uses gates of size 4 × 4, and the curves are averaged over
at least 214 initial states.

the equation of motion includes a bulk contribution, the har-
monic charges can exhibit dynamics before the unavoidable
relaxation that occurs on the longest time scales equal to the
time taken to subdiffuse to the boundary.

These predictions are consistent with what is observed
in the automaton circuits. As shown in Fig. 6, when open
boundary conditions are imposed on the circuit, the imbal-
ance decays to zero asymptotically as I (t ) ∼ e−t/τ , where
τ ∝ L2

x L2
y .7 This timescale is indeed shared by the decay of

the xy charge Qxy ∼ e−t/τ , as shown in the inset of Fig. 6.
In the example discussed above, the relaxation time for

the xy charge is what one might have guessed based on
simple power counting, noting that boundaries are important
for relaxation and dipole conserving hydrodynamics has k4

subdiffusion. We now turn to a richer example, where the
fracton hydrodynamics is isotropic at leading order, and the
lattice anisotropies are dangerously irrelevant perturbations to
the leading-order isotropic fracton hydrodynamics.

Relaxation from dangerously irrelevant lattice anisotropies

We now consider a three-dimensional fluid inspired by
the U(1) Haah code [27–29,31,32] in which the following
functions f (x, y, z) must be exactly conserved:

f = {1, x, y, xy, x2 − y2}, (24)

7The discrepancy between this expression and Eq. (21) is explained
by the boundary conditions. The relaxation of a mode with wave-
length λ 
 L will relax according to (21), but this relationship ceases
to hold for wavelengths λ ∼ L.
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corresponding to charge, x and y dipole moment, and the
traceless components of the quadrupole tensor in the xy plane.
(Note that we are rotating coordinates from the usual choice in
the microscopic Haah code.) Within the xy plane, an isolated
charge is immobile, while an isolated dipole can move only
along its dipole moment [31]. In general, one expects that such
a theory should admit a hydrodynamic description of the form

∂tρ +
∑

μ

DμJμ = 0, (25)

where the Dμ are generalized derivative operators [28], and
the Jμ are the currents to which they couple. Note that the
index μ is not necessarily related to any spatial indices. In the
absence of boundaries, the generalized continuity equation in
(25) implies that

d

dt

∫
dd r P(r)ρ(r; t ) = 0, (26)

if the functions P(r) satisfy D†
μP(r) = 0 for all μ. The op-

erators D†
μ are related to the Dμ via integration by parts,∫

dd r f Dμg = ∫
dd r gD†

μ f , up to boundary terms. If the sys-
tem conserves the multipole moments in (24), then to lowest
order in spatial derivatives, the most general set of Dμ that one
can write down is

∂tρ + ∂zJz + ∇2
⊥J + ∂A∂B∂CJABC = 0, (27)

where ∇2
⊥ = ∂2

x + ∂2
y and the indices A, B,C run over x and

y only. A more formal and extended discussion of this fact is
a topic for future work [38]. Focusing on the dynamics in the
xy plane, we find that the leading-order hydrodynamic theory
has a scalar current

J = D0∇2
⊥ρ, (28)

which leads to fourth-order subdiffusion as if only dipoles
were conserved. Crucially, however, at the leading derivative
level, this theory exactly conserves all harmonic charges, even
at the nonlinear level; as a consequence, the sixth-order cor-
rections to the hydrodynamic equations of motion

JABC ∼ −D′∂A∂B∂Cρ (29)

represent dangerously irrelevant operators even within linear
response. We numerically demonstrate that it is these sixth-
order subdiffusive corrections that relax the nonconserved
harmonic charges in the Haah code fluid. This represents a
peculiar realization of UV/IR mixing in type-II fracton matter
[27–30], in which microscopic length scales explicitly show
up in the hydrodynamic theory.

We now elaborate on this high level summary, focusing on
the behavior of the Haah code fluid in the xy plane. We first
consider the behavior of the infinite temperature correlation
function

Cz(r; t ) � 1

3
S(S + 1)

∫
d2k

(2π )2
eik·re−D0k4t

= S(S + 1)

3
√

D0t
f (u), (30)

where u = r(D0t )−1/4, and the function f (u) is defined in
Eq. (14). In Fig. 5(b), this exact expression is compared with
the results from a 2D automaton circuit that utilizes local gates

Û that exactly conserve the multipole moments in (24) rele-
vant to subdiffusion in the xy plane: charge, dipole moment,
and the traceless components of the quadrupole tensor. We
observe essentially perfect agreement between the numerics
and Eq. (30). In principle, the plot contains just one adjustable
parameter, the phenomenological constant D0 > 0, which re-
lates charge and current in the automaton circuit. However,
the parameter D0 can be extracted via independent means by
performing a scaling collapse of the imbalance I (t ) ∼ e−
(k)t

for various wave vectors k (see Appendix A). This leaves no
free parameters in Fig. 5.

Having established that, at the leading derivative level, the
xy and x2 − y2 conserving circuit exhibits isotropic subdiffu-
sion, we now examine the fate of the harmonic charges Q f .
The boundary conditions appropriate for zero local dipole,
charge, and quadrupole flux are J = ∂nJ = 0. Explicitly, the
local harmonic charge density evolves according to

∂t ( f ρ) + ∂ i( f ∂iJ − J∂i f ) = −J∂i∂
i f , (31)

where the source term vanishes for harmonic functions.
When integrated over the appropriate domain, the boundary
term vanishes for the aforementioned zero flux boundary
conditions.

The additional conservation laws enforce that the rank-four
tensor appearing in the hydrodynamic description must trans-
form trivially under the point group symmetry of the lattice.
However, as noted at the beginning of this section, there also
exist terms higher order in spatial derivatives consistent with
the conservation laws defined by Eq. (24). These higher-order
corrections in general will transform nontrivially under the
point group. For instance, on the square lattice, the permitted
index structure in the constitutive relation is

Ji jk = Di jk	mn∂	∂m∂nρ, (32)

where the rank-six tensor Di jk	mn contains two independent
parameters

Di jk	mn =
{

D1 six matching indices
D2 four matching indices . (33)

The anisotropic sixth-order term therefore has the ability to
relax the harmonic charges at the longest time scales, just as
lattice anisotropies combined with boundaries were responsi-
ble for the relaxation of n > 1 harmonic charges in Sec. IV.

As shown in Appendix B, the explicit equation of motion
for the complex harmonic charges Qn in the presence of
boundaries is

d

dt
Qn = n(n − 1)(n − 2)

×
∫

d2r [Jxxx + 3iJxxy − 3Jxyy − iJyyy]zn−3, (34)

with z = x + iy. As explained above, absent the higher-rank
tensor Ji jk , the right-hand side vanishes. When it is included,
the right-hand side of the above equation is generally nonzero
for harmonic charges with degree higher than those which are
exactly conserved by the dynamics (here n > 2), just as in
Eq. (22). At the longest time scales, the harmonic charges
should decay exponentially ∼e−
(Lx,Ly )t with the relaxation
rate 
 set by the slowest hydrodynamic mode. In the presence
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FIG. 7. Relaxation of the charge imbalance I(t ) in the traceless
quadrupole conserving automaton circuit, starting from a four-pole
initial state (shown in the bottom left inset). The scaling collapse
occurs when time is rescaled by t → L−6t , consistent with the ar-
guments presented in the main text that the anisotropic sixth-order
(quadrupole-conserving) terms in Eq. (27) are responsible for the
relaxation of harmonic charges (of degree n > 2). The decay of
the four-pole charge Im Q4 is plotted in the top right inset, and is
consistent with the same decay rate as the imbalance. The curves are
averaged over at least 214 initial states.

of the higher derivative corrections, we anticipate that the cor-
responding gap should scale as k6. This prediction is tested in
the 2D xy and x2 − y2 conserving automaton circuit in Fig. 7.
We initialize the circuit in a four-pole initial state (see Table I)
that has vanishing charge, dipole, xy and x2 − y2 moments, but
nonzero four-pole charge. As expected in light of the above
arguments, the imbalance and the four-pole charge Im Q4

both decay exponentially in time with an identical decay rate
consistent with the scaling 
 ∼ L−6.

V. CONCLUSION AND OUTLOOK

We have pointed out that fracton hydrodynamics can have
a large number of hidden quasiconserved charges. In our ex-
amples, these extra quasiconserved charges are associated to
harmonic functions. Their conservation is not put in explicitly,
but emerges from the constrained form of the hydrodynamic
equations. If working in infinite isotropic continuum space,
some fraction of these charges will not decay, even in the
infinite time limit, although nonlinear corrections to hydro-
dynamics do cause some algebraic in time decay or growth.
In the presence of boundaries, these charges can be relaxed
at the level of linear hydrodynamics depending on the bound-
ary conditions. When moving to a lattice there is a further
wrinkle coming from lattice anisotropies. Lattice anisotropies
render most of the charges nonconserved even in the bulk,
but finitely many harmonic charges remain conserved in an
infinite lattice. On a lattice with boundaries, however, all the
harmonic charges are able to relax. The relaxation time is set
by the leading lattice anisotropy. In settings where the leading
anisotropic term carries more derivatives than the leading term

in fracton hydrodynamics, the relaxation comes from dan-
gerously irrelevant operators, and is slower than naive power
counting would predict. We have illustrated these results by
both numerical solution of PDEs and automaton Monte Carlo
simulations, including on an explicit lattice model motivated
by the U(1) Haah code.

The phenomenon we have discovered might evoke analo-
gies to long time tails in conventional hydrodynamics [39,40],
wherein hydrodynamic fluctuations lead to the anomalously
slow decay of certain degrees of freedom (e.g., nonconserved
operators have power-law, rather than exponential, decay with
time, similar to the decay in Fig. 4). However, the effect is not
the same: in our case, one does not need to consider loop cor-
rections within nonlinear fluctuating hydrodynamics to see the
anomalous power-law decays; they are already present within
the classical PDEs. In contrast, our accidental conservation
laws primarily stem from the curious higher derivative nature
of the currents.

Could these quasiconservation laws be seen experimen-
tally? Atomic, molecular, and optical (AMO) platforms
appear the most promising candidates for such explorations
in the near future, and identification of a specific platform
suitable for realization would be an interesting topic for future
work. We note also that the phenomena discussed herein could
also be relevant for quantum magnetism with large effective
spins. For example, phenomena analogous to the discussion
in Sec. IV A arise in spin-S lattice models endowed with a lo-
cal Hamiltonian that conserves the moments Q̂ f = ∑

i f (r)Ŝz
i

defined by the functions f (r) in (24). Some of the simplest
local stencils that one can write down, which respect the
conservation laws (24), also conserve an infinite hierarchy
of harmonic charges (on a finite lattice, the number of such
charges scales with the number of boundary sites, ∝ Ld−1).
This is most simply demonstrated by the following d = 2
local Hamiltonians, Ĥ (3) and Ĥ (5), which are defined on the
square lattice, with spin-S degrees of freedom on the sites, and
are constructed from 3 × 3 and 5 × 5 stencils, respectively:

Ĥ (3) = J
∑

r

( ∏
δ∈{±ex,±ey}

Ŝ+
r Ŝ−

r+δ + H.c.

)
, (35a)

Ĥ (5) = J
∑

r

( ∏
δ∈{±ex,±ey}

Ŝ+
r+δŜ

−
r+2δ + H.c.

)
. (35b)

Note that S±
r appears to the fourth power in Ĥ (3), and so

only acts nontrivially on spins with S � 2. As shown in
Appendix D, for the Hamiltonians in (35), [Ĥ (n), Q̂ f ] = 0 for
any discrete function f (r) that satisfies the discretized Laplace
equation,

∑
r′ �rr′ f (r′) = 0, where �rr′ is defined by the

stencil that appears in (35). For instance, Ĥ (3) corresponds to
the canonical five-point stencil finite difference approximation
to the Laplacian

(� f )x,y = fx+1,y + fx−1,y + fx,y+1 + fx,y−1 − 4 fx,y. (36)

Since we are primarily concerned with the relaxation of the
harmonic charges, while they are conserved exactly by the
Hamiltonians in (35), we will not discuss them further, except
to note that the identification of materials that might plausibly
realize such effective Hamiltonians would be an interesting
topic for future work.

044103-9



HART, LUCAS, AND NANDKISHORE PHYSICAL REVIEW E 105, 044103 (2022)

Another question that remains open is how exactly the
quasiconserved charges discussed herein interact with the
shattering of Hilbert space discussed in Refs. [2,3]? Do some
of the states where the harmonic charges are anomalously
large end up lying in Krylov subsectors of finite size, and
therefore fail to thermalize entirely? As a related point, one
could ask: What are the simplest terms we can write down
that couple harmonic charge sectors within a Krylov subsec-
tor? What about within a symmetry sector? Answers to these
detailed questions are interesting open questions. Regardless
of their answers, our work reveals that fracton hydrodynamics
remains very far from being fully understood, and may have
yet more surprises in store.

Note added. Recently, we learned of an independent nu-
merical study of the xy and x2 − y2 conserving model in an
upcoming paper [41].
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APPENDIX A: EXTRACTING PHENOMENOLOGICAL
CONSTANTS

In order to determine the phenomenological parameters
entering the hydrodynamic equations accurately, we look
at the relaxation of density modulations with various wave
vectors k.

1. Dipole conserving circuits

In dipole conserving circuits subjected to periodic bound-
ary conditions, the relaxation of a density modulation of wave

vector k is ∼e−
(k)t , where 
(k) = Di jk	kik jkkk	. As stated
in the main text, on the square lattice, the permitted index
structure in Di jk	 is [12]

Di jk	 = (Dxx − 3Dxy)δi jk	 + Dxy(δi jδk	 + δikδ j	 + δi	δ jk ).
(A1)

To extract Dxy and Dxx, we perform a scaling collapse of
the imbalance I (t ) starting from quadrupole initial states
with wave lengths λ � 1, and with various kx/ky, as per-
formed in Ref. [12] for a layered circuit architecture. The
optimal collapse is found by varying the ratio Dxy/Dxx, and
determining the value for which the spread of the curves
is minimized. More precisely, using linear interpolation we
sample − log I at M equally spaced points and, at each point,
compute the standard deviation of the times relative to the
average. The average over all M points can then be used
as a non-negative cost function, whose minimum occurs at
the optimal value of Dxy/Dxx. The curvature of the parabolic
minimum can also be used to extract the associated error in
the optimal value. The cost function and the associated scaling
collapse are shown in Fig. 8. We find that the optimal collapse
occurs for Dxy/Dxx = 1.1(3). Note that the origin of the error
is predominantly systematic in nature; the residual spread of
the data at the optimal value of Dxy/Dxx is ostensibly due
to corrections higher order in k, which could in principle be
removed by accessing larger system sizes. Having established
the relative magnitude of Dxy and Dxx, their overall scale can
be determined by finding the gradient of the collapsed data.

2. Traceless quadrupole conserving circuits

The procedure for extracting D0 is trivial, since the relax-
ation rate 
(k) ∝ k4 is isotropic. Hence, no additional step to
collapse the data is necessary. As shown in Fig. 8, the data
collapse is essentially perfect using a fourth-order isotropic

(k), even for the modest system sizes considered. The value
of D0 can then be obtained by fitting the exponential tail,
resulting in D0 � 0.114.

APPENDIX B: n-POLE CONTINUITY EQUATION

1. Dipole conserving hydrodynamics

In this Appendix we derive the continuity equation for a generic n-pole moment of the charge density for dipole conserving
fracton hydrodynamics. Our starting point is the continuity equation for ρ (recall that the in are indices, not exponents)

∂t (x
i1 xi2 · · · xinρ) + xi1 xi2 · · · xin∂a∂bJab = 0, (B1)

where a, b ∈ {1, . . . , d}. Moving the product xi1 · · · xin under the spatial derivative, we arrive at

∂t (x
i1 · · · xinρ) + ∂a

(
xi1 · · · xin∂bJab − nx(i1 · · · xin−1 Jin )a

) + n(n − 1)x(i1 · · · xin−2 Jin−1in ) = 0. (B2)

The notation T (ab) indicates symmetrization over the indices within the brackets, e.g., T (ab) = 1
2 (T ab + T ba). For n � 2, i.e.,

quadrupoles and higher-degree polynomials, the continuity equation in (B2) contains a source term. We now specialize to d = 2
for the remainder of the derivation. The equation of motion for the harmonic charges follows directly from (B2). It will be
convenient to work with a complex representation of the harmonic charges Qn ≡ ∫

d2r (x + iy)nρ. We therefore require

d

dt
Qn =

∫
d2r ∂t [(x + iy)nρ(r; t )]. (B3)
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FIG. 8. Left: Scaling collapse of the imbalance, I(t ), in the dipole conserving automaton circuit for a quadrupole initial state (as shown
in the inset). The optimal scaling collapse occurs for 
̃(kx, ky ) = k4

x + k4
y + 6αk2

x k2
y , with α ≡ Dxy/Dxx � 1.1, and ki = 2π/Li. The resulting

exponential decay is best fit by Dxx � 0.25. Right: Scaling collapse of the imbalance for the xy and x2 − y2 conserving automaton circuit. The
data exhibits a perfect scaling collapse when time is rescaled by the isotropic factor (k2

x + k2
y )2. The best fit of the corresponding exponential

decay gives D0 � 0.114. Both circuits make use of periodic boundary conditions, in contrast to earlier figures.

Expanding the harmonic polynomials (x + iy)n = ∑n
k=0

(n
k

)
ikykxn−k , each term in the expansion can be evaluated using (B2). If

zero charge and dipole flux boundary conditions are imposed, i.e., na∂bJab = 0 and naJab = 0 on the boundary, then the surface
terms (which are proportional to the charge and dipole flux with appropriate factors of xi) vanish. The only nontrivial contribution
therefore comes from the source term ∝ x(i1 · · · xin−2 Jin−1in ). This bulk contribution evaluates to

∂t [(x + iy)nρ] ⊃ −
n∑

k=0

(
n

k

)
ikykxn−k[Jxx(n − k)(n − k − 1)x−2 + 2Jxyk(n − k)x−1y−1 + Jyyk(k − 1)y−2]. (B4)

Now, by relabelling k → k + 1 (k + 2) in the second (third) term in the square brackets, the expression can be resummed, giving

∂t [(x + iy)nρ] ⊃ −n(n − 1)(x + iy)n−2(Jxx − Jyy + 2iJxy). (B5)

Integrating over space gives Eq. (22) presented in the main text.

2. Traceless quadrupole conserving hydrodynamics

In a similar spirit to Appendix B 1, we derive the continuity equation for a generic n-pole moment of the charge density in
the circuit that additionally conserves xy and x2 − y2 moments of the charge density. As before, we begin with the most general
continuity equation for ρ

∂t (x
i1 xi2 · · · xinρ) + xi1 xi2 · · · xin

(∇2J + ∂a∂b∂cJabc
) = 0. (B6)

As discussed in the main text, it is important to include both the isotropic part and the rank-three tensor Jabc terms in the
continuity equation, else the harmonic charges cannot decay. The isotropic contribution gives rise to the following terms:

xi1 xi2 · · · xin∂a∂
aJ = ∂a

(
xi1 xi2 · · · xin∂aJ − nδa(i1 xi2 · · · xin )J

) + n(n − 1)δ(i1i2 xi3 · · · xin )J. (B7)

It is simple to show from the expression (B7) that the bulk contribution n(n − 1)δ(i1i2 xi3 · · · xin )J vanishes for the harmonic
polynomials in d = 2. Specifically, as before, we write the harmonic polynomials of degree n as the real and imaginary parts of
(x + iy)n = ∑n

k=0

(n
k

)
ikykxn−k . The source term in (B7) then evaluates to

J
n∑

k=0

(
n

k

)
ikxn−kyk[(n − k)(n − k − 1)x−2 + k(k − 1)y−2]. (B8)

By relabeling k → k + 2 in the second term in the square brackets, we observe that the two terms exactly cancel one another.
Meanwhile, for the other (quadrupole conserving) term in (B6) that couples to three spatial derivatives, we find that

xi1 xi2 · · · xin∂a∂b∂cJabc

= ∂a
[
xi1 xi2 · · · xin∂b∂cJabc − nx(i1 · · · xin−1∂cJin )ac + n(n − 1)x(i1 · · · xin−2 Jin−1in )a

] − n(n − 1)(n − 2)x(i1 · · · Jin−2in−1in ). (B9)

For n � 3, there exists a source term. It useful to write down the special cases for n = 0 and n = 1, corresponding to charge and
dipole moment, respectively,

∂tρ + ∂a
(
∂aJ + ∂b∂cJabc

) = 0 (B10)

∂t (x
	ρ) + ∂a

[
x	

(
∂aJ + ∂b∂cJabc

) − ∂cJ	ac − δ	aJ
] = 0. (B11)
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These expressions allow us to identify the charge and dipole currents: Ja
charge = ∂aJ + ∂b∂cJabc and J	a

dipole = x	Ja
charge − ∂bJ	ab −

δ	aJ , i.e., the dipole moment can change either due to the flow of charge across the boundary or due to the flow of dipoles. In
an analogous manner, the quadrupole current takes the form J	ma

quad = −x	xmJi
charge + xmJ	a

dipole + x	Jma
dipole + 2J	ma. The boundary

conditions relevant to the automaton circuits are zero flux of charge, dipole moment, and the xy and x2 − y2 components of the
quadrupole moment, which imply naJa

charge = 0, na(∂cJ	ac + δ	aJ ) = 0, naσ
x
i jJ

i ja = 0, and, finally, naσ
z
i jJ

i ja = 0, where σ
x/z
i j are

the standard Pauli matrices. Combining the isotropic term (B7) and the anisotropic Eq. (B9), we arrive at the full continuity
equation for the n-pole density

∂t (x
i1 xi2 · · · xinρ) + ∂a(xi1 xi2 · · · xin

[ Ja
charge︷ ︸︸ ︷

∂aJ + ∂b∂cJabc
]
) − n∂a(x(i1 · · · xin−1

[ xin )Ja
charge−Jin )a

dipole︷ ︸︸ ︷
δin )aJ + ∂cJin )ac

]
)+

∂a
(
n(n − 1)x(i1 · · · xin−2 Jin−1in )a

) + n(n − 1)δ(i1i2 xi3 · · · xin )J − n(n − 1)(n − 2)x(i1 · · · Jin−2in−1in ) = 0. (B12)

The two terms with the overbraces are proportional to (linear combinations of) the charge and dipole current, implying that for
zero flux boundary conditions they will not contribute. In principle, the first term on the second line of (B12) could give rise
to a contribution proportional to naσ

y
i jJ

i ja or naσ
0
i jJ

i ja, but we will show that such terms do not arise for the harmonic charges.
Expanding the complex harmonic charge, we find that

n(n − 1)
∑
{in}

h({in})x(i1 · · · xin−2 Jin−1in )a =

n∑
k=0

(
n

k

)
ikxn−kyk

[
k(k − 1)y−2Jyya + (n − k)(n − k − 1)x−2(x2)kJxxa + 2k(n − k)x−1y−1Jxya

]
, (B13)

where the coefficients h({in}) correspond to the expansion of the (x + iy)n. As in Eq. (B8), we can relabel the dummy index k
and resum the expression, leading to

n(n − 1)
∑
{in}

h({in})x(i1 · · · xin−2 Jin−1in )a = n(n − 1)(x + iy)n−2[(Jxxa − Jyya) + 2iJxya]. (B14)

For boundary conditions that preserve x2 − y2 and xy, i.e., naJxya = 0 and na(Jxxa − Jyya) = 0, the surface term corresponding
to (B14) vanishes. If follows that the only term that contributes when considering the time dependence of the harmonic charges
is the last term on the bottom line of (B12), i.e., the anisotropic source term

d

dt
Qn = n(n − 1)(n − 2)

∫
d2r [Jxxx + 3iJxxy − 3Jxyy − iJyyy](x + iy)n−3. (B15)

We may now immediately observe that Qn is exactly conserved, even in the presence of boundaries, for n � 2 (by construction).
Harmonic polynomials of degree n > 2, on the other hand, are relaxed by the anisotropic quadrupole current tensor Jabc; the
isotropic contribution to the equation does not enter the equation of motion for Qn.

APPENDIX C: SOLUTION OF TIME-DEPENDENT
BIHARMONIC EQUATION

The Green’s function for the isotropic theory can be ex-
pressed explicitly in terms of the hypergeometric function
0F2(a, b; x) [42] as

G(r; t ) = 1√
D0t

[
1

8
√

π 0F2
(

1
2 , 1; u4

44

) − u2

2π 0F2
(

3
2 , 3

2 ; u4

44

)]
,

(C1)
where u ≡ r(D0t )−1/4, and r ≡ |r|. The Green’s function
of the one-dimensional problem, ∂tρ + D0∂

4
x ρ = 0, can be

recovered by marginalizing over one of the coordinate direc-
tions, x or y, e.g., G(x; t ) = ∫

dy G(r; t ). However, in contrast
to ordinary diffusion, the two-dimensional Green’s function
in (C1) is not simply the product of two one-dimensional
solutions.

This exact solution can be used to evaluate the perturbative
equation of motion for the charge Qxy appearing in Eq. (13).
Up to boundary terms,

d

dt
Qxy = −2D2Q3

∫
d2r (∂x∂yG)2∂2

x ∂2
y G (C2a)

= 1

(D0t )3
ID2Q3, (C2b)

where I > 0 is the dimensionless integral that one ob-
tains by introducing dimensionless integration variables ui =
xi(D0t )−1/4 in (C2a). Numerically, we find that the inte-
gral evaluates to I = 6.34918 . . . × 10−7. This means that
a positive (negative) D2 will, asymptotically, give rise to
algebraic-in-time growth (decay) of the harmonic charge Qxy.
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APPENDIX D: HAMILTONIANS THAT CONSERVE
TRACELESS COMPONENTS OF QUADRUPOLE

In the outlook, we introduced two local spin Hamilto-
nians that were constructed from local hopping terms that
conserve xy and x2 − y2, in addition to charge,

∑
i Ŝz

i , and
dipole moment,

∑
i x	

i Ŝz
i for 	 = x, y. It was asserted that these

Hamiltonians also conserve lattice versions of the harmonic
charges. We show here how these additional conservation laws
emerge. For concreteness, we repeat the definitions (where we
have set the overall energy scale J = 1)

Ĥ (3) =
∑

r

( ∏
δ∈{±ex,±ey}

Ŝ+
r Ŝ−

r+δ + H.c.

)
, (D1a)

Ĥ (5) =
∑

r

( ∏
δ∈{±ex,±ey}

Ŝ+
r+δŜ

−
r+2δ + H.c.

)
. (D1b)

Consider the Heisenberg equation of motion for the
operator Q̂ f = ∑

i f (ri )Ŝz
i . Making use of the commu-

tator [Ŝz
i , Ŝ±

j ] = ±δi j Ŝ
±
i , which implies that [Ŝz

i , (Ŝ±
j )n] =

±n(Ŝ±
i )n, the commutator [Q̂ f , Ĥ ] that determines the time

evolution of Q̂ f can be evaluated. For Ĥ (3), one finds that

[Q̂ f , Ĥ (3)] =
∑

r

(
4 fr −

∑
δ

fr+δ

)( ∏
δ

Ŝ+
r Ŝ−

r+δ − H.c.

)
,

(D2)

while for the Hamiltonian Ĥ (5), constructed from a larger
stencil,

[Q̂ f , Ĥ (5)] =
∑
r,δ

( fr+δ − fr+2δ)

( ∏
δ

Ŝ+
r+δŜ

−
r+2δ − H.c.

)
.

(D3)
Any moment defined by a discrete function f (r) ≡ fr that
satisfies

4 fr −
∑

δ

fr+δ = 0 or
∑

δ

( fr+δ − fr+2δ) = 0, (D4)

for Ĥ (3) or Ĥ (5), respectively, for all r is exactly conserved, up
to potential boundary terms in the Hamiltonian. Both of these
equations are discretized versions of the two-dimensional
Laplace equation, i.e., each of the equations may be writ-
ten as

∑
r′ �rr′ fr′ = 0, where �rr′ corresponds to a finite

difference approximation to the two-dimensional Laplacian
∇2. Both Ĥ (3) and Ĥ (5) lead to second-order central finite
difference approximations to ∇2; in principle, Hamiltonians
involving additional hopping terms may be constructed that
act as higher-order central finite difference operators.

Is is easy to verify that the functions f = {1, x, y, xy, x2 −
y2} satisfy exactly both equations in (D4), as required. Some
of the lowest-degree harmonic polynomials are also exactly
conserved, e.g., f = {x3 − 3xy2, 3x2y − y3, x3y − xy3}. More
generally, the discrete Laplace equation can be inverted for
a given { fr | r ∈ ∂} (i.e., fr on the boundary). The number
of linearly independent solutions therefore scales with the
number of boundary sites.
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