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Continuous Kubo-Greenwood formula: Theory and numerical implementation
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In this paper, we present the so-called continuous Kubo-Greenwood formula intended for the numerical
calculation of the dynamic Onsager coefficients and, in particular, the real part of dynamic electrical conductivity.
In contrast to the usual Kubo-Greenwood formula, which contains the summation over a discrete set of transitions
between electron energy levels, the continuous one is formulated as an integral over the whole energy range.
This integral includes the continuous functions: the smoothed squares of matrix elements, D(ε, ε + h̄ω), the
densities of state, g(ε)g(ε + h̄ω), and the difference of the Fermi weights, [ f (ε) − f (ε + h̄ω)]/(h̄ω). The
function D(ε, ε + h̄ω) is obtained via the specially developed smoothing procedure. From the theoretical point
of view, the continuous formula is an alternative to the usual one. Both can be used to calculate matter properties
and produce close results. However, the continuous formula includes the smooth functions that can be plotted
and examined. Thus, we can analyze the contributions of various parts of the electron spectrum to the obtained
properties. The possibility of such analysis is the main advantage of the continuous formula. The continuous
Kubo-Greenwood formula is implemented in the parallel code CUBOGRAM. Using the code we demonstrate the
influence of technical parameters on the simulation results for liquid aluminum. We also analyze various methods
of matrix elements computation and their effect on dynamic electrical conductivity.
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I. INTRODUCTION

Electronic transport and optical properties in condensed
media are useful in many applications including astrophysics
[1,2], laser-matter interaction [3], electrophysics [4], shock-
wave physics [5], and plasma physics [6]. In our paper, we
refer to frequency-dependent electrical conductivity, static
electrical and thermal conductivity as transport and optical
properties. Wide-range models of these properties are impor-
tant for continuum mechanics simulation of laser experiments
with condensed targets [3,7]. However, strong interparticle
interaction and degeneracy effects significantly hamper the
theoretical consideration of transport and optical phenomena
in dense media. Hence, such wide-range models are still rather
rare [8,9].

A number of approaches have been worked out to calculate
transport and optical properties in plasma. Kinetic methods
are based upon the solution of a classical or quantum kinetic
equation. As the collision integral is unknown in most cases,
the so-called τ approximation is often used (see the well-
known model by Lee and More [10]). Plasma composition
can be also taken into account, for example, on the basis of the
chemical picture [11–15] or electron jellium [16–18] models.
At higher density it is possible to consider a coherent scatter-
ing of quantum electrons on ions with the spatial arrangement
defined by a structure factor. This semiphenomenological the-
ory proposed by Ziman [19] shows satisfactory results for
liquid metals at relatively low temperatures [20]. Neverthe-
less, contradictory results are obtained in dense plasma in the
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case of significant interaction and quantum effects. It occurs
due to uncertainties with collision integrals and the form of a
kinetic equation itself.

Hence, a linear response theory (LRT) is usually used in
condensed media, although alternative more general meth-
ods based upon an effective static approximation [21] and
time-dependent density functional theory (DFT) [22,23] are
actively being developed. In the LRT it is possible, in princi-
ple, to take into account complex many-particle interaction
both in classical and quantum cases. This leads to the fa-
mous Green-Kubo [24,25] and Kubo-Greenwood (KG) [26]
formulas that currently are widely used in classical and quan-
tum statistical physics. In particular, impressive results were
obtained for transport and optical properties of liquid metals
and dense metallic plasma using DFT and quantum molecular
dynamics (QMD) [27–31].

However, many of the papers employing the QMD+KG
technique have the following features. The calculation is per-
formed via the common numerical implementation of the
Kubo-Greenwood formula, that we call the usual formula
[Eq. (5)]. In this type of computation, the transitions of elec-
trons between various initial and final states are taken into
account, and the final values of transport and optical properties
are formed. The calculation is performed using off-the-shelf
software, and its details are not obvious to an ordinary user.
Often the only quantities to be understood and discussed are
the final values of transport and optical properties [27–29,32–
34].

In this paper, we propose another numerical implemen-
tation of the Kubo-Greenwood formula. We compute the
following smooth functions using the results of QMD+DFT
calculation: smoothed squares of matrix elements (SSME)
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D(ε1, ε2), density of states (DOS) g(ε), and the Fermi-
Dirac distribution f (ε). Then the integral of expression
D(ε, ε)g2(ε)(− ∂ f

∂ε
(ε)) yields the static electrical conductiv-

ity σ1DC . We call the corresponding Eq. (23) the continuous
Kubo-Greenwood formula for the static electrical conductiv-
ity. Similar expressions are available for dynamic electrical
conductivity [Eq. (22)] and thermal conductivity [Eq. (26)].

The continuous Kubo-Greenwood formula yields transport
and optical properties as the usual one. Later we will show
that both expressions produce rather close results (Sec. IV C).
However, the continuous formula makes it possible to analyze
how transport and optical properties are formed. In contrast
to the usual formula, the continuous one includes the smooth
functions D(ε, ε), g2(ε), and − ∂ f

∂ε
(ε). These functions can

be plotted and examined. Thus we can find out the parts of
the spectrum which contribute mostly to transport and opti-
cal properties. In our paper, we demonstrate an example of
such analysis for liquid aluminum (Sec. V). The influence of
density and temperature on final results can be understood
better by studying their effect on the functions D(ε, ε), g2(ε),
and − ∂ f

∂ε
(ε). The possibility of such detailed analysis is an

advantage of the continuous formula.
The article is organized as follows. Section II contains the

description of computational technique based on QMD and
the usual Kubo-Greenwood formula. In Sec. III we provide
the derivation of the continuous Kubo-Greenwood formula,
including our smoothing procedure. Section IV deals with the
discussion of advantages of the continuous Kubo-Greenwood
formula and its equivalence to the usual formula in the limit of
zero δ-function broadening. An example of a calculation using
the continuous Kubo-Greenwood formula is given in Sec. V.
In Sec. VI we particularly discuss technical parameters of
QMD simulation, the dependence of results on the δ-function
broadening, and the method of matrix elements calculation.
After the presentation of all our results, we perform a detailed
consideration of related ideas in previous works (Sec. VII).
Thus we estimate the position of our work among others. We
summarize our study in Sec. VIII.

II. CALCULATION OF TRANSPORT AND OPTICAL
PROPERTIES USING THE USUAL KUBO-GREENWOOD

FORMULA

In this work, we calculate transport and optical properties
using the usual and the continuous Kubo-Greenwood formu-
las. The latter will be introduced in Sec. III. In our earlier
paper [35], the usual Kubo-Greenwood formula was used.
The most basic points about the technique of calculating the
transport and optical properties via the usual formula will be
discussed here. For a more detailed consideration, one could
refer to [35].

In this section, we explain the meaning of various technical
parameters; their specific numerical values will be available
in Sec. VI A. For the usual Kubo-Greenwood formula, we
have discussed many questions concerning the influence of
technical parameters and convergence in our previous paper
(see Sec. 3 of [35]). Additional information on convergence is
also presented in Sec. VI A.

The computation method consists of three main stages:
QMD simulation, the precise calculation of the band structure,

and the calculation of the transport and optical properties
using the Kubo-Greenwood formula. The first two stages are
carried out using the Vienna Ab Initio Simulation Package
(VASP) [36–38]. The final stage is performed via a parallel
Greenwood-Kubo Program (GREEKUP) [39], written by the
authors of this paper.

At the first stage Nat atoms are placed to face-centered cu-
bic (fcc) positions in a cubic supercell with periodic boundary
conditions. The supercell volume � is chosen to achieve the
certain density ρ for a given number of atoms.

For these initial positions of ions, the electronic structure is
calculated within the framework of DFT by solving the finite-
temperature Kohn-Sham equations. The electron temperature
Te is a parameter of the Fermi-Dirac distribution f (ε). The
electrons are completely adjusted to the positions of ions,
which is the Born-Oppenheimer approximation.

Since the electronic structure is calculated, forces acting
on ions from electrons and other ions could be obtained from
the Hellmann-Feynman theorem. The positions of ions are
also influenced by the presence of the Nosé thermostat, which
maintains the ionic subsystem at an ion temperature Ti. These
forces are used to calculate the positions of ions at the next
step of QMD simulation in the NVT ensemble.

In this work, we consider the case of equal electron and ion
temperatures (Te = Ti). However, the two-temperature case
(Te �= Ti) is also possible for analysis [40].

As a result of the first stage of the calculation, we obtain
trajectories of ions, as well as the time dependencies of the
total energy E (t ) and the pressure p(t ) of the system for
a discrete set of moments ts. By averaging these time de-
pendencies over the equilibrium section, one could find the
thermodynamic energy E and pressure p of the system.

At the second stage of the calculation, several indepen-
dent ionic configurations are selected from the equilibrium
section of the QMD simulation performed at the first stage.
A detailed calculation of the band structure is performed for
each selected configuration. The calculation of the electronic
structure is carried out similarly to the first stage, but a larger
number of k points, a larger number of electron bands, Nbands,
and, if necessary, a larger cutoff energy Ecut are used. As
a result, we get the Kohn-Sham energy eigenvalues εi,k for
different k points in the Brillouin zone, the corresponding
wave functions |
i,k〉, and the Fermi weights f (εi,k ). Various
k points are taken into account with the weights W (k). The
chemical potential μ and dipole matrix elements (in terms of
momentum) are also obtained. Here i is the number of the
electronic band. The energy eigenvalues εi,k form the discrete
spectrum.

At the third stage the accumulated information is used to
calculate transport and optical properties.

Consider now the effect of an electric field pulse E(t ) on
the electronic subsystem. A conduction current with the elec-
tric current density j(t ) arises due to this pulse. The Fourier
transform produces the components of the electric field E(ω)
and the electric current density j(ω) corresponding to a fre-
quency ω. These Fourier components are connected through
the dynamic electrical conductivity σ (ω) = σ1(ω) + iσ2(ω)
(in an isotropic medium):

j(ω) = (σ1(ω) + iσ2(ω))E(ω). (1)
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The real part of the dynamic electrical conductivity is given
by the exact Kubo-Greenwood formula [41]:

σ1(ω) = 2πe2h̄3

m2
e�

∑
i, j,k
i �= j

W (k)Dk
i j

× f (εi,k ) − f (ε j,k )

h̄ω
δ(ε j,k − εi,k − h̄ω). (2)

Here, e is the electron charge (e > 0), me denotes the electron
mass, and h̄ is the Planck constant. Also, Dk

i j denotes the
dipole matrix element squared in terms of the momentum
operator, averaged over spatial directions. In the case of a local
effective potential in the Kohn-Sham equations, this matrix
element reduces to a matrix element of the gradient operator
〈
i,k|∇α|
 j,k〉:

Dk
i j = 1

3

∑
α

|〈
i,k|∇α|
 j,k〉|2, (3)

where α denotes three spatial directions. The case of a
nonlocal potential will be discussed later in Sec. VI D 1 d.
Moreover, Dk

i j can be calculated via several numerical meth-
ods; this will be discussed in Sec. VI D.

The Kubo-Greenwood formula is originally derived from
the general principles of LRT, but its implementation with
the Kohn-Sham wave functions and energy eigenvalues is
an approximation. Nevertheless, we use the term “exact” for
Eq. (2) as the designation for the Kubo-Greenwood formula
with an exact δ function, although with the Kohn-Sham wave
functions.

The exact δ function is replaced by the broadened δ func-
tion with a broadening E ,

δ(ε j,k − εi,k − h̄ω) → δE (ε j,k − εi,k − h̄ω), (4)

in the common numerical implementation of Eq. (2):

σ KG
1 (ω) = 2πe2h̄3

m2
e�

∑
i, j,k
i �= j

W (k)Dk
i j

× f (εi,k ) − f (ε j,k )

h̄ω
δE (ε j,k − εi,k − h̄ω). (5)

In this work, we call Eq. (5) the usual Kubo-Greenwood for-
mula. Equation (5) is equivalent to the exact formula (2) in the
limit E → 0. A calculation via the usual Kubo-Greenwood
formula is marked by the index “KG”. This type of calcula-
tion involves the summation over a discrete set of transitions
and the usage of a broadened δ function. The usual Kubo-
Greenwood formula (5) is used to obtain dynamic electrical
conductivity at the third stage of calculation.

In this work, the Gaussian [27] broadening (40) is used
during the calculation via the usual KG formula (5). The
choice of the broadening parameter E is an important issue.
One should study the dependence of the calculated σ KG

1 (ω)
curves on E to obtain correct results. The procedure for
determining the optimal value of E was investigated in our
previous work [35].

The dynamic Onsager coefficients LKG
mn (ω) are also calcu-

lated using the usual Kubo-Greenwood formula [32,35,39]:

LKG
mn (ω) = (−1)m+n 1

em−1(eTe)n−1

2πe2h̄3

m2
e�

×
∑
i, j,k
i �= j

W (k)
(εi,k + ε j,k

2
− μ

)m+n−2

× Dk
i j

f (εi,k ) − f (ε j,k )

h̄ω
δE (ε j,k − εi,k − h̄ω).

(6)

The static Onsager coefficients are obtained by extrapolating
LKG

mn (ω) to zero frequency: LKG
mn = lim

ω→0
LKG

mn (ω).

Note that σ KG
1 (ω) ≡ LKG

11 (ω) and σ KG
1DC ≡ LKG

11 . Knowing
LKG

mn , one could also obtain the thermal conductivity KKG:

KKG = LKG
22 − LKG

12 LKG
21

LKG
11

. (7)

Thus, thermal conductivity differs from LKG
22 by the thermo-

electric term. But for the temperature kBTe � EF considered
in this paper, the approximation KKG ≈ LKG

22 can be used.
Here, kB is the Boltzmann constant and EF is the Fermi energy.

At the third stage of calculation the GREEKUP code is used
to obtain electrical and thermal conductivities via the usual
Kubo-Greenwood formula (6).

In this paper we calculate the electronic DOS as the sum of
the broadened δ functions:

gk(ε) =
∑

i

δEDOS (ε − εi,k ). (8)

This calculation is performed for each chosen ionic configura-
tion and each k point. Note that the broadening EDOS could
differ from E . The total density of electronic states, g(ε),
is obtained by averaging gk(ε) over the k points and ionic
configurations:

g(ε) =
〈 ∑

k

W (k)gk(ε)

〉
. (9)

Here, 〈· · · 〉 means the average over ionic configurations.
Thus, it is possible to calculate the optical and transport

properties and DOS of the considered system. The structure
of the matrix elements squared, Dk

i j , should be known for this
calculation, since they determine the values of electrical and
thermal conductivities.

We come now to the problem of calculating a specific
continuous and smooth function D(ε1, ε2), which would show
the dependence of the dipole matrix elements on the energies
of the initial and final states: D(ε1, ε2) ∝ Di j .

We now suggest the procedure for calculating such a func-
tion. It will be calculated directly from the matrix elements
squared, Dk

i j , and energy levels εi,k. A relationship between
this function and all the Onsager coefficients will be also
demonstrated.

III. CONTINUOUS KUBO-GREENWOOD FORMULA

The calculation of optical and transport properties could
be carried out according to the usual Kubo-Greenwood
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FIG. 1. Illustration of the averaging algorithm. The energy of the
initial state participating in transition is plotted along the horizontal
axis, whereas the energy of the final state is plotted along the vertical
axis. The black dots represent transitions. Every transition possesses
its matrix element squared Di j . The square � of a size 2E × 2E
centered at the point (ε1, ε2) is also shown. Matrix elements inside
the square � are taken into account to calculate the average of Di j .
This average is referred to the point (ε1, ε2).

formula (5). It includes f (εi )− f (ε j )
h̄ω

, the broadened δ function
δE (ε j − εi − h̄ω), and matrix elements squared Di j .

However, it is almost impossible to study Di j directly. They
represent a discrete set of values for various transitions (Fig. 2,
left). Because of this, it remains hidden how the electrical con-
ductivity σ KG

1 (ω) and thermal conductivity KKG are formed.
We will develop a specific approach to study matrix elements
squared Di j as a continuous function.

For simplicity, the entire theoretical consideration in this
section is performed only for one k point.

A. Averaging and smoothing of the matrix elements squared

Matrix elements squared Di j are present in the exact
Kubo-Greenwood formula (2). They show the intensity of

a transition between one-electron levels. We now introduce
an averaging and smoothing procedure to analyze the energy
dependence of Di j .

The summation in the exact Kubo-Greenwood formula (2)
runs over all i �= j. Equation (2) can be rewritten in an equiv-
alent way with the summation over all i and j, if we formally
set diagonal Dii to zero. The latter formulation is convenient
during the further consideration. We assume Dii = 0 in the
following averaging and smoothing procedure.

We introduce an auxiliary function h(ε1, ε2):

h(ε1, ε2)|(ε1,ε2 )=(εi,ε j ) ≡ Di j, (10)

where εi, ε j are some eigenvalues of the considered system.
The function h(ε1, ε2) is equal to 0 in other cases.

Let us use the rectangular function with a half width E to
broaden the δ-function:

δE (ε − εi ) =
{ 1

2E , if εi − E � ε � εi + E

0, otherwise.
(11)

The density of states g(ε) is given by

g(ε) =
∑

i

δE (ε − εi ). (12)

Consider now a square � of the size 2E × 2E centered
at some point (ε1, ε2) (Fig. 1). Let us find the sum of Di j

contained in �,∑
(εi,ε j )∈�

h(εi, ε j ) =
∑
i, j

h(εi, ε j )

× δE (ε1 − εi )δE (ε2 − ε j )(2E )2,

(13)

and their number as well:∑
(εi,ε j )∈�

1 =
∑
i, j

δE (ε1 − εi )δE (ε2 − ε j )(2E )2. (14)

Here the broadened δ functions work as indicator func-
tions checking whether the matrix element is located in-
side the square �. The average of these matrix elements

FIG. 2. Illustration of the procedure for averaging and smoothing Di j [Eq. (16)]. Left: The matrix elements squared Di j as a function of
initial εi and final ε j energies. Right: Smoothed squares of matrix elements D(ε1, ε2). The discrete Di j are plotted as a set of peaks, while
D(ε1, ε2 ) is a smooth surface.
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squared is∑
i, j

h(εi, ε j )δE (ε1 − εi )δE (ε2 − ε j )(2E )2

∑
i, j

δE (ε1 − εi )δE (ε2 − ε j )(2E )2
. (15)

This average value is now referred to the point (ε1, ε2). Thus,
using Eq. (10), we define the smoothed squares of matrix
elements (SSME) D(ε1, ε2):

D(ε1, ε2) =

∑
i, j

Di jδE (ε1 − εi )δE (ε2 − ε j )∑
i

δE (ε1 − εi ) × ∑
j

δE (ε2 − ε j )
. (16)

For convenience, we introduce the following function:

Dg(ε1, ε2) =
∑
i, j

Di jδE (ε1 − εi )δE (ε2 − ε j ). (17)

The denominator of Eq. (16) could be rewritten in terms of
DOS, whereas the numerator could be rewritten in terms of
Dg(ε1, ε2):

D(ε1, ε2) = Dg(ε1, ε2)

g(ε1)g(ε2)
. (18)

An illustration of the smoothing procedure is shown in Fig. 2.
The physical meaning of SSME is simple. The function

D(ε1, ε2) shows the intensity of the electron transition be-
tween levels with energies ε1 and ε2. The units of this function
are the same as for the square of the matrix elements Di j .

B. Continuous formula for electrical conductivity
and thermal conductivity

Let us find the relationship between SSME D(ε1, ε2) and
the real part of the dynamic electrical conductivity using the
exact Kubo-Greenwood formula.

The function D(ε1, ε2) shows the intensity of the electron
transition between levels with energies ε1, ε2. The number
of initial states in the energy range (ε1 − dε1/2, ε1 + dε1/2)
is g(ε1)dε1; the number of final states in the energy range
(ε2 − dε2/2, ε2 + dε2/2) is g(ε2)dε2. Then, the sum of matrix
elements squared for all transitions from the initial energy
range to the final one is

D(ε1, ε2) × g(ε1)dε1 × g(ε2)dε2. (19)

In the exact Kubo-Greenwood formula (2), the matrix ele-
ment squared for each transition is multiplied by a factor
f (εi )− f (ε j )

h̄ω
δ(ε j − εi − h̄ω); then, the contributions of these in-

dividual transitions are summed up. In terms of the continuous
function D(ε1, ε2), this could be expressed as∫∫

D(ε1, ε2)g(ε1)dε1g(ε2)dε2

× f (ε1) − f (ε2)

h̄ω
δ(ε2 − ε1 − h̄ω). (20)

Integration in Eq. (20) over the variable ε2 yields∫
dε1D(ε1, ε1 + h̄ω)

× g(ε1)g(ε1 + h̄ω)
f (ε1) − f (ε1 + h̄ω)

h̄ω
(21)

and, finally, the expression for the real part of the frequency-
dependent conductivity:

σCKG
1 (ω) = 2πe2h̄3

m2
e�

∫
dεD(ε, ε + h̄ω)

× g(ε)g(ε + h̄ω)
f (ε) − f (ε + h̄ω)

h̄ω
. (22)

In this paper, Eq. (22) is called the continuous Kubo-
Greenwood formula. Below (Sec. IV B) we will prove that the
continuous formula (22) is equivalent to the exact one (2) in
the limit E → 0.

A calculation according to the continuous formula (22)
is marked by the index “CKG”. In this type of calculation,
SSME D(ε1, ε2) and DOS g(ε1), g(ε2) are used.

Equation (22) has a clear physical meaning. The function
D(ε, ε + h̄ω) presents the intensity of an electron transition
from the energy level ε1 = ε to ε2 = ε + h̄ω. The relation
ε2 = ε1 + h̄ω reflects the law of energy conservation. The full
number of transitions is proportional to the DOS of initial and
final states. The influence of the partial occupation of elec-
tronic levels is given by the function f (ε)− f (ε+h̄ω)

h̄ω
. Integration

over ε takes into account the transitions from all energy levels
in the electron spectrum.

Passing to the limit ω → 0, one could obtain static elec-
trical conductivity as an integral of the product of three
continuous functions:

σCKG
1DC = 2πe2h̄3

m2
e�

∫
dεD(ε, ε)g2(ε)

(
−∂ f

∂ε
(ε)

)
. (23)

One could also obtain differential electrical conductivity
σ1,ω(ε) at frequency ω,

σCKG
1,ω (ε) = 2πe2h̄3

m2
e�

D(ε, ε + h̄ω)

× g(ε)g(ε + h̄ω)
f (ε) − f (ε + h̄ω)

h̄ω
, (24)

and in the limit ω → 0,

σCKG
1,0 (ε) = 2πe2h̄3

m2
e�

D(ε, ε)g2(ε)

(
−∂ f

∂ε
(ε)

)
. (25)

The integration of σCKG
1,ω (ε) and σCKG

1,0 (ε) over ε yields
σCKG

1 (ω) and σCKG
1DC , respectively.

Following similar reasoning, one could find a connection
between SSME and the Onsager coefficients:

LCKG
mn = (−1)m+n 1

em−1(eTe)n−1

2πe2h̄3

m2
e�

×
∫

dε(ε − μ)m+n−2D(ε, ε)g2(ε)

(
−∂ f

∂ε
(ε)

)
.

(26)

One could also obtain the differential Onsager coefficient
LCKG

22,0 (ε):

LCKG
22,0 (ε) = 1

e2Te

2πe2h̄3

m2
e�

× (ε − μ)2D(ε, ε)g2(ε)

(
−∂ f

∂ε
(ε)

)
. (27)
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The presence of several k points and ionic configurations
is taken into account as follows:

D(ε1, ε2) =
〈∑

k
W (k)Dk(ε1, ε2)gk(ε1)gk(ε2)〉

〈∑
k

W (k)gk(ε1)〉〈∑
k

W (k)gk(ε2)〉 . (28)

Functions gk(ε) and Dk(ε1, ε2) are calculated by Eqs. (12) and
(16), respectively, using energy levels and matrix elements
squared corresponding to only one k point.

C. Numerical calculation according to the continuous formula
using CUBOGRAM code

A numerical computation according to the continuous
Kubo-Greenwood formula is started from the first two stages
described in Sec. II: QMD simulation and precise calculation
of the band structure.

However, the third stage of the calculation is different
from that described in Sec. II. The third stage is performed
using the parallel Continuous Kubo−Greenwood Program
(CUboGrAm) that we have created during the preparation of
this paper.

The results obtained at the second stage via the VASP

code are used as input information by CUBOGRAM. Primarily,
CUBOGRAM requires dipole matrix elements in terms of the
momentum operator (see Sec. VI D) and energy levels εi,k.
While applying the continuous approach, functions f (ε) and
− ∂ f

∂ε
(ε) can be easily calculated directly for any ε. CUBOGRAM

calculates DOS g(ε) and the function Dg(ε1, ε2) according to
Eqs. (8) and (17), respectively, separately for each k point.
SSME are obtained via Eq. (18). Then, this information is
used to calculate final DOS and SSME for several k points
and ionic configurations according to Eqs. (9) and (28), re-
spectively.

CUBOGRAM calculates σCKG
1 (ω) according to the continu-

ous Kubo-Greenwood formula (22). The Onsager coefficients
LCKG

mn are calculated using Eq. (26). These quantities are al-
ready averaged over k points and ionic configurations since
final DOS and SSME are used.

We consider that the calculation according to the con-
tinuous Kubo-Greenwood formula using CUBOGRAM is an
alternative numerical implementation of the exact formula (2)
(see Sec. IV B). The advantages of the continuous formula
are discussed in Sec. IV A. The numerical results obtained
via the usual and continuous Kubo-Greenwood formulas are
compared is Sec. IV C.

IV. USUAL AND CONTINUOUS KUBO-GREENWOOD
FORMULAS

A. Advantages of continuous formula

As already mentioned, the analysis of the usual Kubo-
Greenwood formula (5) is challenging. As a result of the band
structure calculation, matrix elements squared are obtained.
Further, the final curve of dynamic electrical conductivity
σ KG

1 (ω) is calculated according to the usual Kubo-Greenwood
formula. Within this approach, it is almost impossible to ex-
plain how the dependence σ KG

1 (ω) is formed.
On the contrary, the continuous Kubo-Greenwood formula

makes it possible to analyze the contributions to electrical and

thermal conductivity. The electrical conductivity is an integral
of σCKG

1,ω (ε). The differential electrical conductivity includes
the product of functions D(ε, ε + h̄ω), g(ε)g(ε + h̄ω), and
f (ε)− f (ε+h̄ω)

h̄ω
.

These functions are smooth in our calculation; they can
be graphed and examined. One can consider their depen-
dence on the temperatures of ions and electrons, etc. One
can also identify parts of the electronic spectrum that make
the most substantial contribution to the conductivity value.
Therefore, one could better understand the form of the final
curve σCKG

1 (ω) [and σ KG
1 (ω) as well; see Sec. IV C].

The continuous Kubo-Greenwood formula, unlike the
usual one, gives a direct expression for static electrical con-
ductivity and thermal conductivity.

B. The limit of zero broadening �E

It will be shown here that the continuous Kubo-Greenwood
formula (22) is equivalent to the exact one (2) in the limit
E → 0.

First of all, the density of states g(ε), given by Eq. (12),
reduces to the sum of exact δ functions in the limit E → 0.
Let us denote this limiting function as c(ε):

lim
E→0

g(ε) ≡ c(ε) =
∑

i

δ(ε − εi ). (29)

Let us introduce the notation

Gω(ε1, ε2) = h(ε1, ε2)

× f (ε1) − f (ε2)

h̄ω
δ(ε2 − ε1 − h̄ω). (30)

Next, consider the sum in expression (2):∑
i

∑
j

Gω(εi, ε j ). (31)

Each term in (31) can be expressed in an integral form:

Gω(εi, ε j ) =
∫∫

Gω(ε1, ε2)

× δ(ε1 − εi )δ(ε2 − ε j )dε1dε2. (32)

Then (31) can be rewritten as follows:∑
i

∑
j

Gω(εi, ε j ) =
∫∫

Gω(ε1, ε2)

× c(ε1)c(ε2)dε1dε2. (33)

Substituting Eq. (30) into Eq. (33) and performing integration
over variable ε2, we obtain the exact Kubo-Greenwood for-
mula in a “continuous” form:

σ1(ω) = 2πe2h̄3

m2
e�

∫
h(ε, ε + h̄ω)c(ε)c(ε + h̄ω)

× f (ε) − f (ε + h̄ω)

h̄ω
dε. (34)

Equation (34) has the same form as the continuous
Kubo-Greenwood formula (22). They differ in that functions
D(ε1, ε2) and g(ε) are continuous and smooth, whereas
functions h(ε1, ε2) and c(ε) are not. The last two functions
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FIG. 3. Comparison of the results obtained using the usual and continuous Kubo-Greenwood formulas. The dash-dotted red curve was
calculated by Eq. (5) using GREEKUP, and the solid blue one by Eq. (22) using CUBOGRAM. In both cases (“CKG” and “KG”), the broadening
E of the δ function was chosen to be the same. The calculation was carried out for liquid aluminum at the density ρ = 2.7 g/cm3 and
equilibrium temperature of Ti = Te = 3 kK. The supercell contains 108 atoms (left) and 500 atoms (right).

are nonzero only at eigenvalues εi and equal to zero at other
points.

The continuous Kubo-Greenwood formula (22) will be
equivalent to the exact one [Eq. (34)] in the limit E → 0,
if

c(ε) = lim
E→0

g(ε), (35)

h(ε1, ε2) = lim
E→0

D(ε1, ε2). (36)

Equation (35) is just the definition (29) of c(ε). Let us turn to
expression (16). If (ε1, ε2) = (εi, ε j ) for some (i, j), only one
matrix element squared Di j is contained inside � in the limit
E → 0:

D(εi, ε j )|E→0 = Di j × 1
2E × 1

2E
1

2E × 1
2E

= h(εi, ε j ). (37)

If (ε1, ε2) �= (εi, ε j ), the function D(ε1, ε2) is undefined in the
limit E → 0 (indeterminate form 0/0). Let us redefine it by
zero in this case; this will have no effect on the value of the
integral in Eq. (22). That proves relation (36).

Thus, we get that both the continuous [Eq. (22)] and usual
[Eq. (5)] Kubo-Greenwood formulas reduce to the exact one
[Eq. (2)] in the limit of zero broadening, E → 0. Hence, we
treat the continuous Kubo-Greenwood formula as an alterna-
tive method for calculating the real part of dynamic electrical
conductivity.

C. Finite broadening �E

It was shown that the calculations of the conductivity by
the usual and continuous Kubo-Greenwood formulas [σ KG

1 (ω)
and σCKG

1 (ω), respectively] are equivalent only in the limit of
infinitely small broadening E .

Here, we will show that even at finite E these formulas
still give close results. To do this, we calculate the curves
σ KG

1 (ω) and σCKG
1 (ω) for the system described in Sec. V.

The technical parameters of the computation are specified
in Sec. VI A. The results are shown in Fig. 3 (right). The

difference between the curves σ KG
1 (ω) and σCKG

1 (ω) is no
more than 2% for all frequencies ω.

However, the difference increases for a smaller number of
atoms in a supercell. To illustrate this, a similar calculation
is performed with 108 atoms in the supercell. Only the �

point is used during the QMD simulation and band structure
calculation. Electrical conductivity is calculated only for the
last ionic configuration from the equilibrium section of the
QMD simulation; 300 and 500 bands are taken into account
during the QMD simulation and band structure calculation,
respectively. The broadening E is 0.2 eV. Other simulation
parameters are the same as in Sec. VI A. The results of this
calculation are shown in Fig. 3 (left). The difference is no
more than 13% along the entire curve.

Thus, both calculation methods give fairly close conduc-
tivity results. Therefore, the analysis of the contributions
to σCKG

1 (ω) explains how the conductivity curve σ KG
1 (ω) is

formed.

V. EXAMPLE OF CALCULATION ACCORDING TO THE
CONTINUOUS KUBO-GREENWOOD FORMULA

In this section, we show an example of practical calculation
of σCKG

1DC and LCKG
22 using the continuous Kubo-Greenwood

formula (26). The system under consideration is liquid
aluminum at a density ρ = 2.7 g/cm3 and temperature
Te = Ti = 3 kK. Technical computation parameters are given
in Sec. VI A.

We are mostly interested in the functions D(ε, ε)�,
g2(ε)/�2, −∂ f /∂ε(ε), and (ε − μ)2. They make up contribu-
tions to σCKG

1DC and LCKG
22 in Eq. (26). These contributions (and

their products) calculated for the system under consideration
are shown in Fig. 4.

Several graphs are shown in Fig. 4 with the same energy
axis: DOS per unit volume g(ε)/� and the Fermi-Dirac dis-
tribution f (ε) [Fig. 4(a)]; SSME multiplied by the volume of
the supercell D(ε, ε)� [Fig. 4(b)]; the square of DOS per unit
volume g2(ε)/�2 [Fig. 4(c)]; the derivative of the Fermi-Dirac
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FIG. 4. Contributions to electrical and thermal conductivities.
Areas under the graph in (e) and (g) are the values of σCKG

1DC and LCKG
22 ,

respectively.

distribution with a minus sign −∂ f /∂ε(ε) [Fig. 4(d)]; the
differential static electrical conductivity σCKG

1,0 (ε) [Fig. 4(e)],
which is obtained by multiplying the graphs in Figs. 4(b)–(d)
(up to a constant factor); the parabolic contribution (ε − μ)2

[Fig. 4(f)]; and the differential thermal conductivity LCKG
22,0 (ε)

[Fig. 4(g)], which is is obtained by multiplying the graphs in
Figs. 4(b)–(d) and 4(f) (up to a constant factor). By analyzing
these contributions one could understand how the electrical
static σCKG

1DC and thermal LCKG
22 conductivities are formed.

One can see that D(ε, ε)� is almost constant around
ε = μ. At the same time g2(ε)/�2 behaves linearly. The
derivative of the Fermi-Dirac distribution is bell shaped, sym-
metric, and centered on ε = μ. The area under −∂ f /∂ε(ε) is
unity and we introduce the width of this curve as inverse value
at maximum. Thus the width is 4kBTe and the half width is
2kBTe. The product of these three curves forms the differential
electrical conductivity; multiplying it by (ε − μ)2 forms the
LCKG

22,0 (ε) curve. Numerical integration of these dependencies
gives the values of σCKG

1DC and LCKG
22 :

σCKG
1DC = 3.47 × 106 1

� m
, LCKG

22 = 255.1
W

m K
. (38)

For comparison, here are the values obtained using the
GREEKUP code [39] via the usual Kubo-Greenwood formula
(6):

σ KG
1DC = 3.55 × 106 1

� m
, LKG

22 = 262.7
W

m K
. (39)

The differences are no more than 3%.
The prominent feature of Fig. 4 is the part of the spectrum

contributing mostly to σCKG
1DC and LCKG

22 : a rather narrow stripe
around chemical potential μ. A similar idea is discussed for
solid state at low temperatures in the book of Ashcroft and
Mermin (pp. 53 and 250 of [42]). However, in our previous
papers employing the usual KG formula [35,40,43], it was a
rather hard task to strictly prove even this well-known idea.
The only quantities we could operate were the values of
σ1DC and the curves g(ε)/�, −∂ f /∂ε(ε). In fact, using this
incomplete information we could present rather speculative
arguments about the part of the spectrum mostly contributing
to electrical conductivity (see Fig. 7 of [43]). The situation
changes drastically if we introduce the continuous Kubo-
Greenwood formula. Now we have the smooth differential
electrical conductivity σCKG

1,0 (ε) [Fig. 4(e)]; the integral of
this function yields the correct value σCKG

1DC ≈ σ KG
1DC . Thus

we can quantitatively determine what percentage of a final
σCKG

1DC value is due to each part of the spectrum. We treat the
possibility of such an analysis as a distinct advantage of the
continuous Kubo-Greenwood formula.

VI. TECHNICALITIES

A. Technical parameters

In our previous paper [35], we explain how we choose
technical parameters during QMD simulation, detailed calcu-
lation of the band structure, and computation via the usual KG
formula. There, we discuss many questions connected with
the influence of technical parameters and convergence.

In this section, we provide all technical parameters used in
the current paper. The presence of two broadenings simulta-
neously, E and EDOS , is the peculiarity of a calculation
via the continuous Kubo-Greenwood formula. We discuss
the influence of these parameters and their optimal choice in
Secs. VI B and VI C.

In this paper, QMD simulation was performed for 500
atoms of Al in the cubic supercell with periodic boundary
conditions. The supercell volume � was chosen to obtain
ρ = 2.7 g/cm3. Ion and electron temperatures are equal:
Ti = Te = 3 kK. At the initial moment of QMD simulation
ions are placed in fcc positions. The evolution of the sys-
tem during 4 ps was simulated with a 2-fs time step. The
pseudopotential of the projector augmented-wave (PAW) type
[44] with three valence electrons is used. The Perdew-Burke-
Ernzerhof (PBE) parametrization [45] from the generalized
gradient approximation (GGA) class is used as an exchange-
correlation (XC) functional. All plane waves with a kinetic
energy smaller than Ecut = 200 eV are included in the ba-
sis set. Only a � point in the Brillouin zone is used. We
ensure that all bands with occupation numbers greater than
2.5 × 10−6 are taken into account during the QMD simula-
tion; this yields Nbands = 1300.
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The calculation of optical and transport properties requires
more precise electron structure determination. Hence, five
ionic configurations are chosen from the range 3.2� ts�4 ps;
the system reaches equilibrium before this period. For these
configurations the band structure is computed with the same
pseudopotential, XC functional, and Ecut. The reduced �-
centered 6 × 6 × 6 Monkhorst-Pack grid (20 k points) is used
(see Secs. A.1 and A.2 of [35]). Additional 600 bands were
taken into account to calculate σ1(ω) up to h̄ωmax = 6 eV.

Broadening E is 0.09 eV and broadening during the
calculation of DOS is EDOS = 1.5 × E = 0.135 eV. In
this work the Gaussian broadening (40) is used in all nu-
merical computations. Optical matrix elements squared Dk

i j
are obtained by the LO-L method (Sec. VI D 1 d). Computed
quantities are averaged over five chosen ionic configurations.

Since we use a rather large number of atoms and k points,
the curves D(ε, ε) and g(ε) are fairly smooth even for one
ionic configuration. Averaging over five ionic configurations
has a weak effect. Thus, we consider five ionic configurations
to be enough; further increase would be time-consuming and
have negligible effect. In our previous paper (see Sec. 3.4
of [35]), we have found out that, in similar conditions, the
increase of Ecut from 200 to 400 eV changes the value of σ KG

1DC
by less than 1%. Further increase of the number of k points
(from 20 to 35) leads to an insignificant change of σCKG

1DC (less
than 0.1%).

In the following sections we consider the influence of
the technical parameters: the relationship between E and
EDOS (Sec. VI B), the broadening E (Sec. VI C), and the
method of calculating matrix elements (Sec. VI D).

In Secs. VI B and VI C we will change only parameters E
and EDOS , keeping the others same as above.

In Sec. VI D we use only the Baldereschi k point (0.25,
0.25, 0.25) during the second stage of computation and vary
the method of calculating matrix elements. Different pseu-
dopotential and XC functional are also used if matrix elements
are calculated by the GKP method (Sec. VI D 1 a).

B. The relationship between �E and �EDOS

The broadened δ functions are used to calculate DOS (12)
and SSME (16). In Sec. III A a rectangle broadening (11) is
used during the theoretical consideration. In practice one can
use different types of broadening. In this work, we prefer the
Gaussian broadening in all computations:

δE (ε − εi ) = 1√
2πE

exp

[
− (ε − εi )2

2(E )2

]
. (40)

The Gaussian broadening has a number of advantages. First,
it yields smoother DOS and SSME. Second, it allows to re-
solve automatically the indeterminate form we discussed in
Sec. IV B; we will consider this question below.

Note that unequal values of E and EDOS could be used
in the numerator and denominator of Eq. (16), respectively.
The relationship between E and EDOS affects the compu-
tation of D(ε1, ε2), if the Gaussian broadening is used.

Let us perform a model consideration for only one nonzero
matrix element squared B = |〈
0|∇|
0〉|2 = |D00|2 to il-
lustrate this. Let the energy eigenvalue corresponding to the
state |
0〉 be ε0. Let us calculate the function D(ε, ε) (up to a

constant factor):

D(ε, ε) ∝
B exp

[− (ε−ε0 )2

(E )2

]
exp

[− (ε−ε0 )2

(EDOS )2

]
= B exp

[
−(ε − ε0)2

(
1

(E )2
− 1

(EDOS )2

)]
.

(41)

If EDOS = E ,

D(ε, ε) ∝ Be−(ε−ε0 )2×0 = B = const. (42)

If EDOS < E ,

D(ε, ε) ∝ Be
(ε−ε0 )2

∣∣∣ 1
(E )2

− 1
(EDOS )2

∣∣∣ −−−−−−→
|ε−ε0|→∞

∞. (43)

If EDOS > E ,

D(ε, ε) ∝ Be
−(ε−ε0 )2

∣∣∣ 1
(E )2

− 1
(EDOS )2

∣∣∣ −−−−−−→
|ε−ε0|→∞

0. (44)

This model theoretical consideration helps to understand
the numerical results (Fig. 5). The different shapes of D(ε, ε)
at the spectrum edge are created by purely numerical effects.
The cases E = EDOS and E > EDOS lead to the non-
physical behavior of D(ε, ε) beyond the spectrum range. We
observe nonzero values of the transition intensity in the energy
range where there are no initial states (or where bands were
not taken into account during the electron structure calcula-
tion). If E = EDOS there is no well-pronounced plateau in
Fig. 5 (blue curve). However, more realistic consideration of
several matrix elements could explain the complex (and still
nonphysical) behavior of D(ε, ε) beyond the spectrum range
in this case. We also observe that in the region of nonzero g(ε),
the functions D(ε, ε) are nearly the same in all cases.

Thus, when implementing the D(ε1, ε2) calculation using
the Gaussian broadening, it is required to comply with the
condition EDOS >E . Also, this relationship of broadenings
leads to more numerically stable results. If EDOS >E ,
the ratio EDOS/E should not be too close to 1; in this
paper, we set this ratio to 1.5.

Due to the multiplication of the function D(ε1, ε2) by
g(ε1)g(ε2) in Eq. (22), the final value of conductivity σCKG

1 (ω)
depends only on E , but not on EDOS .

C. Dependence on the broadening �E

The broadening of the δ function, E , is an important
parameter of SSME calculation by Eq. (16). Ideally, the
broadening of the δ function should be much less than any
characteristic value of energy considered in the problem. In
our case, particularly, one needs to require E � 2kBTe.
However, it may be rather difficult to satisfy this condition.
Often one has to choose E < 2kBTe, but not E � 2kBTe.

We also investigate numerically the influence of E on
D(ε, ε) and g(ε) to select the optimal value of this param-
eter. These functions were calculated for the same system
as described in Sec. V. The ratio EDOS/E = 1.5 is kept
constant. The calculation results are shown in Fig. 6.

If the broadening is too small, considerable oscillations
emerge on the curves (E = 0.02 eV, EDOS = 0.03 eV,
red curve). At a comparatively large broadening the function
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FIG. 5. The behavior of SSME D(ε, ε)� for different relationships between E and EDOS in the case of the Gaussian broadening.
DOS g(ε)/� is also reported to represent the boundaries of the electron spectrum. If EDOS = E (blue curve), nonzero values of D(ε, ε)
appear beyond the spectrum range. If EDOS < E (red curve), the function tends to infinity at the spectrum boundaries. If E > EDOS , the
function exponentially decreases to zero at the spectrum edges. The last condition is used during the calculation (Sec. VI A).

D(ε, ε) is underestimated (E = 0.2 eV, EDOS = 0.3 eV,
green curve). The optimal broadening value can be chosen as
E = 0.09 eV (black curve).

In this work, we consider kBTe = 0.26 eV. For the selec-
ted broadenings EDOS/(2kBTe) = 0.26, E/(2kBTe)=0.17.
Thus, both EDOS and E are several times less than
2kBTe.

It is also worth noting that in the case of DOS, when the
broadening is varied, the area under the graph g(ε) is pre-
served. In the case of D(ε1, ε2), the volume under the surface
Dg(ε1, ε2) = D(ε1, ε2)g(ε1)g(ε2) is preserved. That is why the
area under the D(ε, ε) curve does not remain constant when
the broadening is changed.

D. Dependence on the method of calculating of matrix elements

At the second stage of calculation we obtain information on
electronic structure, including energy eigenvalues and wave
functions. Then this information is used to compute matrix el-
ements squared Dk

i j , which are necessary to calculate transport
and optical properties. A number of technical details should be
mentioned here.

First, the pseudopotential approach is used in the VASP

package. The generalized Kohn-Sham equations on pseu-
dowave functions |
̃i,k〉 are solved instead of the usual
Kohn-Sham equations on all-electron wave functions |
i,k〉
[38,44]. These pseudowave functions even do not have to
be orthonormal, in contrast to all-electron ones. The matrix

FIG. 6. Dependence of DOS (left) and SSME (right) on the broadening of the δ function, E . The ratio EDOS/E = 1.5 is conserved.
The corresponding curves g(ε)/� and D(ε, ε)� have the same color.
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elements cannot be calculated from pseudowave functions,
available in VASP, just as 〈
̃i,k|∇α|
̃ j,k〉; the conversion to
〈
i,k|∇α|
 j,k〉 should be performed.

Second, “transverse” and “longitudinal” formulas for dy-
namic electrical conductivity (and dielectric function) exist
[46]. These two formulas include different matrix elements.
Both formulas are valid if local potentials are considered,
but only the longitudinal formula provides the correct treat-
ment of nonlocal potentials. Some other differences between
numerical implementations of the transverse and longitudi-
nal formulas exist even for local potentials (see the end of
Sec. II B of [46]). The matrix elements for the transverse
formula are calculated in two different source files of VASP.

Hence, it turns out that different matrix elements squared
Dk

i j can be obtained using VASP. Below, in Sec. VI D 1
we briefly describe four methods of calculating Dk

i j . In
Sec. VI D 2 we compare the functions D(ε, ε) and σCKG

1 (ω)
obtained using these four methods.

1. Methods of calculating matrix elements

a. Ultrasoft pseudopotential (GKP). In the first method the
ultrasoft pseudopotential (US) [47] is used. We have shown
numerically that one of the US pseudopotentials for Al sup-
plied with the VASP package ensures the valid orthonormality
condition for pseudowave functions:

〈
̃i,k|
̃ j,k〉 = δi j . (45)

Here δi j is the Kronecker delta. Then it is interesting to
use matrix elements 〈
̃i,k|∇α|
̃ j,k〉 for this pseudopotential
directly, without the conversion to the all-electron wave func-
tions. Thus, we obtain the following expression for Dk

i j :

Dk
i j = 1

3

∑
α

|〈
̃i,k|∇α|
̃ j,k〉|2. (46)

This calculation of such matrix elements is performed using
the GREEKUP code [39] and will be further marked with the
“GKP” tag. Note that the Perdew-Zunger parametrization [48]
from the local density approximation (LDA) class is used as
an XC functional during the GKP calculation.

In the following three methods, the PAW pseudopotential
is used [44].

b. optics.F (OPT). Here, the conversion from
〈
̃i,k|∇α|
̃ j,k〉 to 〈
i,k|∇α|
 j,k〉 for the PAW pseudopotential
(see Eq. (5) of [49]) is performed. Thus,

Dk
i j = 1

3

∑
α

|〈
i,k|∇α|
 j,k〉|2. (47)

Such a calculation of matrix elements is performed using
the serial algorithm of the VASP program implemented in the
source file optics.F. Calculation of this type will be further
marked with the “OPT” tag.

c. Transverse formula (LO-T). Let us consider the cal-
culation of the real part of dynamic electrical conductivity
(or imaginary part of dielectric function) according to the
“transverse” formula (see Eq. (18) of [46]). Matrix elements
of the operator i∇α − kα between the two Bloch functions
|ui,k〉 are present in this formula. These matrix elements
are calculated via a parallel algorithm implemented in the

source file linear_optics.F (and nested subroutines). Using
|
 j,k〉 = eikr|u j,k〉, one can find

〈ui,k|i∇α − kα|u j,k〉 = i〈
i,k|∇α|
 j,k〉. (48)

In this case, we obtain the same theoretical expression for Dk
i j

as for the OPT method (47):

Dk
i j = 1

3

∑
α

|〈ui,k|i∇α − kα|u j,k〉|2

= 1

3

∑
α

|〈
i,k|∇α|
 j,k〉|2. (49)

Thus, the result of this calculation is expected to be the same
as for the OPT method.

This type of computation will be further marked with the
“LO-T” tag.

d. Longitudinal formula (LO-L). Let us consider the cal-
culation of the real part of dynamic electrical conductivity
according to the “longitudinal” formula (see Eq. (15) of [46]).
The matrix elements 〈ui,k|∂u j,k/∂kα〉 are present in this for-
mula. These matrix elements are calculated using a parallel
algorithm implemented in the source file linear_optics.F (and
nested subroutines). One could find that

−i

〈
ui,k

∣∣∣∣∣∂u j,k

∂kα

〉
= −〈ui,k|r̂α|u j,k〉

= −〈
i,k|r̂α|
 j,k〉, (50)

where r̂α is the coordinate operator.
We multiply the matrix elements (50) calculated in

linear_optics.F by −me(ε j,k − εi,k )/h̄2. This makes them ap-
plicable in formulation (2) of the Kubo-Greenwood formula
present in our paper. Thus, we obtain

Dk
i j = 1

3

m2
e

h̄4 (ε j,k − εi,k )2
∑

α

|〈
i,k|r̂α|
 j,k〉|2

= 1

3

m2
e

h̄4 (ε j,k − εi,k )2
∑

α

∣∣∣∣∣
〈

ui,k

∣∣∣∣∣∂u j,k

∂kα

〉∣∣∣∣∣
2

.

(51)

This works as follows. If one substitutes Eq. (51) into
Eq. (2), the longitudinal formula (Eq. (15) of [46]) is obtained.
If we run the GREEKUP code with the matrix elements (51), we
obtain the valid numerical implementation of the longitudinal
formula. The calculation according to the continuous Kubo-
Greenwood formula (16) and (22) via the CUBOGRAM code
with Dk

i j given by Eq. (51) is another numerical implementa-
tion of the longitudinal formula. Calculation of this type will
be further marked with the “LO-L” tag.

The relationship between this method and the methods
OPT and LO-T can be shown better if we consider the con-
nection between the matrix elements of coordinate r̂α and
gradient ∇α operators:

〈
i,k|∇α − me

h̄2 [V̂ , r̂α]|
 j,k〉

= me

h̄2 (ε j,k − εi,k )〈
i,k|r̂α|
 j,k〉. (52)
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FIG. 7. SSME for the static case D(ε, ε)� (left) and electrical conductivity σCKG
1 (ω) (right) for all methods of calculating matrix elements.

OPT and LO-T calculations gave very close results. GKP curves are situated only a bit higher than LO-T ones. The LO-L values are significantly
lower than those obtained by the LO-T method.

Here, V̂ is the effective potential in the Kohn-Sham equations.
The derivation of relationship (52) can be found in our earlier
paper (see Eq. (16) of [39]).

If potential V̂ is local, it commutes with r̂α: [V̂ , r̂α] = 0.
In this case Eq. (51) reduces to

Dk
i j = 1

3

m2
e

h̄4 (ε j,k − εi,k )2
∑

α

|〈
i,k|r̂α|
 j,k〉|2

= 1

3

∑
α

|〈
i,k|∇α|
 j,k〉|2. (53)

Therefore, in case of a local potential the LO-L method theo-
retically should give the same results as the LO-T (and OPT)
methods. However, some discrepancy with the LO-T method
is still possible due to the features of the VASP code (see the
end of Sec. II B of [46]).

If the potential V̂ is nonlocal, the necessary corrections are
taken into account in the LO-L method. This follows from
Eqs. (51) and (52):

Dk
i j = 1

3

m2
e

h̄4 (ε j,k − εi,k )2
∑

α

|〈
i,k|r̂α|
 j,k〉|2

= 1

3

∑
α

|〈
i,k|∇α − me

h̄2 [V̂ , r̂α]|
 j,k〉|2.
(54)

These corrections are not possible in the OPT method (see
Sec. 3.2 of [39]), and are actually taken into account in the
LO-L method.

Our previous calculations were performed using the GKP
method for aluminum [35,40] and the OPT method for other
materials [39]. In this paper all calculations were performed
using the LO-L method, unless otherwise specified.

2. Results obtained using various methods

Here, we will compare the results obtained using various
methods of calculating matrix elements.

The calculation is performed for the same system as in
Sec. V. Technical computation parameters are the same as

in Sec. VI A except for k-point mesh at the second stage of
the calculation. We were able to obtain the OPT curve with
only one k point since matrix elements are calculated via the
serial algorithm. Therefore, all curves in this section are cal-
culated using only one k point. We use the Baldereschi k point
(0.25, 0.25, 0.25) that yields rather smooth results.

Figure 7 demonstrates D(ε, ε) and σCKG
1 (ω) for all meth-

ods of calculating matrix elements.
As expected OPT and LO-T results are almost the same.

There are some Di j that are zero in LO-T but nonzero in OPT
computation. It causes a 1% difference in D(ε, ε) between
these methods at some energy values; the static conductivity
σCKG

1DC differs by 0.1%. Because of that we consider that these
methods yield very close but not equal results.

We use the GGA-PBE XC functional during the calcu-
lation via OPT, LO-T, and LO-L methods. This local XC
functional produces the local effective potential in the Kohn-
Sham equations. Therefore, methods LO-T and LO-L should
give the same results (Sec. VI D 1 d). However, we observe a
significant difference between these methods on SSME and
σCKG

1 (ω) graphs. We attribute this discrepancy to the features
of calculations mentioned in the paper of Gajdoš et al. (see
the end of Sec. II B of [46]). Curves D(ε, ε) and σCKG

1 (ω) for
the LO-L calculation are situated below LO-T; the difference
in σCKG

1DC is 11%.
The GKP method yields a bit higher results than OPT (and

LO-T). However, GKP differs from LO-T less than LO-L
differs from LO-T; the difference in σCKG

1DC is 3%.
In paper [46] the similar arrangement of LO-T and LO-L

curves (for dielectric function) was obtained for other materi-
als.

Thus, four various methods of matrix elements calculation
give noticeably different results. Our technique based on the
smoothing procedure and the continuous Kubo-Greenwood
formula reveals additional details: using SSME we explic-
itly analyze the contribution of matrix elements to dynamic
electrical conductivity. Hence our approach can provide better
understanding of transport properties for more complicated
materials.
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VII. RELATED IDEAS IN PREVIOUS WORKS

Here we are going to consider some previous works with
related ideas and estimate the contribution of our paper.

The expressions that look like the continuous Kubo-
Greenwood formula (22) are present in a number of works
[50–56]. While considering these works, one should remem-
ber that the continuous KG formula (22) and the exact KG
formula in the continuous form (34) look alike but still have
different meanings. Equation (22) includes the expressions
calculated using broadened δ functions, whereas Eq. (34) uses
exact δ functions. Also, in theoretical works, it is often not
stated explicitly whether a continuous or discrete spectrum is
considered; sometimes, one may infer that the authors implied
the transfer between the two. In our numerical calculations,
we obtain a discrete spectrum with small but finite distances
between energy levels. The theoretical transfer to a continuous
spectrum is not achieved in numerical calculation. In order to
get a smooth function D(ε1, ε2) from the discrete spectrum
obtained in practice, we had to develop the smoothing proce-
dure (16). The theoretical expressions with exact δ functions
are also not directly applicable in numerical simulation. One
should remember these peculiarities of numerical calculations
during the further consideration of previous works.

Our paper resonates with the book of Mott and Davis,
where the continuous Kubo-Greenwood formula is presented
(see Eq. (2.12) of [50]). Its derivation starts from Fermi’s
golden rule in the form including DOS (see Eq. (2.8) of [50]).

The book of Messiah contains a rather strict and clear
derivation of Fermi’s golden rule in the form including DOS
(see Eq. (XVII.50) of [57]). It is derived for transitions from
a discrete to a continuous spectrum. It is also assumed that
matrix elements and density of states are “practically constant
over the interval” of final states.

It is not stated explicitly in the book of Mott and Davis
whether they consider a continuous spectrum or a discrete one
with a small distance between the levels. Some “average over
all states having energy near final” is also mentioned. Since
the further consideration is mostly theoretical, Mott and Davis
do not specify the procedure of averaging or examine whether
matrix elements and DOS change smoothly as the functions
of final energy. In our numerical calculation, the distance be-
tween energy levels is small but finite (Sec. II). Therefore, we
cannot omit these questions and have to develop the procedure
of smoothing the squares of matrix elements (16).

Theoretical expressions for matrix elements in several
cases are also present in [50]. In our paper, we obtain SSME
from numerical calculations based on DFT and QMD. In
principle, our approach enables the comparison of theoretical
models with numerical calculations.

Our paper also resonates with the book of Madelung,
which contains the continuous Kubo-Greenwood formula too
(see Eq. (8.82) of [51]). For its derivation, the adiabatic
switching of the external sinusoidal electric field is consid-
ered, and the Liouville–von Neumann equation is solved in
the first-order perturbation theory. The discrete spectrum is
likely considered; therefore, the usual Kubo-Greenwood for-
mula similar to Eq. (5) is to be obtained. However, the result
is immediately written in the form that leads to the contin-
uous Kubo-Greenwood formula (see Eqs. (8.79) and (8.82)

of [51]). Madelung states that “the matrix element is to be
averaged over all states in the intervals dE and dE ′” but does
not specify a formula for this averaging. The more elaborate
consideration would be similar to our Secs. III A and III B and
include the smoothing procedure (16). The continuous Kubo-
Greenwood formula remains mostly a fundamental result in
the book of Madelung; little theoretical and no numerical
development is present.

The continuous Kubo-Greenwood formula is presented in
Eq. (2.34) of [52]. Its derivation reduces to the idea that “if
the energy gap between the neighboring states is small, the
sum in the exact Kubo-Greenwood formula may be repre-
sented as the integral.” However, neither major theoretical
development nor numerical implementation of the continuous
Kubo-Greenwood formula is further considered in the work
[52].

Transport and optical properties of warm dense hydrogen
are studied in [53] using QMD and DFT techniques. This
paper contains an equation (Eq. (6) of [53]) that may have the
meaning of the continuous KG formula (22) or the exact KG
formula in the continuous form (34). This equation includes
some “analogue of matrix element squared for a continuous
range of energies,” |D(E ′, E )|2. The latter expression is not
explicitly defined. It may be inferred that some numerical
calculation was performed according to Eq. (6) of [53] on the
basis of QMD+DFT results. This could be rather close to our
approach; however, the details of this calculation, such as the
function |D(E ′, E )|2, are not available. The theoretical part of
[54] is close to that of [53].

Transport and optical properties of amorphous semicon-
ductors are considered in [55]. Equations (11) and (12) of [55]
are close to the exact Kubo-Greenwood formula in the con-
tinuous form (34) from our paper. The theoretical expression
for matrix elements, containing a free parameter, is obtained
within the random phase model. The final value of squared
matrix elements multiplied by the square of DOS is deduced
from experimental results on transport properties. This allows
the author of [55] to blur the difference between the exact
Kubo-Greenwood formula in the continuous form and the
continuous Kubo-Greenwood formula.

The continuous Kubo-Greenwood formula is presented in
Eq. (6.131) of [56]. This formula is discussed only from a
theoretical point of view; the numerical implementation is not
considered.

In our paper, we apply the continuous Kubo-Greenwood
formula to the output of QMD+DFT numerical calcula-
tion. Therefore, we need the expression that produces a
smooth function D(ε1, ε2) from QMD+DFT results. The
works [50–56] discussed above do not report such an expres-
sion. We use Eq. (16) for that purpose. Several works [58–60]
contain expressions close to our Eqs. (16) or (18).

The optical properties of disordered semiconductors are
studied using the expression similar to the continuous Kubo-
Greenwood formula in the paper of Abe and Toyozawa (see
Eq. (1.7) of [58]). The authors aim to analyze the formation
of optical properties by studying DOS and squared matrix
element M(E1, E2); this is close to the motivation of our
work. The calculation of squared matrix elements starts from
Eq. (3.4) of [58], similar to our Eq. (18). However, the nu-
merator in this expression is calculated using a technique
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significantly different from ours: the authors apply the tight-
binding (TB) model and perform a numerical calculation on
the basis of a theory formulated in terms of the Green’s
functions. Some model expressions for DOS are also intro-
duced. The work [58] is the only among those considered in
this section where the landscape of squared matrix elements
M(E1, E2) is plotted.

Some of the ideas and results of [58] are presented more
clearly in the work of Cody [59]. He rewrites the exact Kubo-
Greenwood formula in the continuous form (see Eqs. (15),
(40), and (41) of [59]). Then Cody states that expression
(3.4) of [58] for squared matrix elements M(E1, E2) may be
reformulated in the form similar to our Eq. (16) (see Eqs. (43)
and (44) of [59]). However, the latter equations include exact δ
functions (in contrast to our paper, in which broadened δ func-
tions are used). Other calculations of [58] are not reformulated
in this way; only the model and results are then discussed.
Consequently, Eqs. (43) and (44) with the exact δ functions
create no problems for the work [59].

The exact Kubo-Greenwood formula in the continuous
form is presented in Eq. (4) of [60]. This paper also contains
an expression for matrix elements squared M2(E , E ′) that
looks like our Eq. (16) (see Eq. (5) of [60]). However, the
exact δ functions are used in this expression. Therefore, this
expression is not directly applicable for numerical calcula-
tions. This does not cause any problems in the paper [60],
since they proceed with a theoretical estimation of M2(E , E ′)
for amorphous semiconductors.

Though the works [58–60] contain expressions looking
like our Eqs. (16) and (18), none of them may be directly used
to obtain smooth D(ε1, ε2) from QMD+DFT calculations.

Besides ours, other approaches were suggested to ana-
lyze the formation of transport and optical properties. Below
we discuss some other experimental [61] and computational
[62,63] methods.

The optical properties of amorphous and crystalline solids
are considered using the Kubo-Greenwood formula in [61].
The exact KG formula (Eq. (3) of [61]) is expressed in a
continuous form different from ours. This continuous form
(see Eq. (8) of [61]) contains the joint density of states
(JDOS) J (h̄ω) and averaged dipole matrix elements squared
R2(h̄ω). JDOS is connected with the number of transitions
corresponding to a given frequency ω. The definition of JDOS
in [61] is applicable only at rather small electron temperatures.
In contrast to our SSME, all matrix elements corresponding
to the same frequency ω are averaged to form the result-
ing R2(h̄ω). The authors of [61] state that “more general
average matrix elements” close to our SSME contain more
information from the theoretical point of view. However,
only R2(h̄ω) may be derived from the experiment conducted
in [61].

The electronic structure, optical and transport properties
of germanene are studied in [62]. For this crystalline two-
dimensional material, only two bands, valence and conduction
ones, are considered within the tight-binding model. The de-
pendence E (k) of the electron energy on the wave vector
may be traced for each of these bands. The matrix elements
of transitions between valence and conduction bands, D(k),
are then used to calculate optical properties via the usual

Kubo-Greenwood formula. The authors of [62] report not only
the final results on optical properties but also the dependence
|D(k)|2.

In [63], the optical properties of graphene doped with
various amounts of silicon are calculated using DFT and the
usual Kubo-Greenwood formula. The dependence of electron
energy on wave vector E (k) for various bands may be traced
for these crystalline two-dimensional materials. The unfolding
procedure [64] is used to switch from the supercell to a smaller
cell; this makes the band structure much clearer. The au-
thors investigate the contribution of various initial bands and
wave vectors to the integrated dynamic electrical conductivity∫

σ1(ω)dω.
The methods of [62,63] require E (k). Therefore they are

applicable for crystalline solids with small imperfections.
The performed consideration helps us to estimate the po-

sition of our paper among the previous works. In this study,
we combine in practice the continuous Kubo-Greenwood for-
mula with the numerical calculation based on DFT and QMD
methods. We provide the theory necessary for the numerical
implementation of the continuous KG formula. In particular,
this theory includes the smoothing procedure (16) with the
broadened δ functions and the proof of the fact that the usual
and continuous KG formulas are equivalent in the limit of
zero broadening (Sec. IV B). The practical numerical im-
plementation of the continuous Kubo-Greenwood formula in
the parallel CUBOGRAM code (Continuous Kubo-Greenwood
Program) is the major result of our paper. We demonstrate
the capabilities of the CUBOGRAM code by performing cal-
culations for liquid aluminum. Both the values of transport
properties and the brief analysis of their formation are re-
ported. Our technique also provides additional opportunities
to examine various methods of matrix elements calculation.
These methods may be studied deeper by analyzing the func-
tion D(ε1, ε2) for each case.

VIII. CONCLUSION

In this work we present the derivation and discussion of
the continuous Kubo-Greenwood formula. Our theoretical
consideration (Sec. IV B) demonstrates that the continuous
formula is a valid alternative to the usual Kubo-Greenwood
formula. Both formulas produce close results on dynamic
electrical and thermal conductivity. Unlike the usual formula,
the continuous one is formulated as the integral of several con-
tinuous functions over the electron spectrum: the smoothed
squares of matrix elements D(ε, ε + h̄ω), the densities of
states g(ε)g(ε + h̄ω), and the difference of the Fermi weights
f (ε) − f (ε + h̄ω). We can plot these functions and analyze
the contribution of various sections of the electron spectrum
to electrical and thermal conductivity (Sec. V). We consider
that the possibility of such analysis is the main advantage of
the continuous formula.

We also study the dependence of the results on a number
of technical parameters. Numerical simulations were per-
formed for liquid aluminum using four different methods of
calculating matrix elements. These methods encompass vari-
ous realizations of “transverse” and “longitudinal” formulas.
The parallel CUBOGRAM code has been created to implement
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the continuous Kubo-Greenwood formula. Our study demon-
strates that the proposed scheme for transport properties
calculation is a useful tool for theoretical analysis and qual-
itative estimations.
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